IMA Available online through www.ijma.info IS
 ISSN 2229-5046

NEW FAMILIES OF 3-TOTAL PRODUCT CORDIAL GRAPHS

R. Ponraj ${ }^{\mathbf{}^{*}}$, M. Sivakumar ${ }^{2}$ and M. Sundaram ${ }^{3}$
${ }^{1}$ Department of Mathematics, Sri Paramakalyani College, Alwarkurchi-627412, India
${ }^{2}$ Department of Mathematics, Unnamalai Institute of Technology, Kovilpatti-628502, India
${ }^{3}$ Associate Professor (Rtd.), Department of Mathematics, Sri Paramakalyani College Alwarkurchi-627412, India

(Received on: 14-05-12; Accepted on: 31-05-12)

Abstract

Let f be a map from $V(G)$ to\{0,1,...k-1\}where k is an integer, $2 \leq k \leq|V(G)|$.For each edge uv assign the label $f(u) f(v)(\operatorname{modk}) . f$ is called a k - Total Product cordial labeling if $|f(i)-f(j)| \leq 1, i, j \in\{0,1, . . k-1\}$, where $f(x)$ denotes the total number of vertices and edges labelled with $x(x=0,1,2 \ldots . . k-1)$. A graph that admits a k - Total Product cordial labelling is called a k - Total Product cordial graph. In this paper we investigate 3- Total Product cordial labeling behaviour of some standard graphs like Wheels, Helms, Dragons, etc.

Keywords: Wheel, Helms, Dragon, $\operatorname{Cn} \Theta 2 K_{1}$.
Mathematics Subject Classification (2000): 05C78.

1. INTRODUTION

The graphs considered here are finite, undirected and simple. The vertex set and edge set of a graph G are denoted by $V(G)$ and $X(G)$ respectively. The following definitions are used here.

- The corona $G_{1} \Theta G_{2}$ of two graphs G_{1} and G_{2} is defined as the graph G obtained by taking one copy of G_{1} (which has p_{1} vertices) and p_{1} copies of G_{2} and then joining the $i^{\text {th }}$ vertex of G_{1} to every vertex in the $i^{\text {th }}$ copy G_{2}.
- The graph $W_{n}=C_{n}+K_{1}$ is called a wheel.
- The Helms H_{n} is the graph obtained from wheel by attaching a pendant edge at each vertex of the cycle C_{n}.
- A Dragon is formed by identifying the end vertex of the path to the vertex of a cycle.
- m copies of the graph G is denoted by mG.

The notion of k-Product cordial labeling of graph was introduced in [2] where the k-Product cordial labeling behaviour of some standard graphs was studied. Also k-Total Product labeling of graphs was introduced in [4].Obviously 2-Total Product cordial labeling is simply a Total Product cordial labeling[5]. Also 3-Total Product cordial labeling behaviour of some standard graphs was studied in [3]. In this paper we investigate 3-Total Product cordial labeling behaviour of Helms, Wheel, Dragon, $\mathrm{C}_{\mathrm{n}} \Theta 2 \mathrm{~K}_{1}$ and some standard graphs. Terms not defined here are used in the sense of Harary[1].

2. k-TOTAL PRODUCT CORDIAL LABELING

Definition 2.1:

Let f be a function from $V(G)$ to $\{0,1 \ldots . . k-1\}$ where k is an integer, $2 \leq k \leq|V(G)|$. For each edge $u v$, assign the label $f(u) f(v)(\bmod k) . f$ is called a k - Total Product cordial labeling of G if $|f(i)-f(j)| \leq 1, i, j \in\{0,1, . . k-1\}$ where $f(x)$ denotes the total number of vertices and edges labelled with $x(x=0,1,2 \ldots k-1)$.A graph with a k - Total Product cordial labelling is called a k - Total Product cordial graph.

Theorem 2.2: Let G be a (p, p) graph. Then $m G$ is 3 -Total Product cordial where $m \equiv 0(\bmod 3)$.
${ }^{1}$ Department of Mathematics, Sri Paramakalyani College, Alwarkurchi-627412, India

R. Ponraj ${ }^{1^{*}}$, M. Sivakumar ${ }^{2}$ and M. Sundaram ${ }^{3}$ / New Families of 3-Total Product cordial graphs/IJMA- 3(5), May-2012, 1985-1990

Proof: let $m=3 t$. Clearly mG has 3pt vertices and 3pt edges. Assign the label 2 to all the vertices of first $2 t$ copies of G. Then assign 0 to all the vertices of remaining t copies of G.

Then $f(0)=f(1)=f(2)=2 p t$. Therefore f is a 3-Total Product cordial labeling.
Corollary 2.3: If $m \equiv 0(\bmod 3)$, then mC_{n} is 3 - Total Product cordial.
Notation: Let G be any graph. Then the graph obtained from G by identifying the central vertex of $\mathrm{K}_{1, \mathrm{p}}$ to any vertex of G is denoted by $\mathrm{G} * \mathrm{~K}_{1, \mathrm{p}}$.

Theorem 2.4: If G is a (p, p) graph.
(i) If p is even then $G * K_{1, \frac{p}{2}}$ is 3-Total Product cordial.
(ii) If p is odd then $G * K_{1, \frac{p-1}{2}}$ and $G * K_{1, \frac{p+1}{2}}$ are 3-Total Product cordial .

Proof: Case (i): p is even.
Assign the label 2 to all the vertices of G and 0 to all pendant vertices of $K_{1, \frac{p}{2}}$. Clearly $f(0)=f(1)=f(2)=p$.
Case (ii): p is odd.
Assign label as in case (i) Clearly $f(0)=p-1$, Therefore $f(1)=f(2)=p$ for the graph $G * K_{1, \frac{p-1}{2}}$. and $f(0)=p+1$, $f(1)=f(2)=p$ for the graph $G * K_{1, \frac{p+1}{2}}$. Therefore f is a 3-Total Product cordial labeling.

Theorem 2.5: The Wheel W_{n} is 3-Total Product Cordial.
Proof: Let C_{n} be the cycle $\mathrm{u}_{1} \mathrm{u}_{2} \ldots \mathrm{u}_{\mathrm{n}} \mathrm{u}_{1}$ and let $V\left(W_{n}\right)=V\left(C_{n}\right) \cup\{u\} E\left(W_{n}\right)=E\left(C_{n}\right) \cup\left\{u u_{i}: 1 \leq i \leq n\right\}$.
Define $f(u)=0$,
$f\left(u_{i}\right)=2,1 \leq i \leq n$.
Here $f(0)=n+1$ and $f(1)=f(2)=n$.Hence f is a 3-Total Product cordial labeling.
Theorem 2.6: The Helms H_{n} is 3-Total Product cordial.
Proof: Let the vertex set and edge set of the wheel W_{n} be defined as in theorem2.5.
Let $V\left(H_{n}\right)=V\left(W_{n}\right) \cup\left\{v_{i}, 1 \leq i \leq n\right\}$ and $E\left(H_{n}\right)=E\left(W_{n}\right) \cup\left\{u_{i} v_{i}: 1 \leq i \leq n\right\}$.

Case (i): $n \equiv 0(\bmod 3)$
Let $n=3 t$
Define $f(u)=0$,
$f\left(u_{i}\right)=2,1 \leq i \leq n$
$f\left(v_{i}\right)=2,1 \leq i \leq 2 t$
$f\left(v_{2 t+i}\right)=0,1 \leq i \leq t$
Here $f(0)=5 t+1$ and $f(1)=f(2)=5 t$.Hence f is a 3-Total Product cordial labeling.
Case (ii): $\mathrm{n} \equiv 1(\bmod 3)$
Let $\mathrm{n}=3 \mathrm{t}+1$. Assign labels to the vertices $u, u_{i}, v_{i}(1 \leq i \leq n-1)$ as in case(i). Then assign the labels 2 , 2 to the vertices u_{n}, v_{n} respectively. Here $f(0)=f(1)=f(2)=5 t+2$. Hence f is a 3-Total Product cordial labeling..

R. Ponraj ${ }^{1^{*}}$, M. Sivakumar ${ }^{2}$ and M. Sundaram ${ }^{3}$ / New Families of 3-Total Product cordial graphs/IJMA- 3(5), May-2012, 1985-1990

Case (iii): $n \equiv 2(\bmod 3)$
Let $\mathrm{n}=3 \mathrm{t}+2$. Assign labels to the vertices $u, u_{i}, v_{i}(1 \leq i \leq n-1)$ as in case (ii). Then assign the labels 2 , 2 to the vertices u_{n}, v_{n} respectively. Here $f(0)=5 t+3$ and $f(1)=f(2)=5 t+4$.Hence f is a 3 -Total Product cordial labeling.

Illustration 2.7: A 3-Total Product cordial labeling of H_{7} is

Figure (i)
Notation 2.8: Let C_{n} be the cycle $\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots . . \mathrm{u}_{\mathrm{n}}, \mathrm{u}_{1}$. Let G_{n} denotes the graph with $\mathrm{V}\left(\mathrm{G}_{\mathrm{n}}\right)=\mathrm{V}\left(\mathrm{C}_{\mathrm{n}}\right) \cup\left\{\mathrm{v}_{\mathrm{i}}, \mathrm{w}_{\mathrm{i}}, 1 \leq i \leq n\right\}$ and $\mathrm{E}\left(\mathrm{G}_{\mathrm{n}}\right)=\mathrm{E}\left(\mathrm{C}_{\mathrm{n}}\right) \cup\left\{\mathrm{u}_{\mathrm{i}} \mathrm{V}_{\mathrm{i}}, \mathrm{u}_{\mathrm{i}} \mathrm{W}_{\mathrm{i}}, \mathrm{v}_{\mathrm{i}} \mathrm{W}_{\mathrm{i}}: 1 \leq i \leq n\right\}$

Theorem 2.9: G_{n} is 3-Total Product cordial.
Proof: Let the vertex set and edge set of the graph G_{n} be as defined above.
Case $(\mathbf{i}): \mathrm{n} \equiv 0(\bmod 3)$
Let $\mathrm{n}=3 \mathrm{t}$. Define $f\left(v_{i}\right)=f\left(c_{i}\right)=0,1 \leq i \leq t$
$f\left(w_{i}\right)=0,1 \leq i \leq t-1$
$f\left(w_{t}\right)=0$.
$f\left(u_{t+i}\right)=f\left(v_{t+i}\right)=f\left(w_{t+i}\right)=2, \quad 1 \leq i \leq t$
$f\left(u_{2 t+i}\right)=2, \quad 1 \leq i \leq t$
$f\left(v_{2 t+i}\right)=1, \quad 1 \leq i \leq t$
$f\left(w_{2 t+i}\right)=2, \quad 1 \leq i \leq t$
Then $f(0)=f(1)=f(2)=7 t$. Hence f is a 3-Total Product cordial labeling.
Case (ii): $n \equiv 1(\bmod 3)$
Let $\mathrm{n}=3 \mathrm{t}+1$. Assign labels to the vertices $u_{i}, v_{i}, w_{i}, 1 \leq i \leq n-1$ as in case (i). Then assign the labels 2,2 and 0 to the vertices u_{n}, v_{n}, w_{n} respectively. Here $f(0)=7 t+3$ and $f(1)=f(2)=7 t+2$. Hence f is 3 -Total Product cordial labeling.

Case (iii): $n \equiv 2(\bmod 3)$
Let $n=3 \mathrm{t}+2$. Assign labels to the vertices $u_{i}, v_{i}, w_{i}, 1 \leq i \leq n-2$ as in case (i). Then assign the labels $0,2,0,2,2$ and 2 to the vertices $v_{n-1}, v_{n}, w_{n-1}, w_{n}, u_{n-1}, u_{n}$ respectively .Here $f(0)=7 t+5$ and $f(1)=f(2)=7 t+4$. Hence f is 3-Total Product cordial labeling.

Illustration 2.10: A 3-Total Product cordial labelling of G_{6} is

Figure (ii)
Theorem 2.11: $C_{n} \Theta 2 K_{1}$ is 3-Total Product cordial.
Proof: Let $\mathrm{V}\left(\mathrm{C}_{\mathrm{n}} \Theta 2 \mathrm{~K}_{1}\right)=\left\{u_{i}, v_{i}, w_{i}, \quad 1 \leq i \leq n,\right\}$ and
$\mathrm{E}\left(\mathrm{C}_{\mathrm{n}} \Theta 2 \mathrm{~K}_{1}\right)=\left\{\mathrm{u}_{\mathrm{i}} \mathrm{u}_{\mathrm{i}+1}, \mathrm{u}_{\mathrm{n}} \mathrm{u}_{1}: 1 \leq i \leq n-1\right\} \cup\left\{\mathrm{u}_{\mathrm{i}} \mathrm{V}_{\mathrm{i}}, \mathrm{u}_{\mathrm{i}} \mathrm{w}_{\mathrm{i}}, 1 \leq i \leq n\right\}$
Case (i): n is even.
Define
$f\left(u_{i}\right)=2,1 \leq i \leq n$
$f\left(v_{i}\right)=f\left(w_{i}\right)=0,1 \leq i \leq \frac{n}{2}$
$f\left(v_{\frac{n}{2}+i}\right)=f\left(w_{\frac{n}{2}+i}\right)=2,1 \leq i \leq \frac{n}{2}$
Then $f(0)=f(1)=f(2)=2 n$. Hence f is a 3-Total Product cordial labeling.
Case (ii): n is odd.
Define $f\left(u_{i}\right)=2,1 \leq i \leq n, f\left(v_{i}\right)=0,1 \leq i \leq \frac{n+1}{2}$
$f\left(w_{i}\right)=0,1 \leq i \leq \frac{n-1}{2}, f\left(v_{\frac{n+1}{2}+i}\right)=2,1 \leq i \leq \frac{n-1}{2}$
$f\left(w_{\frac{n-1}{2}+i}\right)=2,1 \leq i \leq \frac{n+1}{2}$
Then $f(0)=f(1)=f(2)=2 n$. Hence f is a 3-Total Product cordial labeling.

Illustration 2.12: A 3-Total Product cordial labeling of $\mathrm{C}_{7} \mathrm{\Theta}_{2} \mathrm{~K}_{1}$ is

Figure (iii)
Theorem 2.13: The Dragon $C_{m} @ P_{n}$ is 3-Total Product cordial.
Proof: Let C_{m} be the cycle $\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots \mathrm{u}_{\mathrm{m}}, \mathrm{u}_{1}$ and P_{n} be the path $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots . \mathrm{v}_{\mathrm{n}}$. identify the vertex u_{1} with v_{1}.
Case (i): $m \equiv 0(\bmod 3)$ and $n \equiv 0(\bmod 3)$
Let $m=3 t_{1}$ and $n=3 t_{2}$
Define
$f\left(u_{i}\right)=0,1 \leq i \leq t_{1}$
$f\left(u_{t_{1}+i}\right)=2,1 \leq i \leq 2 t_{1}$
$f\left(v_{i}\right)=0,2 \leq i \leq t_{2}-1$
$f\left(v_{t_{2}}\right)=f\left(v_{t_{2}+1}\right)=1$,
$f\left(v_{t_{2}+1+i}\right)=2,1 \leq i \leq 2 t_{2}-1$
Then $f(0)=2 t_{1}+2 t_{2}$ and $f(1)=f(2)=2 t_{1}+2 t_{2}-1$. Hence f is a 3-Total Product cordial labeling.
Case (ii): $m \equiv 0(\bmod 3)$ and $n \equiv 1(\bmod 3)$
Let $m=3 t_{1}$ and $n=3 t_{2}+1$. Assign label 1 to the vertex v_{n} and assign labels to all the remaining vertices as in case (i). In this case $f(0)=f(1)=f(2)=2 t_{1}+2 t_{2}$. Hence f is a 3-Total Product cordial labeling.

Case (iii): $m \equiv 0(\bmod 3)$ and $n \equiv 2(\bmod 3)$
Let $m=3 t_{1}$ and $n=3 t_{2}+2$. Assign labels 2 , 1 to the vertices v_{n-1}, v_{n} respectively. Then assign the labels to all the remaining vertices as in case(i). Here $f(0)=2 t_{1}+2 t_{2}$ and $f(1)=f(2)=2 t_{1}+2 t_{2}+1$.

Hence f is a 3-Total Product cordial labeling.
Case (iv): $m \equiv 1(\bmod 3)$ and $n \equiv 0(\bmod 3)$
Let $m=3 t_{1}+1$ and $n=3 t_{2}$. Assign label 1 to the vertex u_{m}.Then assign the labels to all the remaining vertices as in case (i). In this case $f(0)=f(1)=f(2)=2 t_{1}+2 t_{2}$. Hence f is a 3-Total Product cordial labeling.

Case (v): $m \equiv 1(\bmod 3)$ and $n \equiv 1(\bmod 3)$
Let $m=3 t_{1}+1$ and $n=3 t_{2}+1$. Assign label 1 to the vertex v_{n}. Then assign the labels to all the remaining vertices as in case (iv).Here $f(0)=2 t_{1}+2 t_{2}$ and $f(1)=f(2)=2 t_{1}+2 t_{2}+1$. Hence f is a 3-Total Product cordial labeling.

Case (vi): $m \equiv 1(\bmod 3)$ and $n \equiv 2(\bmod 3)$
Let $m=3 t_{1}+1$ and $n=3 t_{2}+2$. Assign label 0 to the vertex v_{n}. Then assign the labels to all the remaining vertices as in case (v).In this case $f(0)=2 t_{1}+2 t_{2}+2$ and $f(1)=f(2)=2 t_{1}+2 t_{2}+1$. Hence f is a 3-Total Product cordial labeling.

Case (vii): $m \equiv 2(\bmod 3)$ and $n \equiv 0(\bmod 3)$
Let $m=3 t_{1}+2$ and $n=3 t_{2}$. Assign labels 2,0 to the vertices $u_{m-1} u_{\mathrm{m}}$ respectively. Then assign the labels to the all the remaining vertices as in case (i). In this case $f(0)=2 t_{1}+2 t_{2}$ and $f(1)=f(2)=2 t_{1}+2 t_{2}+1$. Hence f is a 3-Total Product cordial labeling.

Case (viii): $m \equiv 2(\bmod 3)$ and $n \equiv 1(\bmod 3)$
Let $m=3 t_{1}+2$ and $n=3 t_{2}+1$. Assign label 0 to the vertex v_{n}. Then assign the labels to all the remaining vertices as in case (vii).Here $f(0)=2 t_{1}+2 t_{2}+2$ and $f(1)=f(2)=2 t_{1}+2 t_{2}+1$. Hence f is a 3-Total Product cordial labeling.

Case (ix): $m \equiv 2(\bmod 3)$ and $n \equiv 2(\bmod 3)$
Let $m=3 t_{1}+2$ and $n=3 t_{2}+2$. Assign labels 2, 0 to the vertex v_{n-1}, v_{n} respectively. Then assign the labels to the all the remaining vertices as in case(vii).Here $f(0)=f(1)=f(2)=2 t_{1}+2 t_{2}+2$. Hence f is a 3-Total Product cordial labeling.

Illustration 2.14: A 3-Total Product cordial labeling of the dragon $C_{12} @ P_{8}$ is

Figure (iv)

REFERENCES:

[1] Harary, F., Graph Theory, Addision wisely, New Delhi.
[2] R. Ponraj, M. Sivakumar, M. Sundaram, k-Product cordial labeling of graphs, Int. J. Contemp. Math. Sciences, Vol. 7, 2012, no. 15, 733-742
[3] R. Ponraj, M. Sivakumar, M. Sundaram, On 3-Total Product cordial graphs International Mathematical Forum, Vol. 7, 2012, no. 31, 1537 - 1546
[4] R. Ponraj, M. Sivakumar, M. Sundaram, k-Total Product cordial labeling of graphs (Communicated).
[5] M. Sundaram, R. Ponraj, S. Somasundaram, Total Product cordial labeling of graphs, Bulletin of Pure and Applied Sciences, 25E(2005), 199-203.

Source of support: Nil, Conflict of interest: None Declared

