(cas ${ }^{2}$ MA Available online through www.ijma.info
 ISSN 2229-5046

PATH RELATED ARITHMETIC GRAPHS

P. B. SARASIJA*
Department of Mathematics, Noorul Islam University, Kumaracoil, (T.N.), India
N. ADALIN BEATRESS
Department of Mathematics, All Saints College of Education, Kaliakkavilai, Malayadi, (T.N.), India

(Received on: 07-05-12; Revised \& Accepted on: 31-05-12)

ABSTRACT

A (p, q) graph $G=(V, E)$ is said to be (k, d) arithmetic, where k and d are positive integers if its p vertices admits a labeling of distinct non negative integers such that the values of the edges obtained as the sum of the labels of their end vertices form the set $\{k, k+d, \ldots, k+(q-1) d\}$. In this paper we prove that $P_{n}^{2},\left(P_{n} ; K_{1}\right),\left(P_{n} ; S_{1}\right),\left(P_{n} ; S_{2}\right)$ and $\left(P_{n}, ; S_{3}\right)$ are arithmetic graphs.

Key Words: Arithmetic labeling, Arithmetic graphs, path, star.
AMS Subject Classification (2000): 05C78.

1. INTRODUCTION

For all terminology and notation in graph theory we follow [3]. Graph labeling where the vertices are assigned values subject to certain conditions. Labeled graphs serve as mathematical models for a broad range of applications such as coding theory, inducing the design of good radar type's codes. Labeled graphs have also been applied in x - ray crystallographic analysis, to design a communication network addressing system.
B.D. Acharya and S.M. Hedge [1, 3] have introduced the notion of (k, d) arithmetic labeling of graphs. For a non negative integer k and positive integer d, a (p, q) graph $G=(V, E)$, a (k, d) arithmetic labeling is an injective mapping $\mathrm{f}: \mathrm{V}(\mathrm{G}) \rightarrow\{0,1,2, \ldots\}$, where the induced edge function $f^{*}: \mathrm{E}(\mathrm{G}) \rightarrow\{\mathrm{k}, \mathrm{k}+\mathrm{d}, \mathrm{k}+2 \mathrm{~d}, \ldots, \mathrm{k}+(\mathrm{q}-1) \mathrm{d}\}$ such that $f^{*}(u v)=\mathrm{f}(\mathrm{u})+\mathrm{f}(\mathrm{v})$ for all $\mathrm{uv} \in \mathrm{E}(\mathrm{G})$ is also injective. If a graph G admits such a labeling then the graph G is called (k, d) arithmetic graph. The greatest integer less than or equal to the real number x is denoted by $\lfloor x\rfloor$. The greatest integer greater than or equal to the real number x is denoted by $\lfloor\mathrm{x}\rfloor$.

Consider the following path related graphs. [2]

1. P_{n}^{k}, the $\mathrm{k}^{\text {th }}$ power of P_{n} is the graph obtained from the path P_{n} by adding edges that join all vertices u and v with degree of $(\mathrm{u}, \mathrm{v})=\mathrm{k}$.
2. The graph $\left(P_{n} ; K_{1}\right)$ is obtained from a path P_{n} by joining a pendant edge at each vertex of the path.
3. Let S_{m} be a Star graph with vertices $v, w_{1}, \ldots \mathrm{w}_{\mathrm{m}}$. Define ($\mathrm{P}_{\mathrm{n}} ; \mathrm{S}_{\mathrm{m}}$) the graph obtained from n copies of S_{m} and the path P_{n} : $u_{1} u_{2} \ldots u_{n}$ by joining u_{j} the vertex v of the $j^{\text {th }}$ copy of S_{m} by means of an edge, for $1 \leq m \leq 3,1 \leq j \leq n$.

For example $\left(\mathrm{P}_{4} ; \mathrm{S}_{2}\right)$ is shown in Figure 1.

Figure 1.

Corresponding author: P. B. SARASIJA*
Department of Mathematics, Noorul Islam University, Kumaracoil, (T.N.), India

2. ARITHMETIC GRAPH OF P_{n}^{2}

In [5] Jinnah and Singh noted that P_{n}^{2} is additively graceful, that is $\mathrm{k}=1$ and $\mathrm{d}=1$.
In this paper we prove that P_{n}^{2} is a (k, d) arithmetic graph for all $k \geq d$.
Theorem 2.1: For all positive integer $n, k \geq d, k$ and d are either both even or odd positive integers, P_{n}^{2} is $a(k, d)$ arithmetic graph.

Proof: Denote the vertices of the path P_{n} as $\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}$.
Define a labeling f: V $\left(\mathrm{P}_{\mathrm{n}}\right) \rightarrow\{0,1 \ldots\}$ such that

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{u}_{1}\right)=\frac{k-d}{2}, \mathrm{f}\left(\mathrm{u}_{2}\right)=\mathrm{k}-\mathrm{u}_{1}, \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\mathrm{u}_{\mathrm{i}-1}+\mathrm{d}, 3 \leq \mathrm{i} \leq \mathrm{n} . \\
& f^{*}\left(\mathrm{E}\left(P_{n}^{2}\right)\right)=\{\mathrm{k}, \mathrm{k}+\mathrm{d}, \ldots, \mathrm{k}+(\mathrm{q}-1) \mathrm{d}\} .
\end{aligned}
$$

Hence P_{n}^{2} is (k, d) arithmetic graph.
For example, $(6,4)$ arithmetic labeling of P_{5}^{2} using the above theorem is shown in Figure 2.

Figure 2.

$$
f^{*}\left(\mathrm{E}\left(P_{5}^{2}\right)\right)=\{6,10,14,18,22,26,30\}
$$

3. ARITHMETIC GRAPH OF ($\mathbf{P}_{\mathbf{n}} ; \mathbf{k}_{1}$)

Theorem 3.1: For all positive integer k, d and $n\left(P_{n} ; K_{1}\right)$ is a (k, d) arithmetic if
$\left\{\begin{array}{c}k<d ; \quad \text { for all } k \text { and } d \\ k>d ; \quad k \text { is not a multiple of } d\end{array}\right.$
Proof: Denote the vertices of the path P_{n} as $u_{1}, u_{2}, \ldots, u_{n}$. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of the pendant edges.
Define a labeling f: $\mathrm{V}\left(P_{n} ; K_{1}\right) \rightarrow\{0,1, \ldots\}$ such that

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{u}_{1}\right)=0, \mathrm{f}\left(\mathrm{u}_{2 \mathrm{i}}\right)=\mathrm{k}+(2 \mathrm{i}-1) \mathrm{d}, 1 \leq \mathrm{i} \leq\left\lfloor\frac{n}{2}\right\rfloor \\
& \mathrm{f}\left(\mathrm{u}_{2 \mathrm{i}+1}\right)=2 \mathrm{id}, 1 \leq \mathrm{i}<\left\lceil\frac{n}{2}\right\rceil \text { and } \\
& \mathrm{f}\left(\mathrm{v}_{1}\right)=\mathrm{k}, \mathrm{f}\left(\mathrm{v}_{2 \mathrm{i}}\right)=(2 \mathrm{i}-1) \mathrm{d}, 1 \leq \mathrm{i} \leq\left\lfloor\frac{n}{2}\right\rfloor, \\
& \mathrm{f}\left(\mathrm{v}_{2 \mathrm{i}+1}\right)=\mathrm{k}+2 \mathrm{id}, 1 \leq \mathrm{i}<\left\lceil\frac{n}{2}\right\rceil
\end{aligned}
$$

Hence $\left(P_{n} ; K_{1}\right)$ is (k, d) arithmetic graph.
For example, $(5,3)$ arithmetic labeling of $\left(P_{4} ; K_{1}\right)$ is shown in Figure 3.

Figure 3.

4 ARITHMETIC GRAPH OF ($\mathbf{P}_{\mathrm{n}} ; \mathrm{S}_{\mathbf{1}}$)

Theorem 4.1: For all positive integer k, d and $n\left(P_{n} ; S_{1}\right)$ is a (k, d) arithmetic if

$$
\left\{\begin{array}{c}
k<d ; \quad \text { for all } k \text { and } d \\
k>d ; \quad k \text { is not a multiple of } d
\end{array}\right.
$$

Proof: Denote the vertices of the path P_{n} as $u_{1}, u_{2}, \ldots, u_{n}$. Let $v_{1}, v_{2}, \ldots, v_{n}$ and $w_{1}, w_{2}, \ldots, w_{n}$ be the vertices of the Star S_{1}.
Define a labeling $\mathrm{f}: \mathrm{V}\left(\mathrm{P}_{\mathrm{n}} ; \mathrm{S}_{1}\right) \rightarrow\{0,1, \ldots\}$ such that

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{u}_{2 \mathrm{i}}\right)=(3 \mathrm{i}-2) \mathrm{d}, 1 \leq \mathrm{i} \leq\left\lfloor\frac{n}{2}\right\rfloor \\
& \mathrm{f}\left(\mathrm{u}_{2 \mathrm{i}-1}\right)=\mathrm{k}+(3 \mathrm{i}-2) \mathrm{d}, 1 \leq \mathrm{i} \leq\left\lceil\frac{n}{2}\right\rceil, \\
& \mathrm{f}\left(\mathrm{v}_{1}\right)=0, \mathrm{f}\left(\mathrm{v}_{2 \mathrm{i}}\right)=\mathrm{k}+(3 \mathrm{i}-1) \mathrm{d}, 1 \leq \mathrm{i} \leq\left\lfloor\frac{n}{2}\right\rfloor, \\
& \mathrm{f}\left(\mathrm{v}_{2 \mathrm{i}+1}\right)=3 \mathrm{id}, 1 \leq \mathrm{i} \leq\left\lfloor\frac{n}{2}\right\rfloor \\
& \mathrm{f}\left(\mathrm{w}_{1}\right)=\mathrm{k}, \mathrm{f}\left(\mathrm{w}_{2 \mathrm{i}}\right)=(3 \mathrm{i}-1) \mathrm{d}, 1 \leq \mathrm{i} \leq\left\lfloor\frac{n}{2}\right\rfloor, \text { and } \\
& \mathrm{f}\left(\mathrm{w}_{2 \mathrm{i}+1}\right)=\mathrm{k}+3 \mathrm{id}, 1 \leq \mathrm{i} \leq\left\lfloor\frac{n}{2}\right\rfloor
\end{aligned}
$$

Hence $\left(P_{n} ; S_{1}\right)$ is (k, d) arithmetic graph.
For example, $(3,5)$ arithmetic labeling of $\left(\mathrm{P}_{4} ; \mathrm{S}_{1}\right)$ is shown in Figure 4.

Figure 4.

5. Arithmetic graph of ($\mathrm{P}_{\mathrm{n}} ; \mathrm{S}_{2}$)

Theorem 5.1: For all positive integer k, d, and n, the graph $\left(P_{n} ; S_{2}\right)$ is (k, d) arithmetic if

$$
\left\{\begin{array}{c}
k<d ; \quad \text { for all } k \text { and } d \\
k>d ; \quad k \text { is not a multiple of } d
\end{array}\right.
$$

Proof: Denote the vertices of the path P_{n} as $\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}$. Let $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}$ and $\mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{2 \mathrm{n}}$ be the vertices of the Star S_{2}.

Define a labeling $\mathrm{f}: \mathrm{V}\left(\left(\mathrm{P}_{\mathrm{n}} ; \mathrm{S}_{2}\right) \rightarrow\{0,1, \ldots\}\right.$ as follows

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{u}_{\mathrm{i}}\right)=\left\{\begin{array}{c}
2 i d, \text { if } i \text { is odd, } 1 \leq i \leq n \\
k+(2 i-3) d, \text { if } i \text { is even } 2 \leq i \leq n
\end{array}\right. \\
& \mathrm{f}\left(\mathrm{v}_{\mathrm{i}}\right)=\left\{\begin{array}{c}
(2 i-1) d, \text { if } i \text { is even }, 2 \leq i \leq n \\
k+2(i-1) d, \text { if } i \text { is odd, } 1 \leq i \leq n
\end{array}\right. \\
& \mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=\left\{\begin{array}{c}
(i-1) d \quad \text { if } i \equiv 1,2(\bmod 4), \\
k+(i-1) d \text {, if } i \equiv 0,3(\bmod 4), 1 \leq i \leq 2 n
\end{array}\right.
\end{aligned}
$$

Hence $\left(\mathrm{P}_{\mathrm{n}} ; \mathrm{S}_{2}\right)$ is (k, d) arithmetic graph.
For example, $(2,3)$ arithmetic labeling of $\left(\mathrm{P}_{4} ; \mathrm{S}_{2}\right)$ is shown in Figure 5.

Figure 5.
$f^{*}\left(\mathrm{E}\left(\mathrm{P}_{4} ; \mathrm{S}_{2}\right)\right)=\{2,5,8,11,14,17,20,23,26,29,32,35,38,41,44\}$

6. Arithmetic graph of $\left(\mathbf{P}_{\mathrm{n}} ; \mathrm{S}_{\mathbf{3}}\right)$

Theorem 5.1: For all positive integer k,d, and n, the graph $\left(P_{n} ; S_{3}\right)$ is (k, d)

$$
\text { arithmetic if } \quad\left\{\begin{array}{c}
k<d ; \quad \text { for all } k \text { and } d \\
k>d ; \quad k \text { is not a multiple of } d
\end{array}\right.
$$

Proof: Denote the vertices of the path P_{n} as $\mathrm{u}_{1}, \mathrm{u}_{2}, \ldots, \mathrm{u}_{\mathrm{n}}$. Let $\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{n}}$ and $\mathrm{w}_{1}, \mathrm{w}_{2}, \ldots, \mathrm{w}_{2 \mathrm{n}}$ be vertices of the Star S_{3}.
Define a labeling f: V $\left(\left(\mathrm{P}_{\mathrm{n}} ; \mathrm{S}_{3}\right) \rightarrow\{0,1, \ldots\}\right.$ as follows

$$
\begin{aligned}
& \mathrm{f}\left(\mathrm{u}_{2 \mathrm{i}-1}\right)=(5 \mathrm{i}-2) \mathrm{d}, 1 \leq \mathrm{i} \leq\left\lceil\frac{n}{2}\right\rceil, \\
& \left.\mathrm{f}\left(\mathrm{u}_{2 \mathrm{i}}\right)=\mathrm{k}+(5 \mathrm{i}-4) \mathrm{d}, 1 \leq \mathrm{i} \leq \frac{n}{2}\right\rfloor, \\
& \mathrm{f}\left(\mathrm{v}_{2 \mathrm{i}-1}\right)=\mathrm{k}+5(\mathrm{i}-1) \mathrm{d}, 1 \leq \mathrm{i}<\left\lceil\frac{n}{2}\right\rceil, \\
& \mathrm{f}\left(\mathrm{v}_{2 \mathrm{i}}\right)=(5 \mathrm{i}-1) \mathrm{d}, 1 \leq \mathrm{i} \leq\left\lfloor\frac{n}{2}\right\rfloor, \\
& \mathrm{f}\left(\mathrm{w}_{\mathrm{i}}\right)=\left\{\begin{array}{cc}
(i-j) d \quad \text { if } i \equiv 1,2,3(\bmod 6), \\
k+(i-1-j) d, & \text { if } \quad i \equiv 0,4,5(\bmod 6), 1 \leq i \leq 3 n
\end{array}\right.
\end{aligned}
$$

where $\mathrm{j}=\left\lceil\frac{i}{6}\right\rceil$
Hence $\left(\mathrm{P}_{\mathrm{n}} ; \mathrm{S}_{3}\right)$ is (k, d) arithmetic graph.
For example, $(4,3)$ arithmetic labeling of $\left(\mathrm{P}_{4} ; \mathrm{S}_{3}\right)$ is shown in Figure 6.

Figure 6.
$\mathrm{f}^{*}\left(\mathrm{E}\left(\mathrm{P}_{3}, \mathrm{~S}_{3}\right)=\{4,7,10,13,16,19,22,25,28,31,34,37,40,43\}\right.$

REFERENCES

[1] B.D Acharya and S.M.Hedge, Arithemetic graphs, J. Graph Theory, 14(3), (1990) 275-299.
[2] J. A. Gallian, A dynamic survey of graph labeling, The Electronic journal of Combinatorics (2010).
[3] F. Harary, Graph theory, Addison Wesley, Reading Mass (1972).
[4] S. M. Hedge, and Sudhakar Shetty, On Arithemetic graphs, J. Pure appl Math., 33(8), (2002) 1275-1283.
[5] M.I. Jinnah and G.S. Singh, A note on arithmetic numberings of graphs, Proc. Symposium on Graphs and combinatorics, Kerala, india (1991) 83-87.

Source of support: Nil, Conflict of interest: None Declared

