International Journal of Mathematical Archive-3(5), 2012, 1985-1990

NEW FAMILIES OF 3-TOTAL PRODUCT CORDIAL GRAPHS

R. Ponraj^{1*}, M. Sivakumar² and M. Sundaram³

¹Department of Mathematics, Sri Paramakalyani College, Alwarkurchi-627412, India ²Department of Mathematics, Unnamalai Institute of Technology, Kovilpatti-628502, India ³Associate Professor (Rtd.), Department of Mathematics, Sri Paramakalyani College Alwarkurchi-627412, India

(Received on: 14-05-12; Accepted on: 31-05-12)

ABSTRACT

Let f be a map from V(G) to {0,1,...k-1} where k is an integer, $2 \le k \le |V(G)|$. For each edge uv assign the label

f(u) f(v)(modk). f is called a k- Total Product cordial labeling if $|f(i)-f(j)| \le 1$, $i,j \in \{0,1,..,k-1\}$, where f(x) denotes the total number of vertices and edges labelled with x(x=0,1,2...,k-1). A graph that admits a k- Total Product cordial labelling is called a k- Total Product cordial graph. In this paper we investigate 3- Total Product cordial labeling behaviour of some standard graphs like Wheels, Helms, Dragons, etc.

Keywords: Wheel, Helms, Dragon, CnO2K₁.

Mathematics Subject Classification (2000): 05C78.

1. INTRODUTION

The graphs considered here are finite, undirected and simple. The vertex set and edge set of a graph *G* are denoted by V(G) and X(G) respectively. The following definitions are used here.

- The corona $G_1 \Theta G_2$ of two graphs G_1 and G_2 is defined as the graph G obtained by taking one copy of G_1 (which has p_1 vertices) and p_1 copies of G_2 and then joining the *i*th vertex of G_1 to every vertex in the *i*th copy G_2 .
- The graph $W_n = C_n + K_1$ is called a wheel.
- The Helms H_n is the graph obtained from wheel by attaching a pendant edge at each vertex of the cycle C_n .
- A Dragon is formed by identifying the end vertex of the path to the vertex of a cycle.
- m copies of the graph G is denoted by mG.

The notion of k-Product cordial labeling of graph was introduced in [2] where the k-Product cordial labeling behaviour of some standard graphs was studied. Also k-Total Product labeling of graphs was introduced in [4]. Obviously 2-Total Product cordial labeling is simply a Total Product cordial labeling[5]. Also 3-Total Product cordial labeling behaviour of some standard graphs was studied in [3]. In this paper we investigate 3-Total Product cordial labeling behaviour of Helms, Wheel, Dragon, $C_n\Theta 2K_1$ and some standard graphs. Terms not defined here are used in the sense of Harary[1].

2. k-TOTAL PRODUCT CORDIAL LABELING

Definition 2.1:

Let f be a function from V(G) to $\{0,1...,k-1\}$ where k is an integer, $2 \le k \le |V(G)|$. For each edge uv, assign the label $f(u)f(v)(mod \ k)$. f is called a k- Total Product cordial labeling of G if $|f(i) - f(j)| \le 1$, $i, j \in \{0, 1, ..., k-1\}$ where f(x) denotes the total number of vertices and edges labelled with x(x=0,1,2...,k-1). A graph with a k- Total Product cordial graph.

Theorem 2.2: Let G be a (p, p) graph. Then mG is 3-Total Product cordial where $m \equiv 0 \pmod{3}$.

Corresponding author: R. Ponraj^{1*} ¹Department of Mathematics, Sri Paramakalyani College, Alwarkurchi-627412, India

R. Ponraj^{1*}, M. Sivakumar² and M. Sundaram³/ New Families of 3-Total Product cordial graphs/IJMA- 3(5), May-2012, 1985-1990

Proof: let m=3t. Clearly mG has 3pt vertices and 3pt edges. Assign the label 2 to all the vertices of first 2t copies of G. Then assign 0 to all the vertices of remaining t copies of G.

Then f(0) = f(1) = f(2) = 2pt. Therefore f is a 3-Total Product cordial labeling.

Corollary 2.3: If $m \equiv 0 \pmod{3}$, then mC_n is 3- Total Product cordial.

Notation: Let G be any graph. Then the graph obtained from G by identifying the central vertex of $K_{1,p}$ to any vertex of G is denoted by $G * K_{1,p}$.

Theorem 2.4: If G is a (p, p) graph.

(i) If p is even then $G * K_{1,\frac{p}{2}}$ is 3-Total Product cordial.

(ii) If p is odd then $G * K_{1,\frac{p-1}{2}}$ and $G * K_{1,\frac{p+1}{2}}$ are 3-Total Product cordial.

Proof: Case (i): p is even.

Assign the label 2 to all the vertices of G and 0 to all pendant vertices of $K_{1,\frac{p}{2}}$. Clearly f(0) = f(1) = f(2) = p.

Case (ii): p is odd.

Assign label as in case (i) Clearly f(0) = p - 1, Therefore f(1) = f(2) = p for the graph $G * K_{1,\frac{p-1}{2}}$ and f(0) = p + 1,

f(1) = f(2) = p for the graph $G * K_{1,\frac{p+1}{2}}$. Therefore f is a 3-Total Product cordial labeling.

Theorem 2.5: The Wheel W_n is 3-Total Product Cordial.

Proof: Let C_n be the cycle $u_1u_2...u_nu_1$ and let $V(W_n) = V(C_n) \cup \{u\}$ $E(W_n) = E(C_n) \cup \{uu_i : 1 \le i \le n\}$.

Define f(u) = 0, $f(u_i) = 2, 1 \le i \le n$

Here f(0) = n+1 and f(1) = f(2) = n. Hence f is a 3-Total Product cordial labeling.

Theorem 2.6: The Helms H_n is 3-Total Product cordial.

Proof: Let the vertex set and edge set of the wheel W_n be defined as in theorem 2.5.

Let $V(H_n) = V(W_n) \cup \{v_i, 1 \le i \le n\}$ and $E(H_n) = E(W_n) \cup \{u_i v_i : 1 \le i \le n\}$

Case (i): $n \equiv 0 \pmod{3}$

Let n=3t

Define f(u) = 0, $f(u_i) = 2, 1 \le i \le n$ $f(v_i) = 2, 1 \le i \le 2t$ $f(v_{2t+i}) = 0, 1 \le i \le t$

Here f(0) = 5t + 1 and f(1) = f(2) = 5t. Hence f is a 3-Total Product cordial labeling.

Case (ii): $n \equiv 1 \pmod{3}$

Let n=3t+1. Assign labels to the vertices u, u_i, v_i $(1 \le i \le n-1)$ as in case(i). Then assign the labels 2, 2 to the vertices u_n, v_n respectively. Here f(0) = f(1) = f(2) = 5t + 2. Hence f is a 3-Total Product cordial labeling.

R. Ponraj^{1*}, M. Sivakumar² and M. Sundaram³/ New Families of 3-Total Product cordial graphs/IJMA- 3(5), May-2012, 1985-1990

Case (iii): $n \equiv 2 \pmod{3}$

Let n=3t+2. Assign labels to the vertices u, u_i, v_i $(1 \le i \le n-1)$ as in case (ii). Then assign the labels 2, 2 to the vertices u_n, v_n respectively. Here f(0) = 5t + 3 and f(1) = f(2) = 5t + 4. Hence f is a 3-Total Product cordial labeling.

Illustration 2.7: A 3-Total Product cordial labeling of H₇ is

Notation 2.8: Let C_n be the cycle $u_1, u_2, \dots, u_n, u_1$. Let G_n denotes the graph with $V(G_n) = V(C_n) \cup \{v_i, w_i, 1 \le i \le n\}$ and $E(G_n) = E(C_n) \cup \{u_i v_i, u_i w_i, v_i w_i : 1 \le i \le n\}$

Theorem 2.9: G_n is 3-Total Product cordial.

Proof: Let the vertex set and edge set of the graph G_n be as defined above.

Case (i): $n \equiv 0 \pmod{3}$

Let n=3t. Define $f(v_i) = f(c_i) = 0, 1 \le i \le t$ $f(w_i) = 0, 1 \le i \le t - 1$ $f(w_t) = 0.$ $f(u_{t+i}) = f(v_{t+i}) = f(w_{t+i}) = 2, 1 \le i \le t$ $f(u_{2t+i}) = 2, 1 \le i \le t$ $f(v_{2t+i}) = 1, 1 \le i \le t$

 $f(w_{2t+i}) = 2$, $1 \le i \le t$

Then f(0) = f(1) = f(2) = 7t. Hence f is a 3-Total Product cordial labeling.

Case (ii): $n \equiv 1 \pmod{3}$

Let n=3t+1. Assign labels to the vertices $u_i, v_i, w_i, 1 \le i \le n-1$ as in case (i). Then assign the labels 2, 2 and 0 to the vertices u_n, v_n, w_n respectively. Here f(0) = 7t + 3 and f(1) = f(2) = 7t + 2. Hence *f* is 3-Total Product cordial labeling.

Case (iii): $n \equiv 2 \pmod{3}$

Let n=3t+2. Assign labels to the vertices $u_i, v_i, w_i, 1 \le i \le n-2$ as in case (i). Then assign the labels 0, 2, 0, 2, 2 and 2 to the vertices $v_{n-1}, v_n, w_{n-1}, w_n, u_{n-1}, u_n$ respectively. Here f(0) = 7t + 5 and f(1) = f(2) = 7t + 4. Hence *f* is 3-Total Product cordial labeling.

© 2012, IJMA. All Rights Reserved

Illustration 2.10: A 3-Total Product cordial labelling of G₆ is

Figure (ii)

Theorem 2.11: C_n Θ 2K₁ is 3-Total Product cordial.

Proof: Let V (C_n Θ 2K₁) = { $u_i, v_i, w_i, 1 \le i \le n$, } and E(C_n Θ 2K₁)={ $u_i u_{i+1}, u_n u_1 : 1 \le i \le n-1$ } \cup { $u_i v_i, u_i w_i, 1 \le i \le n$ }

Case (i): n is even.

Define

$$f(u_i) = 2, 1 \le i \le n$$

 $f(v_i) = f(w_i) = 0, 1 \le i \le \frac{n}{2}$
 $f(v_{\frac{n}{2}+i}) = f(w_{\frac{n}{2}+i}) = 2, 1 \le i \le \frac{n}{2}$

Then f(0) = f(1) = f(2) = 2n. Hence f is a 3-Total Product cordial labeling.

Case (ii): n is odd.

Define
$$f(u_i) = 2, 1 \le i \le n, f(v_i) = 0, 1 \le i \le \frac{n+1}{2}$$

 $f(w_i) = 0, 1 \le i \le \frac{n-1}{2}, f(v_{\frac{n+1}{2}+i}) = 2, 1 \le i \le \frac{n-1}{2}$
 $f(w_{\frac{n-1}{2}+i}) = 2, 1 \le i \le \frac{n+1}{2}$

Then f(0) = f(1) = f(2) = 2n. Hence f is a 3-Total Product cordial labeling.

Illustration 2.12: A 3-Total Product cordial labeling of $C_7 \Theta 2K_1$ is

Theorem 2.13: The Dragon $C_m@P_n$ is 3-Total Product cordial.

Proof: Let C_m be the cycle $u_1, u_2, \dots, u_m, u_1$ and P_n be the path v_1, v_2, \dots, v_n identify the vertex u_1 with v_1 .

Case (i): $m \equiv 0 \pmod{3}$ and $n \equiv 0 \pmod{3}$

Let $m=3t_1$ and $n=3t_2$

Define $f(u_i) = 0, 1 \le i \le t_1$ $f(u_{t_1+i}) = 2, 1 \le i \le 2t_1$ $f(v_i) = 0, 2 \le i \le t_2 - 1$ $f(v_{t_2}) = f(v_{t_2+1}) = 1,$ $f(v_{t_2+1+i}) = 2, 1 \le i \le 2t_2 - 1$

Then $f(0) = 2t_1 + 2t_2$ and $f(1) = f(2) = 2t_1 + 2t_2 - 1$. Hence *f* is a 3-Total Product cordial labeling.

Case (ii): $m \equiv 0 \pmod{3}$ and $n \equiv 1 \pmod{3}$

Let $m=3t_1$ and $n=3t_2+1$. Assign label 1 to the vertex v_n and assign labels to all the remaining vertices as in case (i). In this case $f(0) = f(1) = f(2) = 2t_1 + 2t_2$. Hence f is a 3-Total Product cordial labeling.

Case (iii): $m \equiv 0 \pmod{3}$ and $n \equiv 2 \pmod{3}$

Let $m=3t_1$ and $n=3t_2+2$. Assign labels 2, 1 to the vertices v_{n-1} , v_n respectively. Then assign the labels to all the remaining vertices as in case(i). Here $f(0) = 2t_1 + 2t_2$ and $f(1) = f(2) = 2t_1 + 2t_2 + 1$.

Hence f is a 3-Total Product cordial labeling.

Case (iv): $m \equiv 1 \pmod{3}$ and $n \equiv 0 \pmod{3}$

Let $m=3t_1+1$ and $n=3t_2$. Assign label 1 to the vertex u_m . Then assign the labels to all the remaining vertices as in case (i). In this case $f(0) = f(1) = f(2) = 2t_1 + 2t_2$. Hence f is a 3-Total Product cordial labeling.

Case (v): $m \equiv 1 \pmod{3}$ and $n \equiv 1 \pmod{3}$

Let $m=3t_1+1$ and $n=3t_2+1$. Assign label 1 to the vertex v_n . Then assign the labels to all the remaining vertices as in case (iv). Here $f(0) = 2t_1 + 2t_2$ and $f(1) = f(2) = 2t_1 + 2t_2 + 1$. Hence f is a 3-Total Product cordial labeling.

Case (vi): $m \equiv 1 \pmod{3}$ and $n \equiv 2 \pmod{3}$

Let $m=3t_1+1$ and $n=3t_2+2$. Assign label 0 to the vertex v_n . Then assign the labels to all the remaining vertices as in case (v). In this case $f(0) = 2t_1 + 2t_2 + 2$ and $f(1) = f(2) = 2t_1 + 2t_2 + 1$. Hence f is a 3-Total Product cordial labeling.

Case (vii): $m \equiv 2 \pmod{3}$ and $n \equiv 0 \pmod{3}$

Let $m=3t_1+2$ and $n=3t_2$. Assign labels 2,0 to the vertices $u_{m-1} u_m$ respectively. Then assign the labels to the all the remaining vertices as in case (i). In this case $f(0) = 2t_1 + 2t_2$ and $f(1) = f(2) = 2t_1 + 2t_2 + 1$. Hence f is a 3-Total Product cordial labeling.

Case (viii): $m \equiv 2 \pmod{3}$ and $n \equiv 1 \pmod{3}$

Let $m=3t_1+2$ and $n=3t_2+1$. Assign label 0 to the vertex v_n . Then assign the labels to all the remaining vertices as in case (vii). Here $f(0) = 2t_1 + 2t_2 + 2$ and $f(1) = f(2) = 2t_1 + 2t_2 + 1$. Hence f is a 3-Total Product cordial labeling.

Case (ix): $m \equiv 2 \pmod{3}$ and $n \equiv 2 \pmod{3}$

Let $m=3t_1+2$ and $n=3t_2+2$. Assign labels 2, 0 to the vertex v_{n-1}, v_n respectively. Then assign the labels to the all the remaining vertices as in case(vii). Here $f(0) = f(1) = f(2) = 2t_1 + 2t_2 + 2$. Hence f is a 3-Total Product cordial labeling.

Illustration 2.14: A 3-Total Product cordial labeling of the dragon $C_{12}@P_8$ is

REFERENCES:

[1] Harary, F., Graph Theory, Addision wisely, New Delhi.

[2] R. Ponraj, M. Sivakumar, M. Sundaram, k-Product cordial labeling of graphs, Int. J. Contemp. Math. Sciences, Vol. 7, 2012, no. 15, 733 - 742

Figure (iv)

[3] R. Ponraj, M. Sivakumar, M. Sundaram, On 3-Total Product cordial graphs International Mathematical Forum, Vol. 7, 2012, no. 31, 1537 – 1546

[4] R. Ponraj, M. Sivakumar, M. Sundaram, k -Total Product cordial labeling of graphs (Communicated).

[5] M. Sundaram, R. Ponraj, S. Somasundaram, Total Product cordial labeling of graphs, Bulletin of Pure and Applied Sciences, 25E(2005), 199-203.

Source of support: Nil, Conflict of interest: None Declared