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ABSTRACT

LetG = (V,E) be a simple graph. A set of vertices S of a graph G is geodetic, if every vertex of G lies on a shortest
path between two vertices in S. The geodetic number of G is the minimum cardinality of all geodetic sets of G, and is

denoted by g (G). In (8), the concept of geodetic polynomial is defined as g(G, x) = Z ge(G,i)xi where
i =g(G)

ge(G,i) is the number of geodetic sets of cardinality i, and G be the graph obtained by appending a single pendant

edge to each vertex of graph G. We call P a centipede, where P_ is a path with n vertices. In this paper, we obtain
the geodetic sets and polynomials of the centipedes. Also, we study some properties of geodetic sets and the coefficients
of the polynomials. It is also derived that the geodetic polynomial of the centipede P; is x"(1+x)".

Keywords: Geodetic sets, geodetic number, centipede, Recursive formula.

1. INTRODUCTION

Let G=(V, E) be a simple graph of order |\V/| = n. The distance d(u, v) between two vertices u and v in a connected graph
G is the length of a shortest u-v path in G. A u-v path of length d(u, v) is called u-v geodesic. The closed interval 1[u, v]
consists of all vertices lying on some u- v geodesic of G, while for S —V, I [S] = U I [u, v]. A setS of vertices is a
geodetic set if I [S] = V, and the minimum cardinality of a geodetic set is the geodetic number g(G). The geodetic
number of a graph was introduced in [4,5]. In [I], the domination polynomial was introduced and some properties have

been derived. In [8], the concept of geodetic polynomial was introduced. It is defined as g(G, x) = Z ge(G,i)xi
i =g(G)

where G is a graph of order n and g (G,i) is the number of geodetic sets of G of cardinality i. As g(P.)=n and

2n
P’ has 2n vertices, the geodetic polynomial of P is of the form g(P., x) = Z g.(P;,i)x" where g_(P.,i) is

the geoditic sets of P; with cardinality i. The geodetic number g(G) is the minimum cardinality of a geodetic set in G.
A geodetic set with cardibality g(G) is called a g-set.

Let G* denote the graph obtained by appending a single pendent edge to each vertex of a graph G. In this paper we
consider the labeled centipede as shown in figure 1. We denote the graph obtained from P_ by deleting the vertex
labeled 2n as P} —{2n}.
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Labeled centipede, P.

In the next section we study geodetic sets of P, — { 2n} , which is needed for the study of geodetic sets of centipedes.

In section 3, by using the results in section2, we investigate the geodetic sets of centipedes. In the last section we study
the geodetic polynomial of centipedes.

As usual, we use l_x—‘ for the smallest integer greater than or equal to x. In this paper, we denote the set {1,2,...n}

simply by [n]

2. GEODETIC SETS OF P —{2n}
For the construction of the geodetic sets of centipede P; , We need to investigate the geodetic sets of P — {Qn} .

In this section, we investigate geodetic sets of P. — {2n} Let g_(P. — {2n} , 1) be the family of geodetic sets

of P; —{2n} with cardinality i. We shall find recursive formula for |g, (P, — {Qn},i)‘ . We need the following

lemmas to obtain the main results of this section.

Lemma 2.1: [1] g(P,) =2

Lemma 2.2: Forevery n € IV :
(i) gP)=n
i) g -{2n)=n
(iii) g (P.)=¢ ifandonlyif i<n or i >2n
(iv) g.(P. —{2n},i)=¢ ifandonlyif i<n or i>2n-1

Proof:
(i) Every g-set of P must contain the vertices labeled 2i, for every 1 < i < n. Therefore g(P.)=n.

(ii) Every g-set of P —{2n} must contain the vertex labeled 2n-1 and the vertices labeled 2i, for every

1<i<n-1.
(iii) It follows from part (i) and the definition of geodetic set.
(iv). It follows from part (ii) and the definition of geodetic set. o

Lemma23:1f g (P, ,,i—2)=¢ and g (P, —{2n —-2},i—2) = ¢ then g (P, — {2n},i)= ¢

Proof: Since g (P.,,i—2)=¢and g (P., — {Qn - 2} ,i—2)=¢ by lemma 2.2 (iii),(iv), we have
i—-2<n-2o0o i—-2>2n-3. If i—-2<n—-2 then i<n and by lemma 22 (iv),
g (P. —{2n},i)=¢. Also, if i—2>2n-3, then i>2n—1land by lemma 22 (iv), we have

g.(Py —{2n},i)=¢. o

Lemma 2.4: Suppose g, (P, —{2n},1) # @then
() 8.(Pr,i—2)#¢ and g (P, —{2n—-2},i-2)=¢ iff i=n
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(i) g (Proi=2)=¢ g.(Pr, —{2n-2},i-2)#¢ iff i=2n-1
(iii) g (P, ,,i—2)# ¢ and g (P, —{2n—-2},i-2)= ¢ iff n+1<i<2n-2

Proof: Suppose g_(P. —{2n},i) = ¢

(i) (=) Since g (P., - {Qn - 2},i— 2)=¢, by lemma 22 (iv), we have i—-2<n-1 or
i-2>2n-3. If i—-2>2n-3 then i>2n -1 and by lemma2.2 (iv), g.(P. —{2n},i) = ¢ , which
is a contradiction. ~ So we must have i—2<n-1. Also, since g (P.,,i—2)#¢, We have

n—-2<i-2<2n-4.Together,wehave i=n.
(<) If i=n then by lemma 2.2 (iii),(iv), we have g (P, ,,i—2)# ¢, and g (P, , —{2n —2},i-2) = ¢

(i) (=) Since g (P.,,i—2)=¢, by lemma 2.2 (i), we have i—-2<n—-2 or i—-2>2n-4. If
i—2<n-—2,then i<n and by lemma 2.2 (iv), g_(P. —{2n},i) = ¢, which is a contradiction. So, we must
have i—2>2n-4. Also, since g (P, —{2n—-2},i-2)#¢, we hae n-1<i-2<2n-3.
Together, we have i = 2n —1.

(<=)If i =2n —1 then by lemma 2.2 (jii),(iv), we have g_(P. ,,i —2)=¢ and g_(P. , —{2n - 2},i— 2)#¢.

(iii) (=) Since g (P.,,i—2)# ¢ and g (P, —{2n—2},i—2) # ¢, by lemma 2.2 (iii), (iv), we have
n-1<i-2<2n-4.Son+1<i<2n-2.
(<) If n+1<i<2n-2, then by lemma 2.2(ii),(iv) we have g (P.,,i—2)#¢ and

g.(P,—{2n-2},i-2)#¢. o
Theorem 2.5: Suppose g (P, —{2n},i) # ¢,

i)If g (P,,,i—2)#¢ and g (P, —{2n—2},i—2)= ¢, then
g.(P,—{2n},i)={{2n-1,2n -2} U X / X e g (P, ,,i - 2)}

(i) If g (P,,,i—2)=¢ and g (P, , —{2n—2},i—2)# ¢, then
g.(P; —{2n},i)={{2n-1,2n -2} U X / X e g (P,, - {2n-2},i - 2)}

(iii) If g (P;,,i—2)#¢ and g (P., —{2n—2},i—2)# ¢, then
g.(P.—{2n},i)={{2n-1,2n -2} UX /X e g (P, ,,i—2)}
u{{2n-1,2n-2} UX /X eg,(P;, - {2n-2},i-2)}
Proof:
(i) Since g (P.,,i-2)#¢ and g (P, —{2n—-2},i—2)=¢, by lemma 2.4 (i), i = n. Therefore,

g.(P: —{2n},i) = g (P, — {2n},n). Every geodetic set of P —{2n} with cardinality n must contain
the vertices labeled 2n-1, 2n-2. Therefore,

g.(P; —{2n},i)={{2n-1,2n -2} U X / X e g (P} ,,i - 2)}

(ii) Since g (P.,,i—2)=¢ and g (P, , —{2n —2},i—2)# ¢, by lemma 2.4 (i), i = 2n-1,

n

Therefore, g_(P. —{2n},i) = g.(P. —{2n},2n —1) Every geodetic set of P. —{2n} with cardinality 2n-1
must contain the vertices 2n-1, 2n-2.
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Therefore, g (P, —{2n},i) = {{Qn -1,2n - 2} UX/Xeg.(P,,,i- 2)}

(i) Denote the families {{2n —1,2n -2} U X / X e g,(P;,,i - 2){and
{{Qn -1,2n - 2} uX/Xeg (P, - {Qn - 2} ,1— 2)} Simply by Y; and Y, respectively. It is obvious
thatY, V'Y, c g (P, —{2n},1).

Nowlet Y e g (P —{2n},i), Suppose 2n —3 ¢ Y, then Y — {2n -1,2n-2}eg.(P.,,i-2).
ThereforeY € Y,. If 2n-3 €Y then Y - {{Qn -1,2n - 2} eg. (P, —{2n-2},i- 2)} thatis Y € Y},
Therefore, g_(P. —{2n},i)c Y, UY,. Hence,wehave g (P, —{2n},i)=Y, VY, .

Theorem 2.6: Forevery n > 4, ‘ge(P; —{2n},i)

g.(P,,i—2)+

g.(P, —{2n-2},i-2)
Proof:

Case (i): If g (P.,,i—2)=¢and g (P., —{2n—-2},i—2)=gthen by theorem 2.5 (i) we have
g.(P, —{2n},i) = {{Qn -1,2n - 2} UX/Xeg.(P,,,i- 2)}. In this case the number of geodetic sets of

Pn* - {Qn} with cardinality i is equal to the number of geodetic sets of P;_Q with cardinality i — 2.

Case (ii): If g (P,,,i—2)=¢and g (P, —{2n—2},i—2)#¢ then by theorem 2.5 (i) we have
g.(P. —{2n},i) = {{Qn -1,2n - 2} UX/Xeg(P,-{2n-2},i- 2)} In this case the number of
geodetic sets of P. —{2n} with cardinality i is equal to the number of geodetic sets of P. , — {2n - 2} with
cardinality i - 2.

Case (iii): If g (P;,,i—2)#¢and g (Pr, —{2n—2},i—2)# ¢ then by theorem 2.5 (iii), we have
g.(Py —{2n},)) =Y, UY,,

where

Y={{2n-1,2n-2UX /X e ge(P;_g,i—Q)}and Y,={{2n-12n-2}UX /X eg (P, —{2n—2},i—2)}.

Therefore, |Y1| =

ge(P;_Q,i—Z)‘ and v, = |Y,|=|g. (P, —{2n—2},i—2)‘ since for every X, e Y;and
X, €Y, wehave 2n -3 € X,but 2n -3 ¢ X, then Y, NY, =¢.

Therefore

g. (P, —{2n}, 1)

8. (P i— 2)‘ +

g.(P, —{2n-2},i-2).
3. GEODETIC SETS OF CENTIPEDE

In this section, we investigate geodetic sets of centipedes. We construct g (P.,i) from g_(P. ,,i—1) and

g (P —{2n},i—1). The families of these geodetic sets can be empty or otherwise. Thus we have four
combinations, whether these two families are empty or not.

Lemma3.1: If g (P, ,i—1)=gand g (P, —{2n},i—1)=¢ then g (P,i)=¢.
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Proof: Since g (P, ,,i—1)=¢and g (P, — {Qn} ,i—1)=¢, bylemma 2.2 (iii) (iv), we have i—1<n—1

or i—1>2n—1. Ineither case, we have g_(P.,i)=¢. ©

Lemma 3.2: Suppose g (P:,i)# ¢ then

(i) 8ePans 1)¢¢ and g (P:—{2n},i-1)=¢iff i=n

iy EPri=1)=¢ and g (P; —{2n},i-1) = ¢ iff i=2n

iy 8e Py i) # g and g (P —{2n},i-1)= ¢ iff n+1<i<2n-1

Proof: Suppose g (P.,7) # ¢ then
(i) (=) Since g (P, —{2n},i—1)=¢ , by lemma 2.2(iv), we have i—1<nor i-1>2n-1. |If
i—1>2n-1 then i>2n and by lemma 2.2 (iii), g (P.,i)= ¢, which is a contradiction. So, we have

i—1<n. On the other hand, since g (P, ,,i—1)#¢ wehave n—1<i—1<2n—2. Together we have

r11’

i—-1<n<i<2n-—1,therefore i=n.
(<) If i =n then by lemma 2.2(iii),(iv), we have g_(P. ,,i—1)# ¢ and g_(P. —{2n},i—1)=¢ .

(i) (=) Since g (P, ,,i—1)=¢ , by lemma 2.2(iii), we have i—1<n—1lor i-1>2n-2. |If
i—-l<n-1 then i<n and by lemma 2.2 (iii), g (P.,i)=¢, which is a contradiction. So, we have
i—1>2n—2. Onthe other hand, since g_(P. —{2n},i—1)# ¢ wehave n <i—1<2n —1. Together we

have have i =2n.
(<) If i=2n then by lemma 2.2(iii),(iv), we have g_(P. ;,i—1)=¢ and g (P, —{2n},i—1)# ¢.

(iiiy (=) Since g (P.,i
n+1<i<2n.
(<) If n+1<i<2n then by lemma 22(iii)(iv)), we have g/(P.,,i—-1)#¢ and

g (P.—{2n},i-1)#¢. o

-1)#¢ and g (P.—{2n},i—1)# ¢, by lemma 2.2(iii)(iv), we have

Theorem 3.3:
() 1f g (P, ,,i—1)#¢ and g (P, —{2n},i-1)=4¢ then g,(P.,i)={X{2n}/X eg,(P,,,i-1)

(i) 1f g, (P, ,,i—1)=¢ and g (P, —{2n},i—1)# ¢ then g, (P,,i)={X u{2n}/X e g, (P, - {2n},i-1)}
(i) If g (P ,,i—1)# ¢ and g_(P:. —{2n},i—1) # ¢ then
g (P! l)—{Xu{Qn}/Xege( . 1)}u{Xu{2n}/Xege(P;;—{Qn},i—n}

Proof:
(i) Since g (P.,,i-1)#¢ and g (P.—{2n},i—1)=¢ by theorem 3.2 (i), i=n. Therefore

g (P:,i)=g.(P.,n). Every geodetic sets of P with cardinality n must contain the vertex labeled 2n. Therefore
g.(PL,i)={Xu{2n}/X eg (P, ,,i-1)}.

(ii) Since g_(P. ,,i—1)=¢gand g (P, —{2n},i—1) # ¢ by theorem 3.2(ii),i = 2n

Therefore g_(P,1) = g (P.,2n). Every geodetic sets of P with cardinality 2n must contain the vertex labeled
2n.

Therefore g, (P;,2n) = {X U {2n}/X e g (P; —{2n},i—1)}.
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(iii) Denote the families {X U {2n}/X eg (P, ,,i—1)} and {Xu{2n}/X g, (P, -{2n},i-1)}
simply by Y; and Y respectively. Itis obviousthat Y, U'Y, < g.(P.,i). Nowlet Y € g_(P.,). So at least two
of the vertices labeled 2n, 2n-1or 2n, 2n-2arein Y. If 2n-1€ Y, then Y-{2n}eg (P ,,i—1), YeY,.

If 2n-1eY, then Y-{2n} e g (P; —{2n},i—1) thatis Y € Y,. Therefore g (P;,i)< Y, UY,. Hence
wehave g (P2,i)=Y,UY,. o

Example 3.4: Consider the centipede P, we use theorem 3.3 to construct P, , for 4 <i< 8.

i

since g.(P; —{8},3) = gand g.(P;,3) =
g.(P;,4)={X U {8}/ X cg.(P;,3)

f=

{
since g.(P,7)=¢ and g (P; —{8},7) = {{1 2,3,4,5,6 7}} by theorem 3.3 (ii)
g.(P;,8)={X U {8}/ X eg (P, -{8},7)} ={{1,2,3,4,5,6,7,8}}

2,
2,

4 6}} , by theorem 3.3(i),
{2.4,6,8}]
)

since g, (P5,4) =1{{1,2,4,6},{2,3,4,6},{2,4,5,6}} , and g, (P, —{8},4) = {{2,4,6,7}} by theorem

3.3 (iii) g,(P;,5)={X {8}/ X eg,(P;,4)}u{X {8}/ X eg, (P, -{8},4)
={{1,2,4,6,8},{2,3,4,6,8},{2,4,5,6,8},{2,4,6,7,8}}

Since g, (P3,5) {{1,2,3,4,6},{1,2,4,5,6},{2,3,4,5,6}} } and
g.(P; )={{1,2,4,6,7},{2,3,4,6,7},{2,4,5,6,7}} by theorem 3.(iii),
g.(P; { It }/Xege(Ps,s} {xu{8}/X eg.(P;-{8},5)
{{1 2,3,4,6,8},{1,2,4,5,6,8},{2,3,4,5,6,8},{1,2,4,6,7,8},{2,3,4,6,7,8},{2,4,5,6,7,8}

Since g, (P;,6) = {{1, 2,3, 4,5,6}}and

g.(P, —{8},6)=1{{1,2,3,4,6,7},{1,2,4,5,6,7},{2,3,4,5,6,7}} by theorem 3.3 (i)

g.(P;,7)={X {8}/ X eg.(P;,6)} U{X U8}/ X eg.(P;-{8},6)|
={{1,2,3,4,5,6,8},{1,2,3,4,6,7,8},{1,2,4,5,6,7,8},{2,3,4,5,6,7,8}} . o

Theorem 3.5: Forevery n > 3,

g.(Py, )=

g.(Pry,i—1)|+|g.(P; - {2n},i-1).

Proof:

Case (i) If g (P ,,i-1)#¢ and g (P.—{2n},i—1)=gthen by theorem 3.3 (i), we have
g.(P.,i)= {X u{2n}/Xeg(P,,,i- 1)}. In this case the number of geodetic sets of P.  with cardinality
i-1 is equal to the number of geodetic sets of Pn* with cardinality i.

Case (ii): If g (P.,,i—-1)=¢and g (P, —{2n},i—1)= @then by theorem 33 (ii), we have
g.(P,i)= {XU{Qn}/X eg. (P, —{2n}, 1—1)} In this case the number of geodetic sets of P with

cardinality i is equal to the number of geodetic sets of P — {Qn} with cardinality i-1.

Case (iii): If g (P, ,,i—1) # ¢ and g_(P, —{2n},i —1) # ¢ then by theorem 3.3 (iii),
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we have g_(P>,i)= A, U A, where A, = {X u{2n}/X eg.(P,,i 1)} and
A, ={Xu{2n}/X eg, (P, -{2n},i—1)| . Therefore |A,|=
|45 =
2n—-1¢ X, . Therefore A, N A, =¢@. Hence

g.(P;,,i—1) and
ge(P;—{Qn},i—l)‘. Since for every X, €A, and X, e A,, we have 2n—-1e X, but

g. (P}, 1) =|g.(Pr i - 1) +|g.(P; - {2n},i-1).

Using theorem 2.6 and 3.5 we obtain the

g. (P, i)‘ and ‘ge(P; —{2n}, i)‘ in Table 1 for 2 <n < 9. There are
interesting relationships between these numbers in Table 1.

Table 1
9. (P, )| and |g, (P —{2n}, )|
j 2(3|4|5[6| 7|89 |10|11|12| 13 | 14 |15|16 |17 |18
P, 1121
Pr—{6} |o|1]2|1
P 011(3(3]1
P,—{8 |o|of1|3]3|1
P, 0(0(1]4]|6]|4 |1
P'—{10} |o|o|o|1|4|6 |4 |1
P 0/0(0[1]5[10|10|5 |1
P/ —{12} |o|o|o|o|1|5[10]|10]|5 |1
P 0|o|of0|1]|6|15]20|15|6 |1
P'—{14} |o|o|o|0|0| 1|6 |15|20(15| 6 | 1
P’ 0jo|of0]0| 1|7 |21|35(35 21| 7 | 1
P'—{16} |o|ofo|0|0|0 |1 |7 |21(35|35| 21| 7 |1
P’ 0o|o|ofoj|0|O0|1|8|28|56|70[56 |28]|8]1
Py —{18} |o|o|o|0|0|0 |0 |1 |8 [28|56| 70 |5 |28|8 |1
P 0/0|/0[0|0| 0|0 | 1|9 |36[8|126|126(84|36|9 |1

4. GEODETIC POLYNOMIAL OF CENTIPEDES AND P; - {Zn}

In this section, we investigate the geodetic polynomial of centipedes and P —{Qn}. Let g (P.

n-12

i) and
g (P, - {Qn} ,1) be the family of geodetic sets of centipedes and P — {Qn} with cardinality i. Then the geodetic
polynomials are defined as follows.

2n-1 )
g(P;, x) = Z g(Py —{2n},x)= 3’ |g.(B:-{2n} i}’
Where |g, (Pn*, |)| be the number of geodetic sets of centipedes with cardinality i and |g, (Pn* —{Zn} , |)| be the

number of geodetic sets of P, —{2n} with cardinality i.
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Theorem 4.1:
(i) Forevery n>3, g(P;,x)=x[g(P,_,x)+ g(P, —{2n}, x)] with the initial values

9Py, x)=x*+2x" + x* and g(P; —{6},x) = x° +2x" + x°.

(i) Forevery n>4, g(P; —{2n},x)=x’[g(P,,,x)+g(P,_, —{2n—2},x)] with the initial values
9Py, x)=x*+2x" + x* and g(P; —{6},x) = x° +2x" + x° .

(iiiy Forevery n>2, g(P,x)=x"(1+ x)"

(iv) Forevery n>3, (P, —{2n},x)=x"(1+x)""

Proof:
(i) By theorem 3.5, ‘ge(Pn*,i)

g.(Pry, i~ 1) +[g. (P, —{2n},i -1

2n ) 2n ) 2n )
2 [g Bk = X g (Bl + 3 [ (Bl {2n} i1

2n

2n
g(B;, x) = :{z g (P i1+ Y ge(P:—{zn},i-l)xi-l}

= x[g(P,_, %)+ g(B, —{2n}, x)]
(i) By theorem 2.6,

ge (P;—Q’ l - 2)‘ + ge (P;—l - {2n - 2} ’ I’ - 2)‘

g.(P, —{2n},1)

2n-1 ) 2n-1 ) 2n-1 '

2 [geBi-{2n} il = D |e (Bl -2 + 3 [g. (B, {2n-2} i-2)
2n-1 2n-1

g(B; —{2n},x) = x? {Z g (P, i-2)x™ + ) ge(Pg‘l—{Qn—Q},i—Q)‘xi‘z}

= x’[g(P,, %)+ g(B, —{2n-2},x)] .

(iiii) By induction on n. The result is true for n=2, because g(P;,x) = x*(1+ x)° = x* + 2x° + x*. Assume that
the result is true for all natural numbers less than n. we prove the result for n. We have
g(P,x)=x""(1+x)".

Now g(F,,x) = X[g(P,_,, x) + g(B; —{2n},x)]
= x[x" M1+ X)X 1+ x)]
=x"(1+x)"" + X1+ x)"!
= x"(1+ x)""[1+ x]

=x"[1+ x]".

(iv) By induction on n. The result is true for n=3, because g(P; —{6},x) = x°(1+ x)* = x* + 2x* + x°.
Assume that the result is true for all natural numbers less than n. We prove the result for n, we have
9P, —{2n-2},x)=x""(1+ x)"°

Now g(P; —{2n},x) = x*[g(P,_,, x)+ g(P,_, — {2n - 2}, x)]

= XX 2L+ %)% + X1+ X))
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= x"(1+ %) + X" (1 + x)"?]
=x"(1+x)" H+x]
=x"[1+x]"". @

Theorem 4.2: Suppose that n>2. Then for every n<i<2n,

_(n-1
i-n
Proof: We shall prove both equalities together by induction on n. We have the result for n =2 from Table 1. Now

suppose the results are true for all natural numbers less than n, and prove them for n. By theorem 2.6 and induction
hypothesis we have

n
g.(P.,i)=|. and for every
i-n

n<i<2n-1,

g.(P, —{2n},i)

g.(P, —{2n},1)=

g.(P,,i—2)+|g.(P;, —{2n-2},i-2)
(n—ZJ ( n—ZJ

- + -

I—n iI—-n-1

n-1

i)

Now by theorem 3.5, we have

ge (P:;’ )

g.(P,,i—1)+[g.(P; —{2n},i—1)
[n—l} ( n—1J

= | + |
1—n iI-n-1

(n

(i2)

By theorem 4.2 we can obtain many properties of

Therefore, we have the result.

We state some of these

and

g.(Py,1) g.(P; —{2n},i) .

properties in the following corollary.

Corollary 4.3: The following properties hold for coefficients of g(P,, x)and g(P, — {Qn} ,X).

M |g.(B,2n)=1, |g.(P;,n)|=1 forevery n>2
() |g.(P;,2n-1)=n, |g.(P;,n+1)=n forevery n > 2
(iii) ge(P;,Qn—z)\=$, g.(Pl,n+2)= M for every 7 > 2
(iv) ge(P;,Qn—S)‘=n(n_16)(n_2), ge(P;,n+3)\=n(n_16)(n_2) for every n > 2
v |g(B;—{2n},2n-1)=1, |g.(B; - {2n},n)=1,
V)  |g.(P;-{2n},2n-2)=n-1, |g(P;—{2n},n+1)=n-1,
(vii) (. —{2n},2n-3)= W
g.(P, —{2n},n+2)= W
(i) |g.(P; —{2n},2n - 4)|= (n_l)(ngQ)(n_S),
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. _(m-1)(n-2)(n-3)
g.(P; - {2n},n +3)=

6
2n
(ix) If S, =Y 19.(P,, j)‘ then for every n > 3, S, =2(S, ;) with the initial value S, = 4.
j=n
2n-1
® If S, =% 19.(P; —{Zn},i)‘ then for every n > 4, S, =2(S, ;)

i=n

Proof: The properties (i) to (viii) hold, by theorem 4.2

) 2n n
(ix) S, :J;n[i _ n}

= Z:nc;i =2"=2x2"t = 2S, ..

i=0
2n-1

x) If S, =Y

i=n

S":é[ifrj
[”(‘)1}+(”11}+...+(::3

@+1)" =21 =2x2"? =25 .

9. (P —{Zn},i)‘ then for every n >4, S,=2(S,_1)
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