AN INTEGRAL INEQUALITY FOR POLYNOMIALS

Nisar A. Rather \& Mushtaq A. Shah*
P. G. Department of Mathematics, Kashmir University, Hazratbal, Srinagar- 190006, India

(Received on: 15-05-12; Accepted on: 31-05-12)

Abstract

In this paper, a compact generalization of certain known Lp inequalities for polynomials is obtained, which refine some results due to De-Bruijn, Boas and Rahman and others.

Mathematics subject classification (2000): 30A06, 30A64, 30C10.
Keywords and phrases: polynomials, L_{p} inequalities, complex domain.

1. INTRODUCTION AND STATEMENT OF RESULTS

Let $\mathrm{P}_{\mathrm{n}}(\mathrm{z})$ denote the space of all complex polynomials $P(\mathrm{z})=\sum_{j=1}^{n} a_{j} \mathrm{Z}^{j}$ of degree n . For $\mathrm{P} \in \mathrm{P}_{\mathrm{n}}$, define
$\|P(z)\|_{P}:=\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{p} d \theta\right\}^{1 / p}, p \geq 1$
and
$\|P(z)\|_{\infty}:=\underset{|z|=1}{\operatorname{Max}}|P(z)|$.

If $\mathrm{P} \in \mathrm{P}_{\mathrm{n}}$, then according to a famous result known as Bernstein's inequality (for reference see $[13,16,18]$),
$\left\|P^{\prime}(z)\right\|_{\infty} \leq n\|P(z)\|_{\infty}$,
whereas concerning the maximum modulus of $P(z)$ on the circle $|z|=R>1$, we have
$\|P(R z)\|_{\infty} \leq R^{n}\|P(z)\|_{\infty}$

Inequality (2) is a simple deduction from maximum modulus principle (see [13, p.442] or [14, Vol I, p.137]).
Inequalities (1) and (2) can be obtained by letting $p \rightarrow \infty$ in the inequalities
$\left\|P^{\prime}(z)\right\|_{p} \leq n\|P(z)\|_{p}, \quad p \geq 1$
and
$\|P(R z)\|_{p} \leq R^{n}\|P(z)\|_{p}, R>1, p>0$
respectively. Inequality (3) was found by Zygmund [19], whereas inequality (4) is a simple consequence of a result of Hardy [10] (see also [16, Th.5.5]). Arestov [2] proved that (3) remains true for $0<\mathrm{p}<1$ as well.

If we restrict ourselves to the class of polynomials $\mathrm{P} \in \mathrm{P}_{\mathrm{n}}$, having no zero in $|\mathrm{z}|<1$, then the inequalities (1) and (2) can be sharpened. In fact, if $\mathrm{P}(\mathrm{z}) \neq 0$ in $|\mathrm{z}|<1$, then (1) and (2) can be respectively replaced by

$$
\begin{equation*}
\left\|P^{\prime}(z)\right\|_{\infty} \leq \frac{n}{2}\|P(z)\|_{\infty} \tag{5}
\end{equation*}
$$

[^0]and
$\|P(R z)\|_{\infty} \leq \frac{R^{n}+1}{2}\|P(z)\|_{\infty}, \mathrm{R}>1$.
Inequality (5) was conjectured by Erdös and later verified by Lax [12]. Ankiny and Rivilin [1] used inequality (5) to prove inequality (6).

Both the inequalities (5) and (6) can be obtained by letting $p \rightarrow \infty$ in the inequalities
$\left\|P^{\prime}(z)\right\|_{p} \leq n \frac{\|P(z)\|_{p}}{\|1+z\|_{p}}, \quad p \geq 0$,
and
$\|P(R z)\|_{p} \leq \frac{\left\|R^{n} z+1\right\|_{p}}{\|1+z\|_{p}}\|P(z)\|_{p}, R>1, p>0$.
Inequality (7) is due to De Bruijn [9] for $p \geq 1$. Rahman and Schmeisser [15] extended it for $0<p<1$, whereas the inequality (8) was proved by Boas and Rahman [8] for $p \geq 1$ and later extended for $0<p<1$ by Rahman and Schmeisser [15].

Aziz and Dawood [3] refined both the inequalities (5) and (6) by showing that if $P \in P_{n}$, and $P(z)$ does not vanish in $|z|<1$ and $m=\min _{|z|=1}|P(z)|$, then
$\left\|P^{\prime}(z)\right\|_{\infty} \leq \frac{n}{2}\left\{\|P(z)\|_{\infty}-m\right\}$,
and
$\|P(R z)\|_{\infty} \leq \frac{R^{n}+1}{2}\left\{\|P(z)\|_{\infty}-m\right\}$.
As a compact generalization of the inequalities (3), (4), (5), (6), recently Aziz and Rather [7] proved that if $\mathrm{P} \in \mathrm{P}_{\mathrm{n}}$ and P (z) does not vanish in $|\mathrm{z}|<1$, then for arbitrary real or complex numbers α and β with $|\alpha| \leq 1,|\beta| \leq 1, \mathrm{R}>\mathrm{r} \geq 1$ and $\mathrm{p}>0$,
$\|P(R z)+\phi(R, r, \alpha, \beta) P(r z)\|_{p} \leq \frac{C_{p}\|P(z)\|_{p}}{\|1+z\|_{p}}$
where
$C_{p}=\left\|\left(R^{n}+\varphi(R, r, \alpha, \beta) r^{n}\right) z+(1+\varphi(R, r, \alpha, \beta))\right\|_{p}$
and

$$
\begin{equation*}
\phi(R, r, \alpha, \beta)=\beta\left\{\left(\frac{R+1}{r+1}\right)^{n}-|\alpha|\right\}-\alpha \tag{13}
\end{equation*}
$$

In this paper, we prove the following interesting result which includes not only a generalization of the inequality (11) as a special case but also leads to some refinements and generalizations of certain known polynomial inequalities.

Theorem 1: If $\mathrm{P} \in \mathrm{P}_{\mathrm{n}}$, does not vanish in $|\mathrm{z}|<1$ and $m=\min _{|z|=1}|P(z)|$, then for arbitrary complex numbers α, β, δ with $|\alpha| \leq 1,|\beta| \leq 1,|\delta| \leq 1, \mathrm{R}>\mathrm{r} \geq 1$ and $\mathrm{p}>0$,
$\left\|P(R z)+\varphi(R, r, \alpha, \beta) P(r z)+\delta m \frac{\left|R^{n}+\varphi(R, r, \alpha, \beta) r^{n}\right|-|1+\varphi(R, r, \alpha, \beta)|}{2}\right\|_{p} \leq \frac{C_{p}}{\|1+z\|_{p}}\|P(z)\|_{p}$,
where C_{p} and $\phi(R, r, \alpha, \beta)$ are defined by (12) and (13) respectively. The result is best possible and the equality in (14) holds for the polynomial $P(z)=a z^{n}+b$, where $|\mathrm{a}|=|\mathrm{b}|=1$.

Theorem 1 has various interesting consequences. Here we mention few of these.
For $\delta=0$, the inequality (14) reduces to inequality (11). Next, we mention the following compact generalization of inequalities (5), (6), (7), (8), (9) and (10), which follows from Theorem 1 by setting $\beta=0$.

Corollary 1: If $\mathrm{P} \in \mathrm{P}_{\mathrm{n}}$ does not vanish in $|\mathrm{z}|<1$ and $m=\min _{|z|=1}|P(z)|$, then for arbitrary complex numbers α, δ with $|\alpha| \leq 1,|\delta| \leq 1, R>r \geq 1$ and $\mathrm{p}>0$,

$$
\begin{equation*}
\left\|P(R z)-\alpha P(r z)+\frac{\delta}{2}\left(\left|R^{n}-\alpha r^{n}\right|-|1-\alpha|\right) m\right\|_{p} \leq \frac{\left\|\left(R^{n}-\alpha r^{n}\right) z+(1-\alpha)\right\|_{p}}{\|1+z\|_{p}}\|P\|_{p} \tag{15}
\end{equation*}
$$

The result is best possible and equality in (15) holds for $P(z)=z^{n}+1$.
Remark 1: Corollary 3 includes as a special case a result due to Rather [17, Theorem 1], which is obtained by taking α $=0$ in (15).

Next if we set $\alpha=1$ and divide two sides of (15) by $R-r$ and let $R \rightarrow r$, we obtain,
Corollary 2: If $\mathrm{P} \in \mathrm{P}_{\mathrm{n}}$ does not vanish in $|\mathrm{z}|<1$ and $m=\min _{|z|=1}|P(z)|$, then for each $\mathrm{p}>0$ and $\mathrm{r} \geq 1$,

$$
\left\|z P^{\prime}(r z)+\frac{\delta}{2} n m r^{n-1}\right\|_{p} \leq \frac{n r^{n-1}}{\|1+z\|_{p}}\|P(z)\|_{p}
$$

The result is sharp.
Corollary 2 is an interesting generalization of inequality (7) due to De Bruijn [9]. Inequality (8) can also be obtained from inequality (15) by setting $\alpha=\delta=0$.

Making $p \rightarrow \infty$ in (14) and choosing the argument of δ with $|\delta|=1$ suitably, we obtain:
Corollary 3: If $\mathrm{P} \in \mathrm{P}_{\mathrm{n}}$ does not vanish in $|\mathrm{z}|<1$, then for $\alpha, \beta \in \mathrm{C}$ with $|\alpha| \leq 1,|\beta| \leq 1$ and $\mathrm{R}>\mathrm{r} \geq 1$,

$$
\begin{align*}
\| P(R z)+\varphi(R, r, \alpha, \beta) & P(r z)\left\|_{\infty} \leq\left\{\frac{\left|R^{n}+\varphi(R, r, \alpha, \beta) r^{n}\right|+|1+\varphi(R, r, \alpha, \beta)|}{2}\right\}\right\| P(z) \|_{\infty} \\
& -\left\{\frac{\left|R^{n}+\varphi(R, r, \alpha, \beta) r^{n}\right|-|1+\varphi(R, r, \alpha, \beta)|}{2}\right\} \min _{|z|=1}|P(z)| \tag{16}
\end{align*}
$$

where $\quad \phi(R, r, \alpha, \beta)$ is the same as defined in Theorem 1 . The result is sharp and the equality holds for $P(z)=a z^{n}+b$, where $|\mathrm{a}|=|\mathrm{b}|=1$.

Corollary 3 is a refinement as well as a generalization of a result due to Aziz and Rather [4, Theorem 3]. For $\alpha=\beta=0$, it reduces to (10). If we divide the two sides of inequality (16) by $\mathrm{R}-\mathrm{r}$ with $\alpha=1=\mathrm{r}$ and let $\mathrm{R} \rightarrow \mathrm{r}$, we get inequality (9).

Finally we mention the result which is a refinement as well as a generalization of a result due to Jain [11, Theorem 2], which follows from corollary 3 as a special case.

Corollary 4: If $\mathrm{P} \in \mathrm{P}_{\mathrm{n}}$, does not vanish in $|\mathrm{z}|<1$ and $m=\min _{|z|=1}|P(z)|$, then for every $\beta \in \mathrm{C}$ with $|\beta| \leq 1, \mathrm{R}>\mathrm{r} \geq 1$ and for $|z|=1$,
$\left|z P^{\prime}(r z)+\frac{n \beta}{1+r} P(r z)\right| \leq \frac{n}{2}\left(\left|r^{n-1}+\beta \frac{r^{n}}{1+r}\right|+\left|\frac{\beta}{1+r}\right|\right)\|P\|_{\infty}-\frac{n}{2}\left(\left|r^{n-1}+\beta \frac{r^{n}}{1+r}\right|-\left|\frac{\beta}{1+r}\right|\right) m$
and

$$
\begin{align*}
\left|P(R z)+\beta\left(\frac{R+1}{r+1}\right)^{n} P(r z)\right| \leq \frac{1}{2}\left[\left\{\mid R^{n}+\right.\right. & \beta\left(\frac{R+1}{r+1}\right)^{n} r^{n}\left|+\left|1+\beta\left(\frac{R+1}{r+1}\right)^{n}\right|\right\}\|P\|_{\infty} \\
& \left.-\left\{\left.\left|R^{n}+\beta\left(\frac{R+1}{r+1}\right)^{n} r^{n}\right|-1+\beta\left(\frac{R+1}{r+1}\right)^{n} \right\rvert\,\right\} m\right] \tag{18}
\end{align*}
$$

The result is sharp and the extremal polynomial is $P(z)=a z^{n}+b$ where $|\mathrm{a}|=|\mathrm{b}|=1$.

2. LEMMAS

For the proofs of these theorems, we need the following lemmas.
Lemma 1: If $\mathrm{F}(\mathrm{z})$ is a polynomial of degree n having all its zeros in $|\mathrm{z}| \leq 1$ and $\mathrm{f}(\mathrm{z})$ is a plynomial of degree at most n such that

$$
|f(z)| \leq|F(z)| \text { for }|z|=1
$$

then for every $R>r \geq 1, \alpha, \beta \in \mathrm{C}$ with $|\alpha| \leq 1,|\beta| \leq 1$ and $|z| \geq 1$,

$$
\begin{equation*}
|f(R z)+\phi(R, r, \alpha, \beta) f(r z)| \leq|F(R z)+\phi(R, r, \alpha, \beta) F(r z)| \tag{19}
\end{equation*}
$$

where $\phi(R, r, \alpha, \beta)$ is defined by (13).
Lemma 1 is due to A.Aziz and N.A. Rather [7].
Lemma 2: If $\mathrm{P}(\mathrm{z})$ is a polynomial of degree n having all its zeros in $|\mathrm{z}| \leq 1$ and $m=\min _{|z|=1}|P(z)|$, then for every $R>r \geq 1, \alpha, \beta \in \mathrm{C}$ with $|\alpha| \leq 1,|\beta| \leq 1$ and $|\mathrm{z}| \geq 1$,

$$
\begin{equation*}
|P(R z)+\phi(R, r, \alpha, \beta) p(r z)| \geq m\left|R^{n}+\phi(R, r, \alpha, \beta) r^{n}\right||z|^{n} \tag{20}
\end{equation*}
$$

where $\phi(R, r, \alpha, \beta)$ is defined by (13).
Proof of Lemma 2: For $m=0$, there is nothing to prove. Assume $m>0$, so that all the zeros of $P(z)$ lie in $|z|<1$ and we have
$m|z|^{n} \leq|P(z)|$ for $\quad|z|=1$.

Applying Lemma 2 with $F(z)$ replaced by $P(z)$ and $f(z)$ by $m z^{n}$, we obtain for $|z| \geq 1$,

$$
m\left|R^{n} z^{n}+\phi(R, r, \alpha, \beta) r^{n} z^{n}\right| \leq|P(R z)+\phi(R, r, \alpha, \beta) P(r z)|
$$

That is,

$$
|P(R z)+\varphi(R, r, \alpha, \beta) P(r z)| \geq m|z|^{n}\left|R^{n}+\varphi(R, r, \alpha, \beta) r^{n}\right|
$$

for $\alpha, \beta \in \mathrm{C}$ with $|\alpha| \leq 1,|\beta| \leq 1, \mathrm{R}>\mathrm{r} \geq 1$ and $|\mathrm{z}| \geq 1$. That proves Lemma 2 .
Lemma 3: If $\mathrm{P} \in \mathrm{P}_{\mathrm{n}}$ does not vanish in $|\mathrm{z}|<1$ and $m=\min _{|z|=1}|P(z)|$, then for every $R>r \geq 1, \alpha, \beta \in \mathrm{C}$ with $|\alpha| \leq 1$, $|\beta| \leq 1$ and $|\mathrm{z}|=1$,

$$
\begin{equation*}
|P(R z)+\varphi(R, r, \alpha, \beta) P(r z)| \leq|Q(R z)+\varphi(R, r, \alpha, \beta) Q(r z)|-\left\{\left|R^{n}+\varphi(R, r, \alpha, \beta) r^{n}\right|-|1+\varphi(R, r, \alpha, \beta)|\right\} m \tag{21}
\end{equation*}
$$

where $Q(z)=z^{n} \overline{P(1 / \bar{z})}$.
Proof of Lemma 3: Since $m=\min _{|z|=1}|P(z)|$, we have

$$
m \leq|P(z)| \text { for } \quad|z|=1
$$

Therefore, for every complex number λ with $|\lambda|<1$, the polynomial $\mathrm{H}(\mathrm{z})=\mathrm{P}(\mathrm{z})-\lambda \mathrm{m}$ of degree n does not vanish in $|z|<1$. If

$$
G(z)=z^{n} \overline{H(1 / \bar{z})}=Q(z)-\bar{\lambda} m z^{n},
$$

then all the zeros of polynomial $\mathrm{G}(\mathrm{z})$ of degree n lie $|\mathrm{z}| \leq 1$ and

$$
|H(z)|=|G(z)| \text { for } \quad|z|=1
$$

Applying Lemma 1 with $\mathrm{f}(\mathrm{z})$ replaced by $\mathrm{H}(\mathrm{z})$ and $\mathrm{F}(\mathrm{z})$ by $\mathrm{G}(\mathrm{z})$, we get for every $R>r \geq 1, \alpha, \beta \in \mathrm{C}$ with $|\alpha| \leq 1$, $|\beta| \leq 1$ and $|z| \geq 1$,

$$
|H(R z)+\phi(R, r, \alpha, \beta) H(r z)| \leq|G(R z)+\phi(R, r, \alpha, \beta) G(r z)| .
$$

That is,

$$
\begin{align*}
& \mid P(R z)+\phi(R, r, \alpha, \beta) P(r z)-\lambda m\{1+\phi(R, r, \alpha, \beta)\} \mid \\
& \quad \leq\left|Q(R z)+\phi(R, r, \alpha, \beta) Q(r z)-\bar{\lambda} m z^{n}\left\{R^{n}+\phi(R, r, \alpha, \beta) r^{n}\right\}\right| \tag{22}
\end{align*}
$$

for every $R>r \geq 1, \alpha, \beta \in \mathrm{C}$ with $|\alpha| \leq 1,|\beta| \leq 1$ and $|\mathrm{z}| \geq 1$. Since all the zeros of $\mathrm{Q}(\mathrm{z})$ lie in $|\mathrm{z}| \leq 1$, we choose argument of λ with $|\lambda|<1$, such that

$$
\begin{aligned}
\mid Q(R z)+\phi(R, r, & \alpha, \beta) Q(r z)-\bar{\lambda} m z^{n}\left\{R^{n}+\phi(R, r, \alpha, \beta) r^{n}\right\} \mid \\
& =|Q(R z)+\phi(R, r, \alpha, \beta) Q(r z)|-|\lambda| m\left|R^{n}+\phi(R, r, \alpha, \beta) r^{n}\right||z|^{n}
\end{aligned}
$$

for $|z| \geq 1$, which is possible by Lemma 3, we have from (22),

$$
\begin{align*}
\mid P(R z)+\phi(R, r & , \alpha, \beta) P(r z)|-|\lambda| m| 1+\phi(R, r, \alpha, \beta) \mid \\
& =|Q(R z)+\phi(R, r, \alpha, \beta) Q(r z)|-|\lambda| m\left|R^{n}+\phi(R, r, \alpha, \beta) r^{n}\right||z|^{n} \tag{23}
\end{align*}
$$

for $|\mathrm{z}| \geq 1$. Equivalently for every $R>r \geq 1, \alpha, \beta \in \mathrm{C}$ with $|\alpha| \leq 1,|\beta| \leq 1$ and $|\mathrm{z}| \geq 1$,

$$
\begin{aligned}
|P(R z)+\varphi(R, r, \alpha, \beta) P(r z)| \leq & |Q(R z)+\varphi(R, r, \alpha, \beta) Q(r z)| \\
& -|\lambda|\left\{\left|R^{n}+\varphi(R, r, \alpha, \beta) r^{n}\right||z|^{n}-|1+\varphi(R, r, \alpha, \beta)|\right\} m .
\end{aligned}
$$

Letting $|\lambda| \longrightarrow 1$, we get the conclusion of lemma 4.
We also need the following two Lemmas due to A.Aziz and N.A.Rather [8, 9].
Lemma 4 [7]: If $\mathrm{P} \in \mathrm{P}_{\mathrm{n}}$, then for arbitrary real or complex numbers α, β, with $|\alpha| \leq 1,|\beta| \leq 1, \mathrm{R}>\mathrm{r} \geq 1, \mathrm{p}>0$ and γ real,

$$
\begin{align*}
& \int_{0}^{2 \pi}\left|P\left(R e^{i \theta}\right)+\phi(R, r, \alpha, \beta) P\left(r e^{i \theta}\right)+e^{i \gamma}\left\{R^{n} P\left(e^{i \theta} / R\right)+\phi(R, r, \bar{\alpha}, \bar{\beta}) r^{n} P\left(e^{i \theta} / r\right)\right\}\right|^{p} d \theta \\
& \leq\left|R^{n}+\phi(R, r, \alpha, \beta) r^{n}+e^{i \gamma}\left(1+\phi(R, r, \bar{\alpha}, \bar{\beta}) r^{n}\right)\right| \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right| d \theta \tag{24}
\end{align*}
$$

The result is sharp and the extremal polynomial is $P(z)=\lambda z^{n}, \lambda \neq 0$.
Lemma 5 [6]: If $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are non-negative real numbers with $\mathrm{B}+\mathrm{C} \leq \mathrm{A}$, then for every realnumber α,
$\left|(A-C) e^{i \alpha}+(B+C)\right| \leq\left|A e^{i \alpha}+B\right|$.

3. PROOF OF THE THEOREM

Proof of Theorem 1: By hypothesis $\mathrm{P} \in \mathrm{P}_{\mathrm{n}}$ and $\mathrm{P}(\mathrm{z}) \neq 0$ in $|\mathrm{z}|<1$, therefore by Lemma 3, we have for arbitrary real or complex numbers α, β, with $|\alpha| \leq 1,|\beta| \leq 1, \mathrm{R}>\mathrm{r} \geq 1$ and $0 \leq \theta<2 \pi$,

$$
\begin{aligned}
\left|P\left(R e^{i \theta}\right)+\varphi(R, r, \alpha, \beta) P\left(r e^{i \theta}\right)\right| \leq & \left|Q\left(R e^{i \theta}\right)+\varphi(R, r, \alpha, \beta) Q\left(r e^{i \theta}\right)\right| \\
& -\left\{\left|R^{n}+\varphi(R, r, \alpha, \beta) r^{n}\right|-|1+\varphi(R, r, \alpha, \beta)|\right\} m
\end{aligned}
$$

where $m=\min _{|z|=1}|P(z)|, Q(z)=z^{n} \overline{P(1 / \bar{z})}$ and $\phi(R, r, \alpha, \beta)$ is defined by (13). This implies,

$$
\begin{align*}
\left|P\left(R e^{i \theta}\right)+\varphi(R, r, \alpha, \beta) P\left(r e^{i \theta}\right)\right| & \leq\left|R^{n} P\left(\frac{e^{i \theta}}{R}\right)+\varphi(R, r, \bar{\alpha}, \bar{\beta}) r^{n} P\left(\frac{e^{i \theta}}{r}\right)\right| \tag{25}\\
& -\left\{\left|R^{n}+\varphi(R, r, \alpha, \beta) r^{n}\right|-|1+\varphi(R, r, \alpha, \beta)|\right\} m
\end{align*}
$$

which gives,

$$
\begin{align*}
& \left|P\left(R e^{i \theta}\right)+\varphi(R, r, \alpha, \beta) P\left(r e^{i \theta}\right)\right|+\frac{m}{2}\left\{\left|R^{n}+\varphi(R, r, \alpha, \beta) r^{n}\right|-|1+\varphi(R, r, \alpha, \beta)|\right\} \\
& \quad \leq\left|R^{n} P\left(e^{i \theta} / R\right)+\phi(R, r, \bar{\alpha}, \bar{\beta}) r^{n} P\left(e^{i \theta} / r\right)\right|-\frac{m}{2}\left\{\left|R^{n}+\phi(R, r, \alpha, \beta) r^{n}\right|-|1+\phi(R, r, \alpha, \beta)|\right\} \tag{26}
\end{align*}
$$

Taking

$$
\begin{aligned}
& A=\left|R^{n} P\left(\frac{e^{i \theta}}{R}\right)+\phi(R, r, \bar{\alpha}, \bar{\beta}) r^{n} P\left(\frac{e^{i \theta}}{r}\right)\right|, \\
& B=\left|P\left(R e^{i \theta}\right)+\varphi(R, r, \alpha, \beta) P\left(r e^{i \theta}\right)\right| \\
& \text { and } C=\frac{\left|R^{n}+\phi(R, r, \alpha, \beta) r^{n}\right|-|1+\phi(R, r, \alpha, \beta)|}{2} m
\end{aligned}
$$

in Lemma 5 and noting by (26), that $\mathrm{B}+\mathrm{C} \leq \mathrm{A}$, we obtain for every real γ,

$$
\begin{aligned}
& \left\{\left|R^{n} P\left(\frac{e^{i \theta}}{R}\right)+\phi(R, r, \bar{\alpha}, \bar{\beta}) r^{n} P\left(\frac{e^{i \theta}}{r}\right)\right|-\left(\frac{\left|R^{n}+\phi(R, r, \alpha, \beta) r^{n}\right|-|1+\phi(R, r, \alpha, \beta)|}{2}\right) m\right\} e^{i \gamma} \\
& \quad+\left\{\left|P\left(R e^{i \theta}\right)+\phi(R, r, \alpha, \beta) P\left(r e^{i \theta}\right)\right|+\left(\frac{\left|R^{n}+\phi(R, r, \alpha, \beta) r^{n}\right|-|1+\phi(R, r, \alpha, \beta)|}{2}\right) m\right\}
\end{aligned}
$$

This implies for each $\mathrm{p}>0$,

$$
\left.\begin{array}{c}
\int_{0}^{2 \pi}\left|F(\theta)+e^{i \gamma} G(\theta)\right|^{p} d \theta \leq \int_{0}^{2 \pi}| | R^{n} P\left(e^{i \theta} / R\right)+\varphi(R, r, \bar{\alpha}, \bar{\beta}) r^{n} P\left(e^{i \theta} / r\right) \mid e^{i \gamma} \tag{27}\\
\quad+\left.\left|P\left(R e^{i \theta}\right)+\varphi(R, r, \alpha, \beta) P\left(r e^{i \theta}\right)\right|\right|^{p} d \theta
\end{array}\right]=\begin{aligned}
& F(\theta)=\left|P\left(R e^{i \theta}\right)+\varphi(R, r, \alpha, \beta) P\left(r e^{i \theta}\right)\right|+\frac{\left|R^{n}+\varphi(R, r, \alpha, \beta) r^{n}\right|-|1+\varphi(R, r, \alpha, \beta)|}{2} m
\end{aligned}
$$

where
and $G(\theta)=\left|R^{n} P\left(\frac{e^{i \theta}}{R}\right)+\phi(R, r, \bar{\alpha}, \bar{\beta}) r^{n} P\left(\frac{e^{i \theta}}{r}\right)\right|-\frac{\left|R^{n}+\phi(R, r, \alpha, \beta) r^{n}\right|-|1+\phi(R, r, \alpha, \beta)|}{2} m$
Integrating both sides of (27) with respect to γ from 0 to 2π, we get with the help of lemma 4 , for each $\mathrm{p}>0, \mathrm{R}>\mathrm{r} \geq 1,|\alpha| \leq 1,|\beta| \leq 1$ and γ real,

$$
\begin{array}{r}
\int_{0}^{2 \pi} \int_{0}^{2 \pi}\left|F(\theta)+e^{i \gamma} G(\theta)\right|^{p} d \theta d \gamma \leq \int_{0}^{2 \pi} \int_{0}^{2 \pi}| | R^{n} P\left(e^{i \theta} / R\right)+\varphi(R, r, \bar{\alpha}, \bar{\beta}) r^{n} P\left(e^{i \theta} / r\right) \mid e^{i \gamma} \\
\quad+\left.\left|P\left(R e^{i \theta}\right)+\varphi(R, r, \alpha, \beta) P\left(r e^{i \theta}\right)\right|\right|^{p} d \theta d \gamma \\
\leq \int_{0}^{2 \pi}\left\{\int_{0}^{2 \pi}| | R^{n} P\left(e^{i \theta} / R\right)+\varphi(R, r, \bar{\alpha}, \bar{\beta}) r^{n} P\left(e^{i \theta} / r\right) \mid e^{i \gamma}\right. \\
\left.+\left.\left|P\left(R e^{i \theta}\right)+\varphi(R, r, \alpha, \beta) P\left(r e^{i \theta}\right)\right|\right|^{p} d \gamma\right\} d \theta
\end{array} \quad \begin{array}{r}
\left.\quad+P\left(R e^{i \theta}\right)+\varphi(R, r, \alpha, \beta) P\left(r e^{i \theta}\right)| |^{p} d \gamma\right\} d \theta \\
\leq \int_{0}^{2 \pi}\left\{\int_{0}^{2 \pi} \mid\left(R^{n} P\left(e^{i \theta} / R\right)+\varphi(R, r, \bar{\alpha}, \bar{\beta}) r^{n} P\left(e^{i \theta} / r\right)\right) e^{i \gamma}\right. \\
\quad \begin{array}{r}
\leq \int_{0}^{2 \pi}\left\{\int_{0}^{2 \pi} \mid\left(R^{n} P\left(e^{i \theta} / R\right)+\varphi(R, r, \bar{\alpha}, \bar{\beta}) r^{n} P\left(e^{i \theta} / r\right)\right) e^{i \gamma}\right. \\
\left.\quad+P\left(R e^{i \theta}\right)+\varphi(R, r, \alpha, \beta) P\left(r e^{i \theta}\right)| |^{p} d \theta\right\} d \gamma
\end{array} \\
\\
\leq \int_{0}^{2 \pi} \mid R^{n}+\phi(R, r, \alpha, \beta) r^{n}+e^{i \gamma}\left(1+\left.\phi(R, r, \bar{\alpha}, \bar{\beta})\right|^{p} d \gamma \int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{p} d \theta\right.
\end{array}
$$

Now for every real $\gamma, \mathrm{t} \geq 1$ and $\mathrm{p}>0$, we have
$\int_{0}^{2 \pi}\left|t+e^{i \gamma}\right|^{p} d \gamma \geq \int_{0}^{2 \pi}\left|1+e^{i \gamma}\right|^{p} d \gamma$.

If $\mathrm{F}(\theta) \neq 0$, we take $t=\frac{|G(\theta)|}{|F(\theta)|}$, then by (26), $\mathrm{t} \geq 1$ and we get

$$
\begin{aligned}
\int_{0}^{2 \pi}\left|F(\theta)+e^{i \gamma} G(\theta)\right|^{p} d \gamma & =\left|F\left(e^{i \theta}\right)\right|^{p} \int_{0}^{2 \pi}\left|1+\frac{G\left(e^{i \theta}\right)}{F\left(e^{i \theta}\right)} e^{i \gamma}\right|^{p} d \gamma \\
& =\left|F\left(e^{i \theta}\right)\right|^{p} \int_{0}^{2 \pi}| | \frac{G\left(e^{i \theta}\right)}{F\left(e^{i \theta}\right)}\left|+e^{i \gamma}\right|^{p} d \gamma \\
& \geq\left|F\left(e^{i \theta}\right)\right|^{p} \int_{0}^{2 \pi}\left|1+e^{i \gamma}\right|^{p} d \gamma .
\end{aligned}
$$

For $\mathrm{F}(\theta)=0$, this inequality is trivially true. Using this in (28), we conclude that for arbitrary real or complex numbers α, β, with $|\alpha| \leq 1,|\beta| \leq 1, \mathrm{R}>\mathrm{r} \geq 1$ and $0 \leq \theta<2 \pi$,

$$
\begin{array}{rl}
\int_{0}^{2 \pi}\left|1+e^{i \gamma}\right|^{p} & d \gamma \int_{0}^{2 \pi}\left\{\left\lvert\, P\left(R e^{i \theta}\right)+\varphi(R, r, \alpha, \beta) P\left(r e^{i \theta}\right)+\frac{\left|R^{n}+\varphi(R, r, \alpha, \beta) r^{n}\right|-\mid 1+\varphi(R, r, \alpha, \beta)}{2} m\right.\right\}^{p} d \theta \\
& \leq\left\{\int_{0}^{2 \pi} \mid R^{n}+\phi(R, r, \alpha, \beta) r^{n}+e^{i \gamma}\left(1+\left.\phi(R, r, \bar{\alpha}, \bar{\beta})\right|^{p} d \gamma\right\}\left\{\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{p} d \theta\right\}\right. \tag{29}
\end{array}
$$

Since
$\int_{0}^{2 \pi}\left|R^{n}+\varphi(R, r, \alpha, \beta) r^{n}+e^{i \gamma}(1+\varphi(R, r, \bar{\alpha}, \bar{\beta}))\right|^{p} d \gamma=\int_{0}^{2 \pi}\left|R^{n}+\varphi(R, r, \alpha, \beta) r^{n}+e^{i \gamma}(1+\varphi(R, r, \alpha, \beta))\right|^{p} d \gamma$,
From (29), we obtain

$$
\begin{array}{r}
\int_{0}^{2 \pi}\left\{\left|P\left(R e^{i \theta}\right)+\phi(R, r, \alpha, \beta) P\left(r e^{i \theta}\right)\right|+\frac{\left|R^{n}+\phi(R, r, \alpha, \beta) r^{n}\right|-|1+\phi(R, r, \alpha, \beta)|}{2} m\right\}^{p} d \theta \\
\quad \int_{\leq 0}^{2 \pi} \mid\left(R^{n}+\varphi(R, r, \alpha, \beta) r^{n}\right) e^{i \gamma}+\left(1+\left.\varphi(R, r, \alpha, \beta)\right|^{p} d \gamma\right. \\
\int_{0}^{2 \pi}\left|1+e^{i \gamma}\right|^{p} d \gamma \\
\int_{0}^{2 \pi}\left|P\left(e^{i \theta}\right)\right|^{p} d \theta
\end{array}
$$

This gives for every real or complex number δ with $|\delta| \leq 1$,

$$
\left\|P(R z)+\varphi(R, r, \alpha, \beta) P(r z) \left\lvert\,+\delta\left\{\frac{\left|R^{n}+\varphi(R, r, \alpha, \beta) r^{n}\right|-|1+\varphi(R, r, \alpha, \beta)|}{2}\right\} m\right.\right\|_{p} \leq \frac{C_{p}}{\|1+z\|_{p}}\|P(z)\|_{p}
$$

That proves the Theorem completely.

REFERENCES

[1] N.C. Ankeny and T.J. Rivlin, On a Theorem of S. Bernstein, Pacific J. Math., 5(1955), 849-852.
[2] V.V. Aretov, On integral inequalities for trigonometric polynomials and their derivatives, Izv. Akad. Nauk SSSR Ser. Mat. 45 (1981), 3-22 [in Russian]. English translation; Math. USSR-Izv. 18 (1982), 1-17.
[3] A. Aziz and Q.M. Dawood, Inequalities for polynomial and its derivative, J. Approx. Theory, Vol. 54(1988), 306313.
[4] A.Aziz and N.A. Rather, On an inequality of S. Bernstein and Gauss-Lucas Theorem, Analytic and Geometric inequalities and their application, (Th.M.Rassias and H.M.Sarivastava eds.) Kluwer Acad. Pub., (1999), 29-35.
[5] A. Aziz and N.A. Rather, Some compact generalizations of Zygmund type inequalities for polynomials. Non-Linear Analysis, 6 (1999), 241-255.
[6] A. Aziz and N.A. Rather, New L^{q} inequalities for polynomials. Mathematical Inequalities and Applications, 2 (1998), 177-191.
[7] A. Aziz and N.A. Rather, Some new generalizations of Zygmund type inequalities for polynomials. Mathematical Inequalities and Applications Preprint (2011).
[8] R.P. Boas, Jr. and Q.I. Rahman, Lp inequalities for polynomials and entire functions, Arch. Rational Mech. Anal. 11(1962), 34-39.
[9] N. G. De Bruijn, Inequalities concerning polynomials in complex domain, Nederl, Akad. Wetensch. Proc. 50 (1947), 1265-1272.
[10] G.H. Hardy, The mean value of the modulus of an Analytic function, Proc. London Math. Soc. 14 (1915), 269-277.
[11] V.K. Jain, Generalization of certain well-known inequalities for polynomials, Glasnik Mathematicki 32 (1997), 45-51.
[12] P.D. Lax, Proof of a conjecture of P. Erdös on the derivative of a polynomial, Bull. Amer. Math. Soc., 50(1944), 509-513.
[13] G.V. Milovanović, D.S. Mitrinović and Th.M.Rassias, Topics in polynomials: Extremal properties, Inequalities and Zeros, World Scientific Publishing Co., Singapore (1994).
[14] G.Pólya and G.Szegö, Aufgaben und Lehrsatze aus der analysis, Springer -Verlag, Berlin (1925)
[15] Q.I. Rahman and G. Schmeisser, L^{p} inequalities for polynomials, J. Approx. Theory 53 (1988), 26-32.
[16] Q.I. Rahman and G. Schmeisser, Analytic Theory of polynomials, Oxford University Press, New York, 2002.
[17] N. A. Rather, Some Integral Inequalities for Polynomials, The Southeast Asian Bulletin of Mathematics, 33 (2009), 341-348
[18] A.C. Schaffer, Inequalities of A. Markov and S. Bernstein for polynomials and related functions, Bull. Amer. Math. Soc., 47(1941), 565 - 579.
[19] A. Zygmund, A remark on conjugate series, Proc. London Math. Soc. 34 (1932), 292-400.

Source of support: Nil, Conflict of interest: None Declared

[^0]: Corresponding author: Mushtaq A. Shah*
 P. G. Department of Mathematics, Kashmir University, Hazratbal, Srinagar- 190006, India

