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1. INTRODUCTION AND STATEMENT OF RESULTS 
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If P∈Pn, then according to a famous result known as Bernstein’s inequality (for reference see [13, 16, 18]), 
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whereas concerning  the maximum modulus of P (z) on the circle |z|=R>1, we have 
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Inequality (2) is a simple deduction from maximum modulus principle (see [13, p.442] or [14, Vol I, p.137]). 
 
Inequalities (1) and (2) can be obtained by letting p →∞ in the inequalities 
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respectively. Inequality (3) was found by Zygmund [19], whereas inequality (4) is a simple consequence of a result of 
Hardy [10] (see also [16, Th.5.5]). Arestov [2] proved that (3) remains true for 0<p<1 as well. 
 
If we restrict ourselves to the class of polynomials P∈Pn, having no zero in |z|<1, then the inequalities (1) and (2) can be 
sharpened. In fact, if P(z) ≠ 0 in |z| < 1, then (1) and (2) can be respectively replaced by
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Inequality (5) was conjectured by Erdös and later verified by Lax [12]. Ankiny and Rivilin [1] used inequality (5) to 
prove inequality (6). 
 
Both the inequalities (5) and (6) can be obtained by letting p →∞ in the inequalities
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Inequality (7) is due to De Bruijn [9] for p ≥ 1. Rahman and Schmeisser [15] extended it for 0<p<1, whereas the 
inequality (8) was proved by Boas and Rahman [8] for p ≥1 and later extended for 0<p<1 by Rahman and Schmeisser 
[15]. 
 
Aziz and Dawood [3] refined both the inequalities (5) and (6) by showing that if P∈Pn, and P (z) does not vanish in 
|z|<1 and )(min
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As a compact generalization of the inequalities (3), (4), (5), (6), recently Aziz and Rather [7] proved that if P∈Pn and P 
(z) does not vanish in |z|<1, then for arbitrary real or complex numbers α and 𝛽𝛽 with |α|≤1, |𝛽𝛽|≤1, R>r≥1 and p>0, 
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In this paper, we prove the following interesting result which includes not only a generalization of the inequality (11) as 
a special case but also leads to some refinements and generalizations of certain known polynomial inequalities. 
 
Theorem 1: If P∈Pn, does not vanish in |z|<1 and )(min

1||
zPm

z =
= , then for arbitrary complex numbers α, 𝛽𝛽, δ with 

|α|≤1, |𝛽𝛽|≤1, |δ| ≤ 1, R>r≥1 and p>0,
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where pC and ( )βαφ ,,, rR  are defined by (12) and (13) respectively. The result is best possible and the equality 

in (14) holds for the polynomial bzazP n +=)( , where |a| = |b| =1. 
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Theorem 1 has various interesting consequences. Here we mention few of these. 
 
For δ = 0, the inequality (14) reduces to inequality (11). Next, we mention the following compact generalization of 
inequalities (5), (6), (7), (8), (9) and (10), which follows from Theorem 1 by setting 𝛽𝛽 = 0. 
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The result is best possible and equality in (15) holds for 1)( += nzzP . 
 
Remark 1: Corollary 3 includes as a special case a result due to Rather [17, Theorem 1], which is obtained by taking α 
= 0 in (15).  
 
Next if we set α = 1 and divide two sides of (15) by R – r and let R ⟶ r, we obtain, 
 
Corollary 2:  If P∈Pn does not vanish in |z| < 1 and )(min
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The result is sharp. 
 
Corollary 2 is an interesting generalization of inequality (7) due to De Bruijn [9]. Inequality (8) can also be obtained 
from inequality (15) by setting α = δ = 0. 
 
Making p ⟶ ∞ in (14) and choosing the argument of δ with |δ| = 1 suitably, we obtain: 
 
Corollary 3: If P∈Pn does not vanish in |z| < 1, then for α, 𝛽𝛽 ∈ C with |α|≤1, |𝛽𝛽| ≤1 and R>r≥1, 
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where ( )βαφ ,,, rR  is the same as defined in Theorem 1. The result is sharp and the equality holds for

bzazP n +=)( , where |a| = |b| =1. 
 
Corollary 3 is a refinement as well as a generalization of a result due to Aziz and Rather [4, Theorem 3]. For α = 𝛽𝛽 = 0, 
it reduces to (10). If we divide the two sides of  inequality (16) by R – r with α = 1 =r and let R⟶r, we get inequality 
(9). 
 
Finally we mention the result which is a refinement as well as a generalization of a result due to Jain [11, Theorem 2], 
which follows from corollary 3 as a special case. 
 
Corollary 4: If P∈Pn , does not vanish in |z| < 1 and )(min
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The result is sharp and the extremal polynomial is bzazP n +=)(  where |a| = |b| =1. 
  
2. LEMMAS 
 
For the proofs of these theorems, we need the following lemmas. 
 
Lemma 1: If F (z) is a polynomial of degree n having all its zeros in |z| ≤ 1 and  f (z) is a plynomial of degree at most n 
such that 
 

( ) ( )zFzf ≤ for  |z|=1, 
 
then for every 1R r> ≥ , α, 𝛽𝛽 ∈ C with |α| ≤ 1, |𝛽𝛽| ≤ 1 and |z|≥1, 
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where ( )βαφ ,,, rR is defined by (13). 
 
 Lemma 1 is due to A.Aziz and N.A. Rather [7]. 
 
Lemma 2: If P (z) is a polynomial of degree n having all its zeros in |z| ≤1 and ( )zPm

z 1||
min

=
= , then for every 

1R r> ≥ , α, 𝛽𝛽 ∈ C with |α| ≤ 1, |𝛽𝛽| ≤ 1 and |z|≥1, 
 

( ) ( ) ( ) ( ) nnn zrrRRmrzprRRzP βαφβαφ ,,,,,, +≥+                                                                     (20) 

 
where ( )βαφ ,,, rR is defined by (13). 
 
Proof of Lemma 2: For m=0, there is nothing to prove. Assume m > 0, so that all the zeros of P (z) lie in |z| <1 and we 
have 
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Applying Lemma 2 with F (z) replaced by P(z) and f (z) by ,nzm  we obtain for |z|≥1, 
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for α, 𝛽𝛽 ∈ C with |α| ≤ 1, |𝛽𝛽| ≤ 1, R > r ≥ 1 and |z|≥1. That proves Lemma 2. 
 
Lemma 3: If P∈Pn does not vanish in |z| < 1 and ( )zPm
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=
= , then for every 1R r> ≥ , α, 𝛽𝛽 ∈ C with |α| ≤ 1, 

|𝛽𝛽| ≤ 1 and |z| = 1, 
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Proof of Lemma 3: Since ( )zPm
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Therefore, for every complex number 𝜆𝜆 with |𝜆𝜆| < 1, the polynomial H (z)= P (z) – 𝜆𝜆m of degree n does not vanish in  
|z| < 1. If  
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Applying Lemma 1 with f (z) replaced by H(z) and F (z) by G (z), we get for every 1R r> ≥ , α, 𝛽𝛽 ∈ C with |α| ≤ 1, 
|𝛽𝛽| ≤ 1 and |z|≥1, 
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for every 1R r> ≥ , α, 𝛽𝛽 ∈ C with |α| ≤ 1, |𝛽𝛽| ≤ 1 and |z|≥1. Since all the zeros of Q(z) lie in |z| ≤ 1, we choose 
argument of 𝜆𝜆 with |𝜆𝜆| < 1, such that 
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 for |z| ≥ 1. Equivalently for every 1R r> ≥ , α, 𝛽𝛽 ∈ C with |α| ≤ 1, |𝛽𝛽| ≤ 1 and |z|≥1, 
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Letting |𝜆𝜆| ⟶ 1, we get the conclusion of lemma 4. 
 
We also need the following two Lemmas due to A.Aziz and N.A.Rather [8, 9]. 
 
Lemma 4 [7]: If P∈Pn, then for arbitrary real or complex numbers α, 𝛽𝛽, with |α|≤1, |𝛽𝛽|≤1, R>r≥1, p>0 and γ real, 
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The result is sharp and the extremal polynomial is ( ) 0, ≠= λλ nzzP . 
 
Lemma 5 [6]: If A, B, C are non-negative real numbers with B+C ≤ A, then for every real number α, 
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3. PROOF OF THE THEOREM 
 
Proof of Theorem 1: By hypothesis P∈Pn and P (z) ≠ 0 in |z| < 1, therefore by Lemma 3, we have for arbitrary real or 
complex numbers α, 𝛽𝛽, with |α|≤1, |𝛽𝛽|≤1, R>r≥1 and 0 ≤ θ < 2π, 
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Integrating both sides of (27) with respect to γ from 0 to 2π, we get with the help of lemma 4, for each  
p >0, R > r ≥ 1, |α| ≤ 1, |𝛽𝛽| ≤ 1 and γ real, 
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For F (θ) = 0, this inequality is trivially true. Using this in (28), we conclude that for arbitrary real or complex numbers 
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From (29), we obtain      
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This gives for every real or complex number δ with |δ| ≤1,  
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That proves the Theorem completely. 
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