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ABSTRACT

In this paper we have presented a pair of mixed symmetric dual for a class of nondifferentiable multiobjective
programming involving square root term like (x’Ax)"? .We established weak duality , strong duality and converse
duality theorems with their proofs under (@, p)-univexity and (P, p)-pseudounivexity assumption. Also the self duality
theorem with example is established. Discussion on some particular cases shows that our results generalize earlier
results in related domain.
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1. INTRODUCTION

Duality theory has played an important role in the development of optimization theory. For nonlinear programming
problems a number of duals have been suggested, among which the Wolfe dual proposed by Dorn [12] is well known.
Subsequently Dantzing et al [13] and Bazarra et al [5] established symmetric duality results for convex/concave
functions. Devi [11], Weir and Mond [34], Mond and Schechter [25] studied non differentiable symmetric duality for a
class of optimization problem in which the objective function consist of support function. Husain et al [15] have
formulated a pair of Mond Weir type second order symmetric dual and establish the duality results under pseudo
convexity —pseudo concavity assumption.

In recent years, several extension and generalization have been considered for classical convexity. A significant
generalization of convex function is that of in-vex function introduced by Hanson [14]. Bector et al [6] have introduced
the concept of pre-univex function, univex functions and pseudo-univex function as a generalization of in-vex function.
Further development on the application of univex function and generalized univex function can be found in Rueda et al
[28], Mishra [22] and Mishra et al [23], [24]. Ojha[27] has established symmetric duality results for (@, p)-univex
function and Thakur et al [32] have established second order symmetric duality results for second order (®, p)-univex
function .Earlier Chandra et al [8] had formulated mixed symmetric duality for a class of nonlinear programming
problems. Yang et al [33] have discussed a mixed symmetric duality for a class of nondifferentiable nonlinear
programming problems. Later on Ahmad [4] has formulated mixed type symmetric dual in multiobjective programming
problem ignoring nonnegative restriction of Bector et al [7].Very recently Mishra et al [20] and Mishra [21] have
presented a mixed symmetric first and second order duality in nondifferentiable mathematical programming problem
under F-convexity. Li et al [18] and Agarwal et al [1] introduced a model of mixed symmetric duality for a class of non
differentiable multiobjective programming problem with multiple arguments.

In motivation of Bector et al.[7], Ahmed [4], Ahmed et al[3], Mishra[21], Ojha[27], Thakur et al [32], Agarwal et al
[1] and Li et al [18], we formulated a pair of multiobjective mixed symmetric dual program using square root term
and established weak and strong duality and the converse duality theorems under (®, p)-univexity and (®, p)-pseudo-
univexity condition. These results generalized the known works of Thakur et al [32], Mishra et al [20], Mishra [21],
Agarwal et al [1], Ojha [27], Suneja et al [27], Chandra et al [8], Ahmad et al [4] and Wier and Mond I [30].
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2.NOTATION AND PRELIMINARIES

Let R" be n-dimensional Euclidean space and Rf its nonnegative orthant .The following conventions for vectors
X,y € R" will be followed throughout this paper: X <y < X, <V,;, i=12,..n. X<y x <y, For any

n
vector we denote X' y = Z XY, -

i=1
Let X and Y are open subset of R" and R™ respectively. Let f. (X, Yy) be a real valued twice differentiable function
defined on X xY . Let V,f,(X,y) and V, f,(X,y) denote the gradient vectors of f,(X,y) with respect to first
variable x and second variable y respectively. Also let V2 f.(x,y) and V> f. (X, y) denote the Hessian matrix of

f. (X, y) with respect to the first variable X and second variable y respectively.

Let ¢ be a real valued function defined on X x X x R™ such that ¢(x,u,*) is convex on R" and
#(x,u,(0,r)) >0 for every (x,u)e XxX and reR . Also let b: XxX - R, and w :R—> R
satisfying w(u) <0=u <0 andy(-a) =—-y(a).

Let C — R" beacompact convex set.The support function of C is defined by s(x | C) = max{x"y |y e C}.
Consider the following multiobjective programming problem (MP):

P :(Primal) Minimize f (X) = (f,(X), f,(X),....., . (X))

Subjectto h(x) <0,xe X < R" ,where f:X ->R",g: X >R’

Let X, be the set of all feasible solutions of problem (P); thati.e. X, ={x € X | h(x) < (0}.

Definition 2.1.A vector X € X, is said to be an efficient solution of problem (P) if there exists no X € X, such that
f(x) < f(X), f(x) = f(X).

Definition 2.2.A vector X € X, is said to be a weakly efficient solution of problem (P) if there exists no X € X,
suchthat f(x) < f(X).

Definition 2.3.A vector X € X, is said to be a properly efficient of problem (P) if it is efficient and there exists a
positive constant M such that whenever . (X) < f,(X) for x € X, and for i e{L,2,...r}, there exist at least one
je{L,2,..p} suenthat f,(X) < f,(x)and f,(X)— f;(x) <M (f,(x)- f,(X)).

Definition 2.4: A real-valued twice differentiable function f,(*,y): X xY — R is said to be (®, p)-univex at
U e X with respect to g € R" ifforallb: X x X - R,, ¢: X x XxR"™ = R,and v : R — R with p, isa
real number, we have b(X, U)[w{f,(x,y)— f.(u, y)}] = o(x,u; (V. f.(u,y))) (2.1)

Definition 2.5: A real-valued twice differentiable function  f, (X,*): X xY — R is said to be (®, p)-univex at
y €Y with respect to pe R™ if for allb:Y xY - R_,4:Y xY xR™ — R and v : R — R with p, is a

real number, we have  b(v, y)[w{f.(x,v) = f.(X, V)] = o(v, y; (V, f. (X, ¥), p.)) (2.2)

Definition 2.6: A real-valued twice differentiable function f; (*,y) : X xY — R issaid to be (®- p)-pseudounivex at
Ue X with respect to g e R" if forallb: X x X - R, ,¢: X x X xR™ > Randy :R - R with p,isa
real number we have (X, u; (V,f,(U,y),2)) =20 = b(x,u)[w{f (x,y)- f.(u,y)}]=0 (2.3)
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Definition 2.7: A real-valued twice differentiable function f; (X,*) : X xY — R is said to be (®, p)-pseudounivex at
y € X with respectto pe R™ ifforall b:Y xY - R, ¢:Y xY xR™ - Randy : R — R with p,isa
real number we have (v, Y; (V, f.(X,¥), p.)) = 0= b(v, y)[w{f, (x,v)— f.(X,y)}] =0 (2.4)

Definition 2.8: A real valued twice differentiable function f is (¢, p) - unicave and (¢, p) -pseudounicave if — f
is (¢, p) -univex and (¢, p) pseudounivex respectively.

Example 2.1: We present here a function which is (¢4, p) —univex function .We can proceed similarly for the other
classes of function introduced.

Let X =(0,), f : X — Rdefined by f(x) = xlog x.Obviously f is non convex.
We have Vf (u) =1+ log x..
Let ¢: X x X x R — R defined by ¢(x, y;(a, p)) =ap ,

togu__jf  (xlogx—ulogu) >0

Let b(x,u) = {X'ng‘“"’g“ ,and w(X) = 3x
0

if xlogx—ulogu<0

We have @(x,u;(VF(u),p)) = p@L+logu). So the definition of (¢, )—univex function becomes
1+logu
xlogx—ulogu

x3(xlogx—ulogu) > p(1+logu) = p <3

It now follows that for p < 3, the function f (x) = xlog X becomes (¢, p) —univex function with respect tob, .
Remark 1:

(i) If we consider the case b=1, ¢(X,u;(Vf(u), 0)) =F(X,u;Vf(u)) with F is sub linear in third argument,
then the above definition reduce to F-convexity and F-pseudo convexity introduced by Mishra [21].

(i) If b=1, o(x,u;(VF(U), p)) =n(x,u)" Vf(u)), where 77: X x X — R", the above definition reduces to
7 -bonvex function given by Devi [11].

Definition 2.9: (Schwartz Inequality)
1 1

Let X,y € R" and Ae R"xR" be a positive semi definite matrix, then X" Ay < (X" Ax)2(y" Ay)?2, equality holds
if for some A >0, Ax=AAy.

3. MIXED SYMMETRIC DUAL PROGRAM

For N={1,2,..n} and M={1,2,...m}let J, c N andJ, =N\J,, K, c M and K, =M \ K, .Let |Jl| denote
the number of elements in J, . The numbers|J,| |K,| |K,| are defined similarly. Notice that, if J, = ¢, then

J, =N that is|J,|=0, and | J, |=n . It is clear that any x € X < R" can be written as, X = (X", X%)

x' e R™ and x? e RI* similarly for any yeYcR™ | y=(yLy?), yteR M y2 e RIFl | Let
f, i RM xR 5 R and g, : RP2' x R™:! — Rare twice continuously differentiable functions.

Now we formulate the following pair of multiobjective mixed symmetric dual programs and prove duality theorems
under some mild assumptions of (¢, p) -univexity and (¢, p) -pseudo univexity.
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(SMSP): Mixed Symmetric Primal:

H (x, y,w) = Min tnize {H,(x, y,w), H, (X, Y, W), ....... H, (X, y, W)}

Subject to Zr:ﬂ,,[vzfi (x', y)-Cw']1<0, (3.2)
i=1

3 ALV,0,0¢,¥)~CAu] <0, @2
i=1

Y2 {9, 6,60, y) -} 20, (33)

i=1

(yZ)Ti 2(V,9,0¢,y)) ~CPwi} 2 0 @4
(x',x*)>0, (3.5)
W) Ciw <1i=12,.r. (3.6)
(W) Clw? <1,i=12,..r. 3.7)
2> O,Zr:ﬂi =1 (3.8)

i=1

(SMSD): Mixed Symmetric Dual:
G(u,v,a,)=Ma mize{Gl(u,v,a),GZ(u,v,a),....,G,(u,v, a)}

Subject to  »_ A[V, f,(u',v')+ Efal] >0, (3.9)
i=1

> AIV,9,(u*v?) + Ela’] 20, (3.10)

i=1

WhH" Y ALV, f (Ut v +Ela’]<0, (3.11)
i=1

W)™ ALV,9;(u*,v?)+Efa’]<0 , (3.12)
i=1

(vt,v3) =0 , (3.13)

(&) Ela <1, i=12..r (3.14)

(@°) Efa’ <1,i=12,...r (3.15)

2>0> %4 =1. (3.16)

i=1
Where

H(x, y,w) = { B0 YD)+ 85 (¢, y) + ()T EIX)2 + () EX)2 = (y) Ciwg = (y°) CfWiz}

Gi(u,v,a)= { fi (U v+, (UP, V) = (V) CIV)2 = ((v*) T Cv)2 + (u) Efay + (u*)' Eizaiz}
A eR,w=(wW,w),w eR" w? e RF! wh = (W), wj,..w"), w? = (W2, W2,..w?),

a=(a'a’),a'=(a,a},..a),a*=(a’,a’,..a’),a e R™ a>eR™
And  El,E?,C!,CZ,i=12,..r. are positive semi definite matrices of order |J,|,|J, |, K,|and |K, |

(I 17
respectively.
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Remark 3.1

Since the objective function of (MSP) and (MSD) contains the square root terms like (XT AX)%, these problems are
nondifferentiable programming problems.

For the following theorems let assume £ is a real number and @, 4, are a real valued function defined on
RUTx R R gpg R RIS RIS ogpactively  such  that g (X',u',(0,r)) >0 for every
(x',u') e R = RP i =12 and ¢/ (y',v',(0,r)) = Ofor (y',v') e R™!xR™ and reR, . Leth! b’ be

non negative real valued function defined on RPx RPil g R x R respectable for i =1,2

We assume that ), 1) 1R — R satisfying ) (U)<0=u<0 and ,(U)<0=u<0 and assume that

v,y are odd function, fori = 1,2

Theorem 3.1(Weak duality)
Let(X, Y, A, W, p) be feasible solution of (SMSP)and (u,V, 4, &, () be feasible solution (MSD) and

(1 Zr:ﬂ,,[fi (V1) + (%) Efaf] is (¢, p) -univexat u™for fixedv',
i=1

(1 iﬂﬁ[fi(xl,*)—(*)TCilwil] is (4, p) -unicaveat y* for fixed x*,
i=1

() > ALg,(x,v?)+(*)"EZa’]is (4, p) -pseudo univex at u® for fixed v°,

i=1

(V) Z:ﬁ,l[gi(xz,*)—(*)T C2wW]is (4, p) -pseudo unicave at y* for fixed x?,

i=1

(V) 40,5 (S ) + () 6120, where &' = Zi (V. f(u',v)+Elap)

(VD@2 (X, U% (E%, p))+(u?)TE% 2 0, where &2 = Z':legi(uz,vz)Jr E’a?)

i=1

VNG (VY5 (s p)) +(Y) 6" <0, whereg” = Zr‘,i. (V, (¢, y) - Ciw)
i=1

VI @2 (V2. y% (% p)) + (Y3 6% <0, whereg? =Zrlﬂf.(Vzgi(X2, y?)-Ciw?) .

i=1

Then H(X,y,4,a)>G(u,v,4,w)

Proof: Since Y A[f(*,v')+(*)" Elaf] is (4, p)-univexat u* for fixedv'and 1 >0
i=1

Then  for bp :R™xR¥M R g :RHxRMxRH 5 R wl:R5R and peR we have

0 0, WD AL O¢.V) + ()T Efal — £ (') - () Bl
2¢§(xl,u1;(zr: (A[V, f.(U' V) +Ea], p)), fori=12,..r. (3.17)

Using (3.11) in hypothesis (V) we get

O QL ALV (U V) +Eafl p) 20 (3.18)
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So from (3.17) and (3.18) with the property of bz and x//é we obtain

S AL OV + 00) Elall2 YA () + () Elal]

(3.19)

;
Now it follows from the (¢, p) -unicavity of Z/Ii[fi(xl,*) —(®)"C'w!T at y? for fixed x?, for 1 >0 ,

i=1

bl : RN RN 5 R gl R RMIx R 5 Ryl :R—>Rand peR that

RO VAL AL OV~ (0 Gt = 08, )+ () G < g ¥ 3 AV (¢, ) -, )

Hypothesis (VI1) in light of (3.3) implies
A0y (DALY, (. ¥) - Ciw, ) <.
i=1

So from (3.20), (3.21) and with the property of bll and t//ll we get
DALV = ()T CW < Y TR y) —(v) " Ciw]
i=1 i=1

Subtracting (3.22) from (3.19) we get
SALOC) Elal + () COWET =Y A (T, (U )+ ()T Efal] [, 6, v) — (v') Cowil)
i=1 i=1

Similarly hypothesis (V1) in light of (3.12) implies
2, u% ALV, (UP, V) + Efaf], p) 20 .
i=1

.
So the (¢7, p) -pseudo univexity of > A [g; (*,v?) + ()" E’a’]at u? for fixed V* gng for
i=1

A>0 b iRVYIXRY 5 R, g2 RPXRP AR SR 2 R—>Rand peR  implies
b? (U (Y1 A [ 9,060 + ()T Pl - g, (47 v?) - (u)T P ]) 2 0
and by the properties of bo2 and 1//02 , We get

3 409,06 W)+ 00 Elal]> Y A9, (V) + (07) EZ].

Similarly from (3.4) and from the hypothesis (iv), (viii) with the property of blzand 1//12 , We get
D ALg, (¢ v = (V)T CAW 1< X Alg (x, y?) — (v*) T Cowg
i=1 i=1

Subtracting (3.26) from (3.25) we get
S AL6C) a7 + (v2) CAWF1=Y 4, [0, (U7, v2) + (@) EZa?]~[9, ¢, y°) — (v°) CAwl)
AI::ilding (3.23) and (3.27), we obtain -
S ALGA) Bl + (V) Ciwt+ ()T EZa? + (v2) CAW]
i=1
>3 ALV + () Bl [ (X y) = (v) Ciwi]+[g; (U7, v)
+(u*)" Efa’1-[g,(x*, y*) - (y*)' CiZWiZ]}.
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From the Definition 2.9 (Schwartz inequality), we have

()T Efal + (V)T W+ (x3)T E2af + (v2)T CAw? < ()T ElxY)? (&) Efal)*
H((V)TCVAE (W) CIW)? + ((x1)T EAXP)E (@) EZal)? +((v2) CAVA)H (W2)T CAW?)?  (3.29)
Using (3.6), (3.7), (3.14) and (3.15) in (3.29) we obtain
()T Elal + (V)T CW + ()T E2a2 + (v2)T CPw
< ()T EXY)? + (V)T CAA)? + ((x2)T E2X2)? + ((v2)T CAV?)? (3.30)
Using (3.30) in (3.28), we get
()T EA)? + (V)T V2 + (63T EX?)? +((v*)T CAV?):

>3 ARV + W Ela -, (¢, v - (v)T Cwi 1+ [, (u?, V)
+(U2)T Eizaiz _[gi (Xz’ yz) _(yz)T CiZWiZ]

= 3T 2LH 0 )+ 9,03, YA + () EXYE +()EXD) — (1) Cw! — (y?)T C2wf

=171

> DAL+ 0,0 V)~ () C)! ~()CA)F + () Eldl - (u7) Ea)

=37 AH (xy,a) 2> 4G (u,v,w)
Thatis H(X,y,4,a) > G(u,v,4,w) O

Theorem 3.2 (Strong Duality): f, : R™ x R/ — R and g, : RM? x R?l 5 R be thrice differentiable function

andlet (X%, %2, 9%, 92, A, W', W) beaweak efficient solution for (SMSP) .Let 1 = J be fixed in (MSD).Assume

r r
that (i) the matrix Z/Ii (Vif,) and Zﬂ,i (V3g,) are positive definite or negative definite and (ii) the set
i=1

i=1 i
{VZ f, = CoW e V,f, - C&VAVi} and {Vzgl —CAW e, V,q, - Cfo} are linearly independent.
Then there exist &' € R™! 4% € RM such that (X, %2, §*, 92,/{,53,@2) is feasible solution of (SMSD) and the
two objective values are equal. Also if the hypothesis of Theorem 3.1 are satisfied for all feasible solution of (SMSP)
and (SMSD), then (X*, %, V", 9%, 4,4%,47) is properly efficient solution of (SMSD).

Proof: Since (X!, X2, ", §2, 1, W, W?) is a weak efficient solution of (SMSP) by Fritz-John constraint condition
(Mangasarian, (1969)) there exist
acR",teR",6eR",yeR,p RN p2 c RN £ c RP £2 ¢ RV

Such thatizzl:ai [V, fi + E/&] 1+ ;ii V. (V, T)(B =)= ¢& (3.31)
;ai[vlgi + Eizé\‘iz]—i_;li[vl(vzgi)(ﬂ2 _792)] , (3_32)

S (&~ AV, ~CHE]) + Y[V I — AMA] =0,
i1 i1 (3.33)

> (@~ AV 9, - CRRT+ YLV (A" - §)A] =0 @
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(B~ H) IV, f ~Chii]-5! =0

(3.35)
(IBZ_WZ)T[Vzgi_CiZWiZ]_é‘iZ:Oi (3.36)
[(B" - A)AT VIS, =0i=12..r | (337)
[(8° - HH)AT Vig, =0i=12..r (338)
aiCilyl + (;31 - Wl)ﬂ’icil = Zricilwil , (3.39)
a,C2y* +(B° —w*) A4,C? =2r,CAW, (3.40)
1
(XHTEN] = ((X)TEIRY)? (3.41)
1
()’22)T EiZWiZ _ ((iZ)T EiZ)’zZ)E , (342)
(B D ALV, f -ChW1=0 , (3.43)
i=1
(IBZ)T Zﬂ’i [Vzgi - Cizwiz] =0, (3.44)
i=1
W) Y ALV, f,-ChWw]=0 , (3.45)
i=1
((WZ)T )Z/li [vzgi _CiZVAViZ] =0,
i=1
(3.46)
r,[(W) CIW —1]=0,i =12,..r
(3.47)
7, [(W)TC2W? —1]=0,i =1,2,..r (3.48)
s"2=0, (3.49)
T A
5 A=0 (3.50)
f(lgl =0 (3.51)
X282 =0 (352)
W EN <1 (3.53)
W2 EAW? <1, (3.54)
(@,p,7,7,6,§)20 (3.55)
and (a,pB,7,7,0,&)#0 _ (3.56)
Since 1 >0, from (3.49) and (3.50), we get &' = 0,52 =0 _Consequently (3.35) and (3.36) implies
LoDV, f, -CW' =0
(ﬁ 7y ) [ 270 |W|] (3.57)
and (B°-°)'[V,9, -C/W']=0 . (3.58)
Pre-multiplying (3.33) by (8" —/")" and then using (3.57) we get
(B =) LAV -4 =0, (359)
i=1

Again pre- multiplying (3.34) by (3% —7y%)" and then using (3.58) we get

(B’ —ﬁz)Ti}ii (V39.)(B* -*%) =0. (3.60)
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Using the hypothesis (i) in (3.59) and (3.60) we get

,31 _ 791 (3.61)
and B% =n? (3.62)
Therefore using (3.61) and (3.62) in (3.33) and (3.34), we get

Z(ai - 7/€i)[vz f, _CilvAVil] =0 (3.63)
i=1

and Y (a; - 74)[V,9, -CW?]1=0 (3.64)

i=1
Using hypothesis (ii) in (3. 63) and (3.64) weget «a; = ;//ii i=12,...r. (3.65)

If y=0, then ; =0, i=12,....r. and (3.61)and (3.62) implies B' = > =0

Therefore (3.31) and (3.32) implies &' =&2 =0 and (3.39), (3.40) implies 7,=0 i=12,..r. Thus
(a,B,7,7,0,&) =0 contradicting (3.56).

Hence y >0 (3.66)

since 4, >0 i=12,..r (365)implies &, >0 i=12,..1 (3.67)

Again using (3.61), (3.62) in (3.31) and (3.32) it gives » [V, f, + E}&I]1=¢" and ) o[V, 0, + Ef87] = &7

i=1 i=1
which by (3.63) and (3. 55) gives
r 1
> AV, T +Ela] = L (3.68)
i=1 Y
r 52
and > A[V,9, +EX&}]1==->0 . (3.69)
i=1 Y
r )’lefl
Now (X')" D A [V, + Eld]= =0, (using (3.51)) (3.70)
i=1 4
r )A(zng
and (X*)" > A[V,g, + E’87] = =0. (Using (3.52)) (3.71)
i=1 e
iy S’
Also from (3.61), (3.62) and (3.55) we have §' =2—>0 g y2=2_>0 (3.72)
4 4

Hence from (3.53), (3.54) and from (3.68) to (3.72) we conclude that (%%, %%, §*, §%,1,4},4?) satisfies the dual
constraint from (3.9) to (3.16).So it is a feasible solution of (SMSD).

27
Let idl =t ,thent >0 .From (3.39), (3.40), (3.61) and (3.62) we get

a;

C/y' =tC/W;,C2y? =tC W . (3.73)

This is a condition of Schwartz Inequality (Definition 2.9). Therefore

© 2012, IIMA. All Rights Reserved 1948



A. K. Tripathyl* & G. Devi’, -/ NONDIFFERENTIABLE MULTIOBJECTIVE MIXED SYMMETRIC DUALITY FOR... / IIMA- 3(5), May-2012,
Page: 1940-1956

1 1 1 1
(§1)T CIE = ((9%)T CH9) 2 (W CE)2and (§7)T CAWE = ((§7)T C29%)2 (W2 C2W?)2 (3.74)

Incaser; >0, from(347)and(348)wegetw C W —1W C w2 =1 and so we get

N

() Ciw = (91’ C?f/l)E and (§°)" C/W = ((J°)"C§°)

21, N N
Incase 7; =0 we get fhi_t-0 , S0 (3.77) implies Cily1 = Cizy2 =

a;
1 1
Hence (§')' CIW; = ((§)" C}9")? =0 and (§°)' CIW’ = ((§°)' C}9°)? =0 .
1
Thus in either case  (§*)" CWi = ((¥")" C/y')?2 (3.75)
1
and (§%)TC2W = ((9°)' C*¥*)?. (3.76)
Therefore using (3.41), (3.42), (3.75) and (3 76) we get
1
f.(x 9 +9, (X%, 9%) + (X Elxl)2 +(X° szz)2 —-§t CW — 372TCi2v“vi2
1
= f(R, 91 +0,(R%, 99) + (R ElA)) + (R E47) - (9 C?ffl)2 (97'C9%)?, (3.77)
foreach 1=123,...... r
or H, (X, %% ¥, §%,WH W) =G, (X, X2, ¥, §°,&",a%)
foreach i =1,2.3,......r,
Or H()’zli)’zz!yli yz’wl;wz) = 6(21;22,91;92,51132). (378)

So the objective values of both problems are equal.
Now we claim that (X', X2, §*,¥%,a",4%,1) is properly efficient solution for (SMSD).
First we have to show it is an efficient solution of (SMSD).

If this would not be the case, then there would exist a feasible solution (G*,(%,v*,v? 4", &%, /i) of (SMSD) such that
G(x', %%, y*, y%,ata%) <G(a,a%,v',v?,a,a%)

This by (3.78) gives

This is a contradiction to Theorem 3.1.Hence (X', X, ¥*, §2,&",4%, 1) isan efficient solution of (SMSD).

Now we have to claim (X', X*, §*, y2,&",4%, 1) is properly efficient for (SMSD).
For that rewriting the objective function of (SMSD) into minimization form we get

minG: (%}, %2, 9", §2,41,4%) = —max G, (%, &2, §*, §2,4",42)
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If (X', %%, ¥, y%,a", 8% 1) were not properly efficient for (SMSD), then for every scalar M > 0 there exist a
feasible solution (G*,0%,V*,V?,a%, &%, A) in (SMSD)and an indexi such that

{G(@",0% V', V*,&", &) -G (X, %%, §', W WP)} < M{G; (%, % X095 WL W) -G (@, G°,v',v%,a", 8%} (3.79)

and forall | satisfying

G; (%, %%, §', 9% W' W) < G; (0*,a%,v',v%,8", &%)} (3.80)
whenever

G, (G',0%,V',v?,a",4%) <G/ (X, X2, §*, ¥°, W, W) (3.81)
This implies

{G (ul "2 "1 "2 "1 a ) G ("1 "2 "1 92 Wl’WZ)}

> M{Gj(xl,iz,y Y2 W W )—Gj(u 0% V0%, 8 8%} (3.82)

forall | satisfying
Gj()A(l,)A(z, vhys Wt W) > Gj(ﬂl,ﬁz,ﬁl,ﬁz,él,éz)}

(3.83)
whenever
G, ((%,02,0%,0%,8%, 42,6 = 0,62 = 0) > G. (R, &2, §*, §%, W', W2, p' =0, p? =0) (3.84)
Since M >0 and using (3 83) in (3.82) we get
{G, (G',6%,v',v%,a',a% -G, (A1 X2,y 92 WHWA) 3> 0 . (3.85)

Using (3.83) in (3.90) we obtain
G, (d*,a%,v',v?,ah,a%) - H, (X", 8%, §', 9%, W', W?) > 0
i 5%

= {G, (¢*,0%,v*,v?,a',4%) > Hi(il,iz,yl,yz,wl,wz).

That can be made arbitrary large and for each /ii >0 we have

r r
Z G,(u*,6%,v*",v?,a'a%)y} Z (XN R2 9N 9w W)
i=1 )

i=1
This again contradicts Theorem 3.1.Hence (X', X*, y*, §*,&",a%, 1) is properly efficient solution of (SMSD)

Theorem 3. 3. (Converse Duality).

Let f :R™xRM' 5 R and g, :RYIxR¥! 5 R be thrice differentiable function and let

(G%,G2,9*,V2,1,8%,4%) beaweak efficient solution for (SMSD) .Let A = be fixed in (SMSD).Assume that

(i) The matrix Z/I (VZf) and 2/1 (V2g,) are positive definite or negative definite and

=1
(i) The set {Vlfl+ She R v.f, +E4 } and { V.9, +EZ8Z,........... V.9, + Eféf.} are linearly
independent.

Then there exist w' € R/, w? e R such that (01,02,\71,\72,2,&1,@?) is feasible solution of (SMSD) and
the two objective values are equal. Also if the hypothesis of Theorem 3.1 are satisfied for all feasible solution of (SMSP)
and (SMSD), then (G*, %, V*,9%, 4, W, W?) is properly efficient solution of (SMSP).
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Proof: It follows on the lines of Theorem 3.2
4. SELF DUALITY

A primal (dual) problem having equivalence dual(primal) formulation is said to be self dual i.e ,if the dual can be recast
in the form of the primal .In general (SMSP) and (SMSD) are not self dual without some added restriction on f and

g.
Theorem 4.1: Let f, : R™ xR 5 Rand g, : RM! xR™! — R be skew symmetric and B! =C',B? =C?.

Then (SMSP) is a self dual. Furthermore if (SMSP) and (SMSD) are dual programs and (X%, X%, ¥*, ¥2,W, 1) is an

efficient solution of (SMSP), then (§*, §%, X%, X2, W, 1) is efficient solution of (SMSD) and the values of two
objective function are equal to zero.

Proof: By recasting the dual problem (SMSD) as minimization problem, we have

1 1
(SMSDy): minimizeG; (u,v,a)={ " (W) =g, (U%, V) + (V) GV + (V) V)2
—(u")" Ela —(u®)" Efal,i=12,.r
Subject to —Zr:i,[vl f.(u',v)+E'a;]<0, (4.2)
i=1
> AIV,0, (U2 V) + E2a?] <0 2
i=1
—(uh)’ iﬂ,,[vl f(u',v)+E4a’]1=0 , (4.3)
i=1
—(uz)TZr:ﬂ,,[Vlgi(uz,vzhEfa?]zo, (4.4)
i=1
(vt,v?) =0 (4.5)
(&) Ela <1, i=12..r (4.6)
(@°) Efa’ <1,i=12,...r 4.7)
250Y 4 =1 @8

i=1
since f.(u',v')and g, (u?,v?) are skew symmetric, the above problem becomes (SMSDy):

{00, 07) £ ()T CV)2 + () G2

~(u) Efal - (u*) Efai=1,2,..r

minimizeG; (u,v,a) =

Subject to Zr:ﬂp, [V, f,(v',u)-Eai]<0 (4.9)
i=1

ii.[vlgi (v*,u®)-Efa’]<0 (4.10)

i=1

(o} iﬂf.[Vl f,(v\,u)-Ea’]>0 (4.12)
i=1

(uz)TZr:A,[Vlgi(vz,uz)—Efa?]zo (4.12)
i=1

(vt,v?) =0 (4.13)

(&) Ela <1, i=12...r (4.14)
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(@°) Efa’ <1,i=12,...r (4.15)
2>0) 4 =1 (4.16)
i=1

This shows that (SMSDy) is formally identical to (SMSP) i.e. the objective function and the constraints are identical
Thus, the problem (SMSD) becomes self dual. Hence if (X,¥,W, 1) is efficient solution for (SMSP) then

(V,X,W, 1) is efficient solution for (SMSD).By similar argument (X,V,a&, 1) is efficient solution for (SMSP)
implies (Y, X, a, A4 ) is efficient solution for (SMSD).

If (SMSP) and (SMSD) are dual programs and (X, Y, W, /T) is efficient solution, then by theorem 3.2 we get
H(X,y,W,1)=G(X,y,a,1) (4.17)

Now we claim that H(X,y,W, 1) =0

From the definition of Schwarz inequality and (3.6), (3.7), (4.14) and (4.15) we have

(y)" Clw! < ((y)TCly")* (Wh) Ciw)* < (y)T ClyY)’, (4.18)
(v Cow? < ((¥°)T CoY*) (W) Chwd)” < ((¥*) Cly?)* 4.19)
()T Efal < ()T Ely)* (@) Efad)® < ()T ExY)?, (4.20)
(x*)T EZa? < ()T EZX?)?((@9) Efa?)? < ((x*)T ENX?)?, (421)
So

H (X, 7,W) = (%, )+ ,(X%, 7%) + (&) B + () EZX)* (7)) Ol — (V) C°W!

That implies in light of (4.18) and (4.19)
H (X, 7, W) 2 £, (X, ¥+ 0, (X%, ¥2) + (X)T EIXY)E + ((K)TEIXY) —((F)' ClYY)? - ((Y2)T CPY?):

(4.22)

Similarly
G/(X,V,@) = f, (X, V) + g; (X%, y2) + (X) Efal) + (X°)" E2af — (V)T CIvY): - (V%) C?y?)*
Which implies G, (X, 7, &) < f. (X%, ¥%) + g, (X2, ¥2) + ((X")T EXXY)? + ((X?)T E2X?)>

— (YT CHYY ()T C2y?): (4.23)
Hence from (4.17) (4.22) and (4.23) we get
H, (X, 7,W) = G,(X,7,a) = f, (X}, 7*) + 9, (X2, ¥2) + ()T EIXY)? + ((x2)T EZX?)*

— (YT CHYY (¥ C2y?): (4.24)

— ()T CixY): —((X%)TCAxP)?
— £, (%4, 71— 0, (K2, 72) + ((F1) T CLYY)7 + ((¥2) C2¥%)? — (XM EXxY)? —((X3)T EZX?)*
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Now adding (4.24) and (4.25) we get H, (X, ¥,W) =G, (X,y,a) =0

Example 4.1:Let n=m=3,r =1, X" = (X, %), X* =X, ¥' = (¥, ¥,), Y = Vs

2 1
L |=CE=C,=).

f(x,y)=e*+e%—e”—e” ,g(x,y)=sinx,—siny, E, =(1

w, z
vvl=[ 1j,zl=( 1j,W2=W3,22=Z3
WZ ZZ

Then the problem (MSP) and (MSD) become

Primal Problem (MSP)

X X Y; y. H H 2 2
e" +e” —e” —e” +sinx; —sin y3+\/2x1 +2X X, + X,

X3+ (2Y; + Yo )W + (Y, + Yo )W, + YW,

min imize

Subject to —et —2w, —w, <0 ,
-’ —w, —w, <0

—C0S Y, —W, <0, |

-y,e”t =2y,w, —y,w, >0,

—Y,€" =2y,W, — y,w, 20 ,

—Y5COS Y5 — Y5W,; = 0,

2w +2ww, + W, <1 ,w, <1,

(%, %) 20

Dual Problem (MSD)

max imize g% +e" —e" —e" +sinu, —sinv, —\/2v12 +2V,V, +V,°
-V, +(2u, +u,)a, + (U, +u,)a, +u,a,

Subjectto —e" —2a, —a, >0

—-e”-a -a,>0 ,

—Cosu, —a, >0

—-u,e" —2u,a —ua, <0

-u,e” —2u,a —Uu,a, <0

—U, COSU, —U,a, <0

2a°+2aa,+a,°<1,a,<1,

(V;,V5) 20

(4.25)

(4.26)
(4.27)

(4.28)
(4.29)
(4.30)

(4.31)
(4.32)
(4.33)

(4.34)

(4.35)
(4.36)

(4.37)
(4.38)

(4.39)
(4.40)

(4.41)

Clearly f (X,y)=—"f(y,X) Therefore the problem (S P) is a self dual and hence theorem 4.1 is applicable for this

pair.
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5. SPECIAL CASE

(i)If |3, |=0,] K, |=0 ,then our problem reduces to a pair of (MP) and (MD) given by Thakur et al(2011).

(i) If we take Cij={Eijyj;ijEijij1} where EJ, are positive semi definite matrices, and

b=y =1,Clw/ =z, Ela) =w] with ¢(x,u;(VFf (u), p)) = F(x,u; Vf (u)) for p=0
and i =1,2,.....r, j =1,2, then our problem (SMSP) and (SMSD) reduces to the pair of dual and dual results given by
Li (2011) , .Mishra et al.(2006) and Mishra(2007).

(i) If we take C/ ={Eijyj;yjT Ely) <1} where EJ, are positive semi definite matrices and
1 ) _ o1 _ _

(x1"EJx))? =s(x) |[CJ) and (y/' Cly)2 =s(y! | D)), i =12,...r, j=1,2

b=Ly=1,C’w/ =27 E’a’ =w’ ,

Clwi =V, f(x', y)+Vif(x', y)p,Elal =V, fu',v)+VZf(u'vi)g

with @¢(x,u; (VF (u), p)) = F(x,u; VI (u)) for p=0

then our problem (MMSP) and (MMSD) reduces to the problem (MP) and (MD) given by Agarwal et al (2011).

1 1
(V) 1f|J, =0, K, =0 (x"E;x)2 =s(x|C;) (y'C;y)2 =s(y|D,), Ciw, =z;,E;a, =w,

i =12,.....r, then the problem (MMSP) and (MMSD) reduces to a pair of problems (MP) and (MD) and its results
given by Ojha (2010).

v) If o(x,u;(VF(u),p))=F(x,u;Vi(u)) for p=0 , |J, =0,/ K, |=0 , b=Ly =1 and,

C,=E, =0,i=12,..r then the problem (SMSP) and (SMSD) reduces to a pair of problems (MP) and (MD) and
the results studied by Suneja et al (2003) and dual given by Chandra et al(1998).

i) If |J, =0, K, |=0,b =Ly =1 and ¢(x,u;(VF(u),p)) =F(x,u;Vf(u)) for p=0 in (SMSP) and

(SMSD) ,then we obtain a pair of nondifferentiable symmetric dual in multiobjective program considered by Ahmad et
al (2005).

(vii) If we set |J, |=0,| K, |=0 in (SMSP) and (MSD, then we obtain a pair of first order symmetric dual
nondifferentiable multiobjective programs considered by Mond et al ( 1991).

5. CONCLUSION

In this article, a new pair of nondifferentiable multiobjective mixed symmetric dual programs is presented and duality
relations between primal and dual problems are established. The results developed in this paper improve and generalize a
number of existing results in the literature. The results discussed in this paper can be extended to second order and higher
order as well as to other generalized convexity assumptions .These results can be extended to the case of continuous-
time problems as well.
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