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ABSTRACT 
In thispaper we mainly discussed the characterization of Cohen-Macaulay Rees algebras about associated graded near 
rings. 
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1. INTRODUCTION 
 
In this paper we will show that normal ideals, while not always producing Cohen – Macaulay Rees algebras, do often 
yield depth information about associated graded near rings. A corollary will provide a 2 – dimensional version of 
Grauert – Riemenchneider vanishing. We will need to use concept of a superficial element. Recall that if (N, m) is a 
local Near ring and I is an ideal of N, then an element 2\x I I∈ is said to be superficial (of order one) for I.  .If there 
is a positive integer c such that 1( : )n c nI x I I −∩ = for all n>c. If N/m is infinite then superficial elements exist for 
any ideal of N. An important property of a superficial element of I is the following; if x is superficial for I, and is also 
an n– regular element, then ( 1( : )n nI x I −= for all n>>0. This follows by an application of the Artin – Rees lemma. 
 
2. PRELIMINARIES 
 
In this section we give the definitions and examples related to this topic to the next sections. 
 
2.1 Definition: A nonempty set N is said to be a right near-ring with two binary operations ‘+’and ‘.’  If 
i)   (N, +) is a group    (not necessarily abelian) 
ii)  (N, .) is a semi group and 
iii)  (x + y)z =  xz + yz     for all x ,y ,z  N 
 
2.2. Example: Let Z be the set of positive, negative integers with ‘0’, then (z, +, ) is a near ring with usual addition and 
multiplication. 
 

2.3 Definition: A ring R is called graded (z-graded)if there exists a family of sub groups{ }n n ZR ∈   of R such that 

1. n nR R= ⊕ (as abelian groups) 

2. .n m n mR R R +⊆ for all n, m  Z. 
 
2.4. Example: Let R be a ring and 1 2, ,... dx x x  indeterminates over R. For    m= 1 2( , ,... ) d

dm m m N∈ . 
 
Let 1 2

1 2 .... dmm mm
dx x x x= . Then the polynomial ring S= R [ 1 2, ,... dx x x ]is a graded ring where 

1{ / .... }
d

m
n m m d

m N

S r x r Randm m n
∈

= ∈ + + =∑  

2.5 Definition: A Near- ring Nis called graded near ring if there exists a family of sub groups{ }n n ZN ∈   of N such 
that 
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1. ( )n nN N notnecessarilyabelian= ⊕  

2. .n m n mN N N +⊆ for all n,m Z 
 
2.6. Example: Every Polynomial near ring  is a Graded Near ring with multiplicative identity 1. 
 
2.7. Definition: Let (R, M, k) be a Noetherian local ring. (The notation means that the maximal ideal is M and the 
residue field is k = R/M.) If d is the dimension of R, then by the dimension theorem every generating set of M has at 
least d elements. If M does in fact have a generating set S of d elements, we say that R is regular and that S is a regular 
system of parameters 
 
2.8 Example: If R has dimension 0, then R is regular iff {0}is a maximal ideal, in other words, If R has maximal ideal 
{0} iff  R  is a field. 
 
2.9 Definition: A nearing N is local iff N has a unique maximal N-subgroup. 
 
2.10 Example [Maxon [1]]: ( )affM v  
 
2.11Note: A local near ring has 0 and 1 as idempotants. 
 
3. MAIN RESULTS 
 
In this section we proved main results on local near rings. 
 
Theorem 3.1: Let (N,m) be local Near ring and let I be a ideal of N. Assume I is normal, grade (I) ≥ 2, and I is integral 
over an ideal generated by an N – regular sequence. Then there exists n such that depth ( ( )) 2nG I ≥ . 
 
Proof: By passing to N(x) = [ ][ ]m xN x we may assume that N/m is infinite. In this case, if we choose a general element 

of I which has the same value as I on all the Rees valuations of I, we obtain that 1:n nI x I −= for all n, since 
:nI x will be contained in the integral closure of 1nI − . 

 
Now choose 2\y I I∈ such that the image of y in N/(x) is superficial for I/(x), y is an N/(x) – regular element, and 
{x,y} form part of a minimal generating set for a minimal reduction of I. Note that choosing y to be N/(x) – regular is 
where we require grade ( ) 2I ≥ . There exists a positive integer b such that  
 
  1(( : ) ( , )k kI y I x for all k b−= ≥                                                                                                   (1) 
 

Now we have to show that ' '{( ) , ( ) }b bx y form a ( )bN I - regular sequence.  
 

Now '( )bx is a ( )bG I - regular element.  
 
Then to verify that  
 (( , ) : ) ( , ) 2bn b b bn b bI x y I x for all n−= ≥                                                                                                  (2) 
 
By our choice of x and y we may assume there is a minimal reduction J of bI having a minimal generating set 
including{ , }b bx y . In other words 3 3( , , ,... )b bJ x y z z= is a minimal reduction of bI , and because I is integral over 

an ideal generated by a regular sequence { }3 3, , ,...b bx y z z must itself be a regular sequence. To prove (2) we will 

handle the cases n=2 and 3n ≥ separately. Suppose first that n=2. By the theorem of Itoh ([7]], 2b bJ I JI∩ = (This 

uses that
2b bI andI are integrally closed)In fact ,we claim that 

 
 2( , ) ( , )b b b b b bx y I x y I∩ =                                                                                                                           (3) 
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To prove this claim it suffices to show that if 1{ ,..., }sz z is an N – regular sequence contained in bI such that 

 2
1 1( ,..., ) ( ,..., )b b

i iz z I z z I∩ = ∩  
 
For some i, 2 i s≤ ≤ then  
 2

1 1 1 1( ,..., ) ( ,..., )b b
i iz z I z z I− −∩ = ∩  

 
Let u∈ 2

1 1( ,..., ) b
iz z I− ∩ .Then 

 2
1 1( ,..., ) ( ,..., )b b

i iu z z I z z I∈ ∩ = ∩  
 
Hence we may write  

1

1 1

i i

j j j j
j j

u u z v z
−

= =

= =∑ ∑ for some , b
j ju N v I∈ ∈

                                                                                                      (4)
 

 
Therefore 1 1( ,..., )i i iv z z z −∈ , thus 1 1( ,..., )i iv z z −∈ . 

Write 
1

1

i

i j j
j

v w z
−

=

=∑  for some jw N∈ and substituting into (4) Then, we get 

 
1

1
( ) 0

i

j j j i j
j

u v w z z
−

=

− − =∑  

 
A consequence, because 1{ ,..., }sz z is a regular sequence, is that 1 1( ..., )j j j i iu v w z z z −− − ∈  for each j, 

1i j i≤ ≤ − . In particular this implies that 1 1( ,..., ) b
iu z z I−∈ , completing the proof of (3). 

 
To complete the proof of (2) for the case n = 2, let 2( , )b b bcy I x∈ .  
 
Then 2b b bcy dx I− ∈ for some d∈N, hence ( , )b b b b bcy dx x y I− ∈ by (3).  
 
Therefore ( , )b b bc I x I∈ = because { , }b bx y  is a regular sequence. 
 
Now assume 3n ≥ . We claim that  

 
1 1( , ) : (( , ) : )b ni b i b b nb i b ni b i bI x y I x I x y− − − − − − − −⊆ +  

For 0 1i b≤ ≤ − . Let ( , )b b ni b icy I x− −∈ and write b b i b nicy dx I− −− ∈ for some d N∈ .  
 
Then ( , )b bn icy I x−∈ so ( , )b nb ic I x− −∈ by (1). Thus we write 0

b nb ic c x I − −− ∈ for some N, which leads to 

0
b b bn icy c xy I −− ∈ .  

 
Hence 1

0( )b b i b nic y dx x I− − −− ∈ , therefore 1 1
0

b b i b nic y dx I− − − −− ∈  . 
 
In other words, 1 1

0 ( , )b b ni b ic y I x− − − −∈ .  
1

0( ) (( , ) : )b nb i b nb i b nb i b i bc I c x I x I x y− − − − − − − −∈ + ⊆ +  
 
Proving (4). By applying (4) successively to the i = 0 and i = 1 cases we obtain  
 

2 2 2 2(( , ) : ) (( , ) : )bn b b bn bn b bI x y I x I x y− − −⊆ +    
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The pattern is now easily detected and by continuing we eventually otain. 
 

  
1 1(( , ) : ) (( , ) : )bn b b bn b b bn b bI x y I x I x y− − − +⊆ +  

 
But using (1) b successive times, 1(( , ) : )bn b bI x y− + = 2 1( , )bn bI x− + ( this is where we require that 3n ≥ ).  
 
Therefore 
 
(( , ) : ) ( , )bn b b bn b bI x y I x−⊆ , Hence the proof is complete. 
 
Note 3.2: By looking at some special cases of Theorem 3.1 we are able to provide some interesting corollaries. The 
first is a 2 – dimensional version of Grauert – Riemenshneider vanishing  
 
Corollary 3.3: Let (N,m) be a 2 – dimensional Cohen – Macaulay local near ring, and let I be a normal m – primary 
ideal of N. Assume I has a 2 – generated minimal reduction (automatic if N/m is infinite). Then there exists n such that 

( )nG I is Cohen – Macaulay. 
 
The next corollary gives some information about the coefficient 3 ( )e I of the Hilbert – Samuel polynomial of a normal 
m – primary ideal I of a Cohen – Macaulay local ring. Recall that for any d – dimensional local ring (N,m) and m – 
primary ideal I of N, the length of / nN I is given by a polynomial in n, of degree d,for all large values of n. The 
Hilbert – Samuel polynomial is by definition that polynomial, and it can be expressed in the form 
 

1
0 1 1

1 2
( ) ( ) ( ) . . .( 1) ( ) ( 1) ( )

1
d d

I d d

n d n d
P n e I e I e I n e I

d d
−

−

+ − + −   
= − + + − + −   −   

 

 
Where the coefficients 1( )e I are integers. Certain bounds on the 1( )e I ’s are known to hold if N is assumed to be 
Cohen – Macaulay. In particular it holds that 0 2i≤ ≤ (see [9] for i=1 and [6] for i=2). In [6] Narita showed that it is 
possible for 3 ( )e I to be negative, but Itoh proved that 3 ( ) 0e I ≥ if I is assumed to be normal. 
 

In fact Itoh proved a stronger result by considering the filtration { }nI of integral closures of the powers of I. If (N,m) is 

assumed to be analytically unramified then the legth of / nN I is a polynomial of degree d for large n and takes the 
form. 
 

   
1

0 1 1
1 2

( ) ( ) ( ) . . .( 1) ( ) ( 1) ( )
1

d d
I d dn

n d n d
P n e I e I e I e I

d d
−

−
+ − + −   

= − + + − + −   −   
 

 
Where the coefficients 1( )e I are integers (the normalized Hilbert coefficients). In [7] Itoh proved 3( ) 0e I ≥ . 
Corollaries 3.9 and 3.10 below give new proofs of Itoh’s results. 
 
Corollary 3.4: Let (N, m) be an analytically unramified d – dimensional Cohen – Macaulay local near ring. If I is an m 
– primary ideal of N then 3( ) 0e I ≥ . 
 
 
Proof: By using the usual machinery [2]  we may assume d=3. Because N is analytically unramified the right 

   2 2 ....N It I t⊕ ⊕ ⊕  
 

is noetherian , thus there exists a positive integer k such that ( )kn k nI I= for all 1n ≥ (see [5] for example). 

Furthermore we know that 3 3( ) ( )ke I e I= because ( ) ( )kI IP kn P n= . Hence we may replace I with kI and 
therefore assume I is normal. By applying Theorem 3.1 we obtain that depth ( ( ( )) 2G I ≥ .  
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Corollary 3.5: Let (N,m) be a d – dimensional Cohen – Macaulay local near ring. If I is a normal m – primary ideal of 
N then 3( ) 0e I ≥  
 
Proof: As in (3.4) we may assume that dim(N)=3. The result implies that 3 3( ) ( )ke I e I= for all k 1k ≥ . Therefore 

we may assume that depth ( ( )) 2G I ≥ by using Theorem 3.1. The statement now follows from above corollary 3.5 
 
We now give an example showing that Corollary 3.4 does not extend to higher dimensions. The existence of such an 
example, over C, was proved in cor 3.3. The purpose here is to provide an explicit example, in the sense of giving 
actual equations. The idea behind this construction is useful: to find an m – primary normal ideal having specified 
properties, one first finds a height two normal prime ideal p with the required properties (often a much easier task), then 
the takes the integral closure of np m+ for large n. This ideal ‘should’ have much the same properties as p. However, 
to make this philosophy work in practice, we depend on the following lemma.   
 
Lemma 3.6: Let N be graded Near ring with homogeneous maximal ideal m and such that 0N is a field. Let Abe a 

homogeneous ideal of N generated by forms of the same degree d. If A is a normal ideal 1dA m ++ is also a normal 
ideal. 
 

Proof: Let 1( )d kf A m +∈ + be homogeneous of degree n. Then there are elements 1( )d ki
ic A m +∈ + such that 

1
1 1... 0m m

m mf c f c f c−
−+ + + + = . Note that n kd≥ . If n = kd then by considering the homogeneous part of the 

equation having degree mkd we may assume that ic is homogeneous of degree kdi for each i, 1 i m≤ ≤ . Write 

i i ic a b= + where 
ki

ia A∈ and 1 1 1( )d d ki
ib m A m+ + −∈ + . Then deg( ) 1ib kdi≥ + , thus 0ib = . It follows that 

kf A∈ so that kf A∈ by normality. In particular 1( )d kf A m +∈ + . If ( 1)n k d≥ + then 
( 1) 1( )k d d kf m A m+ +∈ ⊆ + . Assume that ( 1)kd n k d< < + and write n=kd+j for some j, 0<j<k. By decomposing 

1( )d kiA m ++ into the sum 
 

( ) 1 1 1 1 1( ) ( ) ( )k j i d ji d ji d ki jiA A m m A m− + + + + − −+ + +  
 
We may express i i ic a b= +  for some  

  
( ) 1 1 1 1 1( ) ( ) ( )k j i d ji d ji d ki ji

i ia A A m and b m A m− + + + + − −∈ + ∈ +  
 
As above we may assume that ic is homogeneous, this time having degree i(kd+j). But deg ( ) ( ) 1ib i kd j≥ + + , thus 

0i i ib and c a= = . In particular ( )k j i
ic A −∈ , therefore k jf A −∈ . By the normality of A again, k jf A −∈ . This 

means that k j kd jf A m− +∈ ∩ . But by using that Nis graded and m is its homogeneous maximal ideal it holds that 
( 1)k j kd j k j d jA m A m− + − +∩ = . Therefore 1( )d kf A m +∈ + and the proof of Lemma 3.6 is complete. 

 
Theorem 3.7: Let k be a field of characteristic not 3. Set N = k[x,y,z]. Let  

4 3 3 3 3 3 3( , ( ), ( )), ( ))A x y y z z y z z y z= + + + And set 5I A m= + ,, where m=(x,y,z)N. Then  
1) I is a height 3 normal ideal of N. 
2)  ( )nG I is not Cohen – Macaulay for any 1n ≥ . 

3) If X denotes the blow up of I, then X is normal but 2 ( , ) 0xH X O ≠  
 
Proof: Let 4 3( , )L x y z3= + . We first show that L is normal. The powers of L are unmixed since L is generated by a 
regular sequence. Further, L is generically normal (i.e. locally normal at its minimal  primes). This follows since 

3y z3+ will be reduced in characteristic not equal to 3, and then the minimal primes above L are exactly generated by 

the minimal primes over 3y z3+ together with the element x, and locally at each such prime L is generated by 
4x together with a regular parameter. But all such ideals are normal. It follows that L is normal. 
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By induction on i we claim that 4i i iL m A∩ = . It follows immediately from this claim that the powers of J are also 
integrally closed and so J is normal. 
 
For i = 1 the equation is clear. Assume i > 1. Clearly 4i i iA L m⊆ ∩ , so we prove the other containment. Let 

4i iu L m∈ ∩ . Write 4 3 3( )iu rx y z v= + +  for some r N∈ and 1iv L −∈ . Then 3 3 4( ) iy z v m+ ∈ and so 
4 3 4( 1)i iv m m− −∈ ⊆ . Hence 1 4( 1) 1i i iv L m A− − −∈ ∩ = . Since 4 3iv m −∈ , we even obtain that 1iv mA −∈ . Finally 

we need only to observe that 3 3 3 3 1( ) ( ) i iy z v y z mA A−+ ∈ + ⊆ . 
 
Therefore I is a normal ideal by Lemma 3.6. For each 1s ≥ we will prove that ( )sG I is not Cohen – Macaulay by 

showing that ( )s
mG I is not Cohen – Macaulay. For this it suffices to prove that the reduction number of s

mI is at least 

3 Further , it will be enough to find a single minimal reduction sL of s
mI such that 2 3s s

s m mL I I≠ . This is because if 
2 3s s

m mLI I= for some minimal reduction L of s
mI then ( )1 1j s js

m mL I LI for j+∩ = ≥ , and by the result of 

Huneke and Itoh ([6] or [10, Theorem [1], therefore ( )s
mG I is Cohen – Macaulay A consequence of ( )s

mG I being 

Cohen – Macaulay is that every minimal reduction of s
mI has reduction number 2. 

 
We proceed to construct the ideals sJ .  First observe that 4 3 3 3 3( , ( ), ( ))J x y y z z y z= + +  is a reduction of A ( in 

fact, 3 4JA A= ). For convenience set 4 3 3 3 3, ( ), ( )a x b y y z c z y z= = + = + and 5d z= . We claim that 

1 ( , , )J a c b d= + is a minimal reduction of I. To see this it suffices to show that J is a reduction of the ideal K = (a, b, c, 

d), because K is already a reduction of 3 4( )I KI I= . Clearly 4 3 30 zc b d c d= − −  
 
In particular this implies that 3 3

1b d J k∈ . But 4 3 3( )b b b d b d= + − , therefore 4 3
1b J K∈ . In other words, 

4 3
1k J K∈ which prove the claim. 

 
Now define ( , , ( ) )s s s

sJ a c b d= + . Then sJ is a minimal reduction of sI . To show that 2 3s s
sJ I I≠ ,observe that 

3 3 3 3 2( )s s s sx y z J I+ ∉  
 
Because the multiplies of x contained in 2s sJ I must be of the form jx or 4s jx + for some j, 0 2j s≤ ≤ . To finish the 

proof, observe that 2 3ss s
mmJ I I≠ because I is m – primary. 

 
To prove the last statement, the following lemma is useful. 
 
Lemma 3.8: Let N be a normal local domain whose completion is reduced. Let 1.... df f N∈ and for each integer t > 0 

let tI be the ideal 1( ,...., )tt
df f . Let Y →Spec(N) be obtained by blowing up I and normalizing. Then, for all 

sufficiently large t we have (with I = 1I ): 1 1( ) / ( )dd d
tY t tH O I I I− −= . 

 

In the notation of this lemma, to prove 2 ( , ) 0XH X O ≠ , it suffices to prove that 3 2/ ( ) 0tt tI I I ≠ for all large t. 

Since 3 3t
tI I= by above, we need only to prove that 3 2t t

tI J I≠ , which we have done above. 
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