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ABSTRACT 
In this paper, our aim is to extend the classical entire method of summation involving complex entire sequences to 
entire method of summation consisting of bounded linear operators involving Banach space valued entire sequences. 
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1. INTRODUCTION AND PRELIMENARIES 
 
The concept of entire method of summation has been introduced by Brown [1] where he obtained a necessary and 
sufficient condition that an infinite matrix ,( )n kA a=  be an entire method. Later on Fricke and Powell [2] also proved 

the necessity and sufficiency of a different condition which ensures that the matrix A  is an entire method.  
 

Let 0)( k kx x ∞
== be a sequence of complex numbers. The sequence x  is entire ( )x ξ∈  provided 

0
| | k

k
k

x q
∞

=

< ∞∑  for 

every positive integer q. The infinite matrix ,( )n kA a=  is an entire method provided the A− transform of x ξ∈  

(written ( )A x ) is an entire sequence, i.e., the sequence 0)( k ky y ξ∞
== ∈  where ,
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Let X and Y be Banach spaces over the field C of complex numbers and ( , )B X Y  be the set of all bounded linear 
operators from X into Y with usual operator norm || || sup{|| ||: ,|| || 1}T Tx x X x= ∈ = .  
 
Let ( ),  ( , 0,1, 2,3,...)nkA A n k= = be an infinite matrix of linear operators nkA  on a Banach space X into the 

Banach space Y. Let 0( )k kx x ∞
== , kx X∈ , 0k ≥  be a sequence. Then for the classes of X−valued sequences, E(X) 

and Y−valued sequences F(Y), we define the matrix class (E(X), F(Y)) by saying that ( ) ( ( ), ( ))nkA A E X F Y= ∈ if 

for every ( ) ( )kx x E X= ∈ , 
0

( )n n nk k
k

y A x A x
∞

=

= =∑  converges in the norm of Y for each n, and the sequence 

( ) ( ( ))n ny y A x= =  belongs to F(Y). In such a case y Ax=  is called the A transform of x . We shall need the 
following form of Banach Steinhaus theorem: 
 
Theorem 1.1: Let X be a Banach space. Y a normed space and let ( )i i IA ∈  be a family of bounded linear operators from 

X into Y. Suppose that for each x X∈  the family ( ( ))iA x  is bounded in Y. Then there exists a constant M > 0 such 

that || ( ) || || ||iA x M x≤  for all x X∈  and i I∈ , (i.e., the family of real numbers (|| ||)i i IA ∈  is bounded) (see [4]). 
 
2. OPERATOR VERSION OF ENTIRE METHOD 
 
Corresponding to entire sequence of complex number, we introduce here the Banach space valued entire sequence. 
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Definition: A sequence 0( )k kx x ∞

==  in X is called an entire sequence if for every positive integer q, 
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Following the complex case we shall call the Infinite matrix ( )nkA A= , ( , )nkA B X Y∈ ,  , 0,1, 2,3,...,n k = ∞ , is 

an entire method provided the A− transform of ( )x Xξ∈  (written ( )y A x= ) is an entire sequence in Y. Such type 
of matrices of operators between various Banach space valued sequence spaces have been investigated by several 
workers for instance see Maddox [3], Robinson [5], Srivastava and Srivastava [6]. 
 
In order to characterize the class ( ( ), ( ))X Yξ ξ  (i.e. Theorem 2.3), we prove the following two lemmas: 
 
Lemma 2.1:   If ( )nkA A=  is an entire method then  

(a) for every integer q > 0 and each fixed k = 0, 1, 2, ... lim 0n
nkn

q A x
→∞

=  for every x X∈ , and  

(b) for each n = 0, 1, ... there exists an integer 0np >  such that 1|| || k
nk nA p +≤  for each k = 0, 1, ... 

 
Proof: (a) Let x be a fixed vector in X. For each 0k ≥  consider ( ) (0,0,...,0, ,0,...)k x xδ =  where x is at kth place. 

Clearly ( ) ( )k x Xδ ξ∈  and so ( ( )) ( )kA x Yδ ξ∈  as A is an entire method. Therefore for an integer q > 0  
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and so 
|| || || || 0,as  .n n

nk nA x q y q n= → →∞  
Hence 

0 as  , for e ach  0.n
nkq A x n k→ →∞ ≥  

 
(b)   Suppose (b) does not hold. Then there exists a non-negative integer N such that for each integer p > 0 there exists 
an integer 0pk ≥  satisfying  

1
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k
N kA p +>  

 
So, for 1 1p =  there exists 1k  such that 1

1

1
,|| || 1 1k

N kA +> = . In general, choose 1, ( 2)m mp p m−> ≥  such that 

, 1max{|| ||: }N k m mA k k p−≤ < .  
 
There exists 1m mk k −>  such that 1

,|| || m

m

k
N k mA p +>  and for each mk  we can find 

mkz  such that || || 1
mkz =  and  

1
, ,|| || || ||   for all  1.m

m m m

k
N k N k k mA A z p m+≥ > ≥  

 
Now define the sequence 0( )n nx x ∞

==  by 
( 1) for  ,  1, 2,...,

0, otherwise.
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Then ( )x Xξ∈  since for each integer 0q > , we have  
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( 1)
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Since A is an entire method, we have that ( ) ( )A x Yξ∈ , however 

( 1) ( 1)
, , ,
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Lemma 2.2:  If ( )nkA A=  has properties (a) and (b) and in addition (c) there exists an integer q > 0 such that for each 

integer p > 0 and each constant M > 0 there exists integers n, k, where ,|| || n k
n kA q p M> then for a given integer 

 p > 0, constant M > 0, and integers 0n , 0k  there exist integers 0N n> , 0K k>  such that  

,|| || .N K
N KA q p M>  

 
Proof:  By (a) lim 0n

nkn
q A x

→∞
=  for each k = 0, 1, 2, ..., then there exist ( )kB x  for 0k ≥  such that 

|| || ( )n
nk kq A x B x≤  for all 0n ≥  and for each x X∈ . 

 
For each 0k ≥ , 0( )n

nk nq A ∞
=  is pointwise bounded on X and therefore by Banach-Steinhaus Theorem 0( )n

nk nq A ∞
=  is 

uniformly bounded i.e., there exists kB  such that || ||n
nk kq A B≤  for all 0n ≥  and for each 0k ≥ . 

 
Let 

00 1max{1, , ,..., }kB B B B= . By (b) for every 0n ≥  there exist np  such that 1|| || k
nk nA p +≤  for every 0k ≥ . 

 
Take 0 1 0max{1, , ,..., }nP p p p= . Then 1

,|| || k
n kA P +≤  for each 0k ≥  but 00,1,...n n= . Also ,|| || n

n kA q B<  

for all 0n ≥  and 00,1,k k=  .  
 
Therefore 01|| || nn k

nkA q BP q+≤  for every 00,1,....,k k=  or 00,1,...n n= . 
 
By (c) taking 0nM BPq= , and P = p, we get N and K such that ,|| || N K

N KA q p M> . Clearly 0N n>  and 

0K k>  because for 00,1,...k k=  or 00,1,...,n n= , we have reverse inequality. 
 
Theorem 2.3:  A matrix ( )nkA A=  is an entire method if and only if for each integer q > 0 there exists an integer p = 
p(q) > 0 and a constant M = M(q) > 0 such that  
 

,|| || , for all   , 0,1,...n k
n kA q p M n k≤ =  

 
Proof:  Let ( )nkA A=  be entire method, ( )x Xξ∈ , ( )y A x=  and q > 0 be an arbitrary fixed integer. We have 
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there exists (2 ) 0p p q= > and (2 ) 0M M q= >  such that  
 

|| || (2 ) , for all   , 0,1,....n k
nkA q p M n k≤ =  

 

since ( )x Xξ∈ , i.e. ( ) ( )y A x Yξ= ∈ . Therefore 
0 0
| | || 2 | | ||n k

n k
n k

y q M x p
∞ ∞

= =

≤ < ∞∑ ∑ .  

 
For converse suppose there exists an integer q > 0 such that for each integer p > 0 and each constant M > 0 there exist 
integers n, k where || || n K

nkA q p M> . By Lemma 2.1(b) choose a sequence of positive integers 0( )n np ∞
=  such that  

 
(2.1)     1|| ||   for all  0,1,...k

nk nA p k+≤ =  
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Let max{ : 0,1,..., }n ip p i n= = . We now construct the sequence 1{ }

j jn k jA ∞
=  as follows: 

Choose 1 1,n k  such that 
1 1

0n kA ≠ . Suppose that 1 1,..., ; ,..., , 1j jn n k k j ≥  have been choosen. By Lemma 2.1 (a) 
given  

ε 1(8( 1)) min{|| ||:1 } 0
t tn kj A t j−= + ≤ ≤ >  

 
there exists ( , )j j jn n kε=  such that || || n

nkA q ε<  for all ,j jn n k k≥ ≤ .  
 
By Lemma 2.2, there exists 1 max{ , }j j jn n n+ >  and 1j jk k+ >  such that  
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So, we have a sequence , 1{ }
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=  such that  
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Define the sequence 1( )m mx x ∞

==  by  
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By (2.3), it follows that  
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 ( 1)n ≥  and hence ( )x Xξ∈ . So, ( ) ( )y A x Yξ= ∈ . Now  
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From (2.2), we have 
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and from (2.1) and (2.3), we have that  
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also 
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So, from (2.4), (2.5), (2.6) and (2.7), it follows that  
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Therefore, 
0 0

1| | ||
4

n
n

n n
y q

∞ ∞
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≥∑ ∑ , which diverges, i.e. ( ) ( )y A x Yξ= ∉ . This contradicts the fact that A is an entire 

method. This completes the proof. 
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