## NOTES ON INTUITIONISTIC FUZZY SUBHEMIRINGS OF A HEMIRING

# <sup>1</sup>N. ANITHA\* & <sup>2</sup>K. ARJUNAN

<sup>1</sup>Department of Mathematics, Karpagam University, Coimbatore -641021, Tamilnadu, India <sup>2</sup>Department of Mathematics, The H. H. Rajah's college, Puthukottai Tamilnadu, India

(Received on: 24-04-12; Accepted on: 14-05-12)

# **ABSTRACT**

In this paper, we made an attempt to study the algebraic nature of an intuitionistic fuzzy subhemirings of a hemiring.

**2000** AMS Subject classification: 03F55, 06D72, 08A72.

**Keywords:** Fuzzy set, fuzzy subhemiring, anti-fuzzy subhemiring, intuitionistic fuzzy set, intuitionistic fuzzy subhemiring, and pseudo intuitionistic fuzzy coset.

#### INTRODUCTION:

There are many concepts of universal algebras generalizing an associative ring (R; +; .). Some of them in particular, nearrings and several kinds of semirings have been proven very useful. Semirings (called also halfrings) are algebras (R; +; .) share the same properties as a ring except that (R; +) is assumed to be a semigroup rather than a commutative group. Semirings appear in a natural manner in some applications to the theory of automata and formal languages. An algebra (R; +, .) is said to be a semiring if (R; +) and (R; .) are semigroups satisfying a. (b + c) = a. b + a. c and (b + c) = a. b + a. c and (b + c) = a. a + c. a for all a, b and c in a. A semiring a is said to be additively commutative if a + b = b + a for all a, a + c and a + c and

### 1. PRELIMINARIES

- **1.1 Definition:** Let X be a non-empty set. A fuzzy subset A of X is a function A:  $X \rightarrow [0, 1]$ .
- **1.2 Definition:** Let R be a hemiring. A fuzzy subset A of R is said to be a fuzzy subhemiring (FSHR) of R if it satisfies the following conditions:
- (i)  $A(x + y) \ge \min\{A(x), A(y)\},\$
- (ii)  $A(xy) \ge \min\{A(x), A(y)\}$ , for all x and y in R.
- **1.3 Definition:** Let R be a hemiring. A fuzzy subset A of R is said to be an anti-fuzzy subhemiring (AFSHR) of R if it satisfies the following conditions:
- (i)  $A(x + y) \le max\{ A(x), A(y) \},$
- (ii)  $A(xy) \le max\{A(x), A(y)\}$ , for all x and y in R.
- **1.4 Definition:** An intuitionistic fuzzy subset (IFS) A in X is defined as an object of the form  $A = \{ \langle x, \mu_A(x), \nu_A(x) \rangle / x \in X \}$ , where  $\mu_A: X \to [0,1]$  and  $\nu_A: X \to [0,1]$  define the degree of membership and the degree of non-membership of the element  $x \in X$  respectively and for every  $x \in X$  satisfying  $0 \le \mu_A(x) + \nu_A(x) \le 1$ .
- **1.5 Definition:** Let R be a hemiring. An intuitionistic fuzzy subset A of R is said to be an intuitionistic fuzzy subhemiring (IFSHR) of R if it satisfies the following conditions:
- (i)  $\mu_A(x + y) \ge \min{\{\mu_A(x), \mu_A(y)\}},$
- (ii)  $\mu_A(xy) \ge \min\{\mu_A(x), \mu_A(y)\},\$
- (iii)  $v_A(x + y) \le \max\{v_A(x), v_A(y)\},\$
- (iv)  $v_A(xy) \le \max\{v_A(x), v_A(y)\}\$ , for all x and y in R.

# <sup>1</sup>N. ANITHA\* & <sup>2</sup>K. ARJUNAN/ NOTES ON INTUITIONISTIC FUZZY SUBHEMIRINGS OF A HEMIRING/ IJMA- 3(5), May-2012, 1850-1853

- **1.6 Definition:** Let (R, +, .) be a hemiring. An intuitionistic fuzzy subhemiring A of R is said to be an intuitionistic fuzzy normal subhemiring (IFNSHR) of R if it satisfies the following conditions:
- (i)  $\mu_A(xy) = \mu_A(yx)$ ,
- (ii)  $v_A(xy) = v_A(yx)$ , for all x and y in R.
- **1.5 Definition:** If  $(R, +, \cdot)$  and  $(R^1, +, \cdot)$  are any two hemirings, then the function  $f: R \to R^1$  is called a **homomorphism** if f(x+y) = f(x) + f(y) and f(xy) = f(x) f(y), for all x and y in R.
- **1.6 Definition:** If (R, +, .) and  $(R^1, +, .)$  are any two hemirings, then the function  $f: R \to R^{-1}$  is called an **anti-homomorphism** if f(x+y) = f(y) + f(x) and f(xy) = f(y) + f(x), for all x and y in R.
- **1.7 Definition:** Let (R, +, .) and  $(R^1, +, .)$  be any two hemirings. Then the function  $f: R \to R^1$  be a hemiring homomorphism. If f is one-to-one and onto, then f is called a **hemiring isomorphism**.
- **1.8 Definition:** Let (R, +, .) and  $(R^1, +, .)$  be any two hemirings. Then the function  $f: R \to R^1$  be a hemiring antihomomorphism. If f is one-to-one and onto, then f is called a **hemiring anti-isomorphism**.
- **1.9 Definition:** Let R and R<sup>1</sup> be any two hemirings. Let f:  $R \to R^1$  be any function and let A be an intuitionistic fuzzy subhemiring in R, V be an intuitionistic fuzzy subhemiring in R, defined by  $\mu_V(y) = \sup_{x \in f^{-1}(y)} \mu_A(x)$  and  $\nu_V(y) = \sup_{x \in F^{-1}(y)} \mu_A(x)$
- $\inf_{x \in f^{-1}(y)} v_A(x)$ , for all x in R and y in R<sup>1</sup>. Then A is called a preimage of V under f and is denoted by  $f^{-1}(V)$ .
- **1.10 Definition:** Let A be an intuitionistic fuzzy subhemiring of a hemiring (R, +; ) and a in R. Then the pseudo intuitionistic fuzzy coset  $(aA)^p$  is defined by  $((a\mu_A)^p)(x) = p(a)\mu_A(x)$  and  $((a\nu_A)^p)(x) = p(a)\nu_A(x)$ , for every x in R and for some p in P.

### 2. INTUITIONISTIC FUZZY SUBHEMIRINGS OF A HEMIRING

**2.1 Theorem:** If A is an intuitionistic fuzzy subhemiring of a hemiring (R, +, .), then A is an intuitionistic fuzzy subhemiring of R.

**Proof:** Let A be an intuitionistic fuzzy subhemiring of a hemiring R.Consider  $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle\}$ , for all x in R, we take  $\Box A = B = \{\langle x, \mu_B(x), \nu_B(x) \rangle\}$ , where  $\mu_B(x) = \mu_A(x)$ ,  $\nu_B(x) = 1 - \mu_A(x)$ . Clearly,  $\mu_B(x+y) \geq \min \ \{\mu_B(x), \mu_B(y)\}$ , for all x and y in R and  $\mu_B(x) \geq \min \ \{\mu_B(x), \mu_B(y)\}$ , for all x and y in R. Since A is an intuitionistic fuzzy subhemiring of R, we have  $\mu_A(x+y) \geq \min \ \{\mu_A(x), \mu_A(y)\}$ , for all x and y in R, which implies that  $1 - \nu_B(x+y) \geq \min \ \{(1 - \nu_B(x)), (1 - \nu_B(y))\}$ , which implies that  $\nu_B(x+y) \leq 1 - \min \ \{(1 - \nu_B(x)), (1 - \nu_B(y))\} = \max \ \{\nu_B(x), \nu_B(y)\}$ . Therefore,  $\nu_B(x+y) \leq \max \ \{\nu_B(x), \nu_B(y)\}$ , for all x and y in R. And  $\mu_A(xy) \geq \min \ \{\mu_A(x), \mu_A(y)\}$ , for all x and y in R, which implies that  $1 - \nu_B(x) \geq \min \ (1 - \nu_B(x)), \ (-\nu_B(y))\}$  which implies that  $\nu_B(x) \leq 1 - \min \{(1 - \nu_B(x)), (1 - \nu_B(y))\} = \max \{\nu_B(x), \nu_B(y)\} = \max \{\nu_B(x), \nu_B(y)\}$ . Therefore,  $\nu_B(xy) \leq \max \ \{\nu_B(x), \nu_B(y)\}$ , for all x and y in R. Hence  $y \in A$  is an intuitionistic fuzzy subhemiring of a hemiring R.

**Remark:** The converse of the above theorem is not true. It is shown by the following example:

Consider the hemiring  $Z_5 = \{0, 1, 2, 3, 4\}$  with addition modulo 5 and multiplication modulo 5 operations. Then  $A = \{\langle 0, 0.7, 0.2 \rangle, \langle 1, 0.5, 0.1 \rangle, \langle 2, 0.5, 0.4 \rangle, \langle 3, 0.5, 0.1 \rangle, \langle 4, 0.5, 0.4 \rangle\}$  is not an intuitionistic fuzzy subhemiring of  $Z_5$ , but  $A = \{\langle 0, 0.7, 0.3 \rangle, \langle 1, 0.5, 0.5 \rangle, \langle 2, 0.5, 0.5 \rangle, \langle 3, 0.5, 0.5 \rangle, \langle 4, 0.5, 0.5 \rangle\}$  is an intuitionistic fuzzy subhemiring of  $Z_5$ .

**2.2 Theorem:** If A is an intuitionistic fuzzy subhemiring of a hemiring (R, +, .), then  $\Diamond A$  is an intuitionistic fuzzy subhemiring of R.

**Proof:** Let A be an intuitionistic fuzzy subhemiring of a hemiring R. That is  $A = \{\langle x, \mu_A(x), \nu_A(x) \rangle\}$ , for all x in R. Let  $\Diamond A = B = \{\langle x, \mu_B(x), \nu_B(x) \rangle\}$ , where  $\mu_B(x) = 1 - \nu_A(x)$ ,  $\nu_B(x) = \nu_A(x)$ . Clearly,  $\nu_B(x+y) \leq \max\{\nu_B(x), \nu_B(y)\}$ , for all x and y in R and  $\nu_B(xy) \leq \max\{\nu_B(x), \nu_B(y)\}$ , for all x and y in R. Since A is an intuitionistic fuzzy subhemiring of R, we have  $\nu_A(x+y) \leq \max\{\nu_A(x), \nu_A(y)\}$ , for all x and y in R, which implies that  $1 - \mu_B(x+y) \leq \max\{(1 - \mu_B(x)), (1 - \mu_B(y))\}$  which implies that  $\mu_B(x+y) \geq 1 - \max\{(1 - \mu_B(x)), (1 - \mu_B(y))\}$  min  $\{\mu_B(x), \mu_B(y)\}$ , for all x and y in R. And  $\nu_A(xy) \leq \max\{(\nu_A(x), \nu_A(y)\}\}$ , for all x and y in R, which implies that  $1 - \mu_B(xy) \leq \max\{(1 - \mu_B(x)), (1 - \mu_B(y))\}$ , which implies that  $\mu_B(xy) \geq 1 - \max\{(1 - \mu_B(x)), (1 - \mu_B(y))\}$  min  $\{\mu_B(x), \mu_B(y)\}$ , for all x and y in R. Hence x is an intuitionistic fuzzy subhemiring of a hemiring R.

# <sup>1</sup>N. ANITHA\* & <sup>2</sup>K. ARJUNAN/ NOTES ON INTUITIONISTIC FUZZY SUBHEMIRINGS OF A HEMIRING/ IJMA- 3(5), May-2012, 1850-1853

**Remark:** The converse of the above theorem is not true. It is shown by the following example:

Consider the hemiring  $Z_5 = \{0, 1, 2, 3, 4\}$  with addition modulo 5 and multiplication modulo 5 operations. Then  $A = \{\langle 0, 0.5, 0.1 \rangle, \langle 1, 0.6, 0.4 \rangle, \langle 2, 0.5, 0.4 \rangle, \langle 3, 0.6, 0.4 \rangle, \langle 4, 0.5, 0.4 \rangle\}$  is not an intuitionistic fuzzy subhemiring of  $Z_5$ , but  $\Diamond A = \{\langle 0, 0.9, 0.1 \rangle, \langle 1, 0.6, 0.4 \rangle, \langle 2, 0.6, 0.4 \rangle, \langle 3, 0.6, 0.4 \rangle, \langle 4, 0.6, 0.4 \rangle\}$  is an intuitionistic fuzzy subhemiring of  $Z_5$ .

**2.3 Theorem:** Let (R, +, .) be a hemiring and A be a non empty subset of R. Then A is a subhemiring of R if and only if  $B = \langle \chi_A, \overline{\chi_A} \rangle$  is an intuitionistic fuzzy subhemiring of R, where  $\chi_A$  is the characteristic function.

**Proof:** Let (R, +, .) be a hemiring and A be a non empty subset of R. First let A be a subhemiring of R. Take x and y in R.

Case (i): If x and y in A, then x+y, xy in A, since A is a subhemiring of R,

$$\begin{split} & \chi_A\left(\mathbf{x}\right) = \chi_A\left(\mathbf{y}\right) = \chi_A\left(\mathbf{x}+\mathbf{y}\right) = \chi_A\left(\mathbf{x}\mathbf{y}\right) = 1 \text{ and } \chi_A\left(\mathbf{x}\right) = \chi_A\left(\mathbf{y}\right) = \chi_A\left(\mathbf{x}+\mathbf{y}\right) = \chi_A\left(\mathbf{x}\mathbf{y}\right) = 0. \text{ So, } \chi_A\left(\mathbf{x}+\mathbf{y}\right) \geq \min \left\{\frac{\chi_A}{\chi_A}\left(\mathbf{y}\right)\right\}, \text{ for all } \mathbf{x} \text{ and } \mathbf{y} \text{ in } \mathbf{R}, \frac{\chi_A}{\chi_A}\left(\mathbf{x}\mathbf{y}\right) \geq \min \left\{\frac{\chi_A}{\chi_A}\left(\mathbf{x}\right), \frac{\chi_A}{\chi_A}\left(\mathbf{y}\right)\right\}, \text{ for all } \mathbf{x} \text{ and } \mathbf{y} \text{ in } \mathbf{R}, \frac{\chi_A}{\chi_A}\left(\mathbf{x}\mathbf{y}\right) \leq \max \left\{\frac{\chi_A}{\chi_A}\left(\mathbf{x}\right), \frac{\chi_A}{\chi_A}\left(\mathbf{y}\right)\right\}, \text{ for all } \mathbf{x} \text{ and } \mathbf{y} \text{ in } \mathbf{R}. \end{split}$$

Case (ii): If x in A, y not in A ( or x not in A, y in A ), then x+y, xy may or may not be in A,  $\chi_A(x) = 1$ ,  $\chi_A(y) = 0$  (or  $\chi_A(x) = 0$ ,  $\chi_A(y) = 1$ ),  $\chi_A(x+y) = \chi_A(xy) = 1$  (or 0) and  $\chi_A(x) = 0$ ,  $\chi_A(y) = 1$  (or  $\chi_A(y) = 1$ ),  $\chi_A(y) = 0$  (or 1). Clearly  $\chi_A(x+y) \ge \min\{\chi_A(x), \chi_A(y)\}$ , for all x and y in R,  $\chi_A(xy) \ge \min\{\chi_A(x), \chi_A(y)\}$ , for all x and y in R,  $\chi_A(xy) \le \max\{\chi_A(x), \chi_A(y)\}$ , for all x and y in R, and  $\chi_A(x) \le \max\{\chi_A(x), \chi_A(y)\}$ , for all x and y in R.

Case (iii): If x and y not in A, then x+y, xy may or may not be in A,  $\chi_A(x) = \chi_A(y) = 0$ ,  $\chi_A(x+y) = \chi_A(xy) = 1$  or 0 and  $\overline{\chi_A}(x) = \overline{\chi_A}(y) = 1$ ,  $\overline{\chi_A}(x+y) = \overline{\chi_A}(xy) = 0$  or 1. Clearly  $\chi_A(x+y) \ge \min \{ \chi_A(x), \chi_A(y) \}$ , for all x and y in R,  $\chi_A(x) \ge \min \{ \chi_A(x), \chi_A(y) \}$ , for all x and y in R.  $\overline{\chi_A}(x) \ge \max \{ \overline{\chi_A}(x), \overline{\chi_A}(y) \}$ , for all x and y in R.  $\overline{\chi_A}(x) \ge \max \{ \overline{\chi_A}(x), \overline{\chi_A}(y) \}$ , for all x and y in R. So in all the three cases, we have B is an intuitionistic fuzzy subhemiring of a hemiring R.

Conversely, let x and y in A, since A is a non empty subset of R, so,  $\chi_A(x) = \chi_A(y) = 1$ ,  $\overline{\chi_A}(x) = \overline{\chi_A}(y) = 0$ . Since  $B = \langle \chi_A, \overline{\chi_A} \rangle$  is an intuitionistic fuzzy subhemiring of R, we have  $\chi_A(x+y) \ge \min\{\chi_A(x), \chi_A(y)\} = \min\{1, 1\}$   $= 1, \chi_A(xy) \ge \min\{\chi_A(x), \chi_A(y)\} = \min\{1, 1\} = 1$ . Therefore  $\chi_A(x+y) = \chi_A(xy) = 1$ . And,  $\overline{\chi_A}(x+y) \le \max\{\overline{\chi_A}(x), \overline{\chi_A}(y)\} = \max\{0, 0\} = 0$ . Therefore  $\overline{\chi_A}(x+y) = 0$ . Hence  $\chi_A(x+y) = 0$ .

## In the following Theorem $\circ$ is the composition operation of functions:

**2.4 Theorem:** Let A be an intuitionistic fuzzy subhemiring of a hemiring H and f is an isomorphism from a hemiring R onto H. Then  $A \circ f$  is an intuitionistic fuzzy subhemiring of R.

**Proof:** Let x and y in R and A be an intuitionistic fuzzy subhemiring of a hemiring H. Then we have,  $(\mu_A \circ f)(x+y) = \mu_A(f(x+y)) = \mu_A(f(x)+f(y))$ , as f is an isomorphism  $\geq \min$  {  $\mu_A(f(x))$ ,  $\mu_A(f(y))$ },  $\mu_A(f(y))$ },  $\mu_A(f(x))$ ,  $\mu_A(f(y))$ }, which implies that  $(\mu_A \circ f)(x+y) \geq \min$  {  $(\mu_A \circ f)(x)$ ,  $(\mu_A \circ f)(y)$ }. And,  $(\mu_A \circ f)(xy) = \mu_A(f(x)f(y)) = \mu_A(f(x)f(y))$ , as f is an isomorphism  $\geq \min$  { $\mu_A(f(x))$ ,  $\mu_A(f(y))$ } =  $\min$  { $(\mu_A \circ f)(x)$ ,  $(\mu_A \circ f)(y)$ }, which implies that  $(\mu_A \circ f)(xy) \geq \min$  { $(\mu_A \circ f)(x)$ ,  $(\mu_A \circ f)(y)$ }. Then we have,  $(\nu_A \circ f)(x+y) = \nu_A(f(x+y)) = \nu_A(f(x)+f(y))$ , as f is an isomorphism  $\leq \max$  { $(\nu_A \circ f)(x)$ ,  $(\nu_A \circ f)(y)$ }. And  $(\nu_A \circ f)(x)$ ,  $(\nu_A \circ f)(y)$ }, which implies that  $(\nu_A \circ f)(x)$ ,  $(\nu_A \circ f)(x)$ ,  $(\nu_A \circ f)(y)$ }, which implies that  $(\nu_A \circ f)(xy) \leq \max$  { $(\nu_A \circ f)(x)$ ,  $(\nu_A \circ f)(y)$ }, which implies that  $(\nu_A \circ f)(xy) \leq \max$  { $(\nu_A \circ f)(x)$ ,  $(\nu_A \circ f)(y)$ }, which implies that  $(\nu_A \circ f)(xy) \leq \max$  { $(\nu_A \circ f)(x)$ ,  $(\nu_A \circ f)(y)$ }. Therefore (A \circ f) is an intuitionistic fuzzy subhemiring of a hemiring R.

**2.5 Theorem:** Let A be an intuitionistic fuzzy subhemiring of a hemiring H and f is an anti-isomorphism from a hemiring R onto H. Then  $A \circ f$  is an intuitionistic fuzzy subhemiring of R.

# <sup>1</sup>N. ANITHA\* & <sup>2</sup>K. ARJUNAN/ NOTES ON INTUITIONISTIC FUZZY SUBHEMIRINGS OF A HEMIRING/ IJMA- 3(5), May-2012, 1850-1853

**Proof:** Let x and y in R and A be an intuitionistic fuzzy subhemiring of a hemiring H. Then we have,  $(\mu_A \circ f)(x + y) = \mu_A(f(x+y)) = \mu_A(f(y) + f(x))$ , as f is an anti-isomorphism  $\geq \min \{\mu_A(f(x)), \mu_A(f(y))\} = \min \{(\mu_A \circ f)(x), (\mu_A \circ f)(y)\}$ , which implies that  $(\mu_A \circ f)(x+y) \geq \min \{(\mu_A \circ f)(x), (\mu_A \circ f)(y)\}$ . And,  $(\mu_A \circ f)(xy) = \mu_A(f(xy)) = \mu_A(f(y)f(x))$ , as f is an anti-isomorphism  $\geq \min \{\mu_A(f(x)), \mu_A(f(y))\} = \min \{(\mu_A \circ f)(x), (\mu_A \circ f)(y)\}$ , which implies that  $(\mu_A \circ f)(xy) \geq \min \{(\mu_A \circ f)(x), (\mu_A \circ f)(y)\}$ . Then we have,  $(\nu_A \circ f)(x+y) = \nu_A(f(x+y)) = \nu_A(f(y) + f(x))$ , as f is an anti-isomorphism  $\leq \max \{\nu_A(f(x)), \nu_A(f(y))\} = \max \{(\nu_A \circ f)(x), (\nu_A \circ f)(y)\}$ , which implies that  $(\nu_A \circ f)(x), (\nu_A \circ f)(y)\}$ , which implies that  $(\nu_A \circ f)(x), (\nu_A \circ f)(x), (\nu_A \circ f)(x)\}$ , which implies that  $(\nu_A \circ f)(x), (\nu_A \circ f)(x)\} = \max \{(\nu_A \circ$ 

**2.6 Theorem:** Let A be an intuitionistic fuzzy subhemiring of a hemiring (R, +, .), then the pseudo intuitionistic fuzzy coset  $(aA)^p$  is an intuitionistic fuzzy subhemiring of a hemiring R, for every a in R.

**Proof:** Let A be an intuitionistic fuzzy subhemiring of a hemiring R.For every x and y in R, we have,  $((aμ_A)^p)(x + y) = p(a)μ_A(x + y) ≥ p(a) min {(μ_A(x), μ_A(y)} = min {p(a)μ_A(x), p(a)μ_A(y)} = min {((aμ_A)^p)(x), ((aμ_A)^p)(y)}. Therefore, <math>((aμ_A)^p)(x + y) ≥ min {((aμ_A)^p)(x), ((aμ_A)^p)(y)}. Now, ((aμ_A)^p)(xy) = p(a)μ_A(xy) ≥ p(a)min {μ_A(x), μ_A(y)} = min {p(a)μ_A(x), p(a)μ_A(y) = min {((aμ_A)^p)(x), ((aμ_A)^p)(y)}. Therefore, ((aμ_A)^p)(xy) ≥ min {((aμ_A)^p)(x), ((aμ_A)^p)(y)}. For every x and y in R, we have, <math>((aν_A)^p)(x + y) = p(a)ν_A(x + y) ≤ p(a) max {(ν_A(x), ν_A(y)} = max {p(a)ν_A(x), p(a)ν_A(y)} = max {((aν_A)^p)(x), ((aν_A)^p)(y)}. Now, ((aν_A)^p)(xy) = max {((aν_A)^p)(x), ((aν_A)^p)(x), ((aν_A)^p)(x)}. Therefore, ((aν_A)^p)(x), ((aν_A)^p)(x), ((aν_A)^p)(x), ((aν_A)^p)(x)}. Therefore, ((aν_A)^p)(x)}. Therefore$ 

#### REFERENCES

- [1] Akram. M and K.H.Dar, 2007. On Anti Fuzzy Left h- ideals in Hemirings, International Mathematical Forum, 2(46): 2295 2304.
- [2] Akram. M and K.H. Dar, 2007. Fuzzy Left h- ideals in Hemirings with respect to a s norm, International Journal of Computational and Applied Mathematics, 2: 7-14.
- [3] Anthony. J.M. and H Sherwood, 1979. Fuzzy groups Redefined, Journal of mathematical analysis and applications, 69:124-130.
- [4] Atanassov.K.T., 1986. Intuitionistic fuzzy sets, fuzzy sets and systems, 20(1): 87-96.
- [5] Atanassov. K.T.,1999. Intuitionistic fuzzy sets theory and applications, Physica-Verlag, A Springer-Verlag company, Bulgaria.
- [6] Chakrabarty, K., Biswas and R., Nanda, 1997. A note on union and intersection of Intuitionistic fuzzy sets, Notes on Intuitionistic Fuzzy Sets, 3(4).
- [7] De, K., R.Biswas and A.R. Roy, 1997. On intuitionistic fuzzy sets, Notes on Intuitionistic Fuzzy Sets, 3(4).
- [8] Dixit.V.N., Rajesh Kumar and Naseem Ajmal, 1990. Level subgroups and union of fuzzy subgroups, Fuzzy Sets and Systems, 37: 359-371.
- [9] JIANMING ZHAN, 2005 .On Properties of Fuzzy Left h Ideals in Hemiring With t Norms, International Journal of Mathematical Sciences, 19: 3127 3144.
- [10] Palaniappan. N & K. Arjunan. 2007. Some properties of intuitionistic fuzzy subgroups, Acta Ciencia Indica, Vol. XXXIII (2): 321-328.
- [11] Prince Williams. D.R., 2007. S Fuzzy Left h ideal of Hemirings, International Journal of Computational and Mathematical Sciences, 1:2.
- [12] Sivaramakrishna das.P, 1981.Fuzzy groups and level subgroups, Journal of Mathematical Analysis and Applications, 84: 264-269.
- [13] Vasantha kandasamy. W. B, 2003. Smarandache fuzzy algebra, American research press, Rehoboth.
- [14] WIESLAW DUDEK, 2006. Intuitionistic fuzzy h- ideals of hemirings, Proc. of the 5 th WSEAS Int. Conf. on Non-Linear Analysis, Non-Linear Systems and Chaos, Bucharest, Romania, 16 18.
- [15] Zadeh. L. A, Fuzzy sets, 1965. Information and control, 8: 338-353.