International Journal of Mathematical Archive-3(5), 2012, 1789-1794

A NOTE ON NORMAL IDEALS IN REGULAR NEAR RINGS

P. Jyothi*

Asst. Prof. in Mathematics, Laqshya Institute of Technology and Sciences, Khammam (AP)

T. V. Pradeep Kumar

Asst. Prof. In Mathematics, ANU college of engineering and Technology Acharya Nagarjuna University (Guntur AP)

(Received on: 18-04-12; Accepted on: 09-05-12)

ABSTRACT

In this paper we study and characterize the cohen-macaulay property of the Rees algebras of a normal ideal of regular local near ring in the 3-dimensional case by assuming the ideal is 4-generated, has height2, is u mixed and is generally a complete intersection.

Keywords: Ring, Near-ring, Regular near ring, Regular -local -ring, Regular local near ring, Rees algebra.

1. INTRODUCTION

This paper studies the depth of Rees algebras associated to normal ideals. If I is an ideal in a commutative Near ring N, the integral closure of I, denoted \overline{I} , is the set of elements $x \in N$ such that x satisfies an equation of the form $x^n + a_1 x^{n-1} + ... + a_n = 0$ where $a_j \in I^j$ for $1 \le j \le n$. If $x \in \overline{I}$ we say x is integral over I. It is not difficult to prove that \overline{I} is an ideal. An ideal I of a commutative Noetherian near ring N is said to be normal if all of its powers are integrally closed. If N is an integrally closed domain then the normality of I is equivalent to the normality of the Rees algebra of N with respect to I, $N[It] = \bigoplus_{n \ge 0} I^n t^n$. This paper was originally motivated by trying to prove that normality of the Rees algebra implied the Cohen-Macaulay property of the Rees algebra for a particular class of ideals in regular local Near rings.

2. PRELIMINARIES

In this section we shall give the definitions and required examples related to the next section topics.

2.1Definition: A non empty set R with two binary operations '+' and '.' Is said to be a ring if i)(R,+) is a commutative ring; ii)(R,.) is a semi group iii) Distributive laws hold good.

2.2 Example: The set off all integers modulo m under addition and multiplication modulo m is a ring

2.3 Definition: A near ring N is said to be Regular ring if for each element $x \in N$ then there exists an element $y \in N$ such that x = xyx.

2.4 Example:

(i) M (Γ) and $M_0(\Gamma)$ are regular rings (Beidleman (10) NR Text)

(ii) Constant rings

(iii) Direct sum and product of fields.

2.5. Definition: A nonempty set N is said to be a Right near-ring with two binary operations '+' and '.' If

i) (N, +) is a group (not necessarily abelian)

ii) (N, .) is a semi group and

iii) (x + y)z = xz + yz for all x, y, $z \in N$

Corresponding author: P. Jyothi*

Asst.Prof. in Mathematics, Laqshya Institute of Technology and Sciences, Khammam (AP)

2.6 Example: Let Z be the set of positive, negative integers with '0', then (z, +, .) is a near ring with usual addition and multiplication.

2.7 Definition: A near ring N is said to be Regular near ring if for each element $x \in N$ then there exists an element $y \in N$ such that x = xyx.

2.8 Example: (i) M (Γ) and $M_0(\Gamma)$ are regular near rings (Beidleman (10) NR Text)

2.9 Definition: Let (R, M, k) be a Noetherian local ring. (The notation means that the maximal ideal is M and the residue field is k = R/M.) If d is the dimension of R, then by the dimension theorem every generating set of M has at least d elements. If M does in fact have a generating set S of d elements, we say that R is *regular* and that S is a *regular* system of parameters

2.10 Example: If *R* has dimension 0, then *R* is regular iff {0} is a maximal ideal, in other words, iff *R* is a field.

2.11 Definition: A Local near ring which satisfy regular property then it is called a regular local near ring.

2. 12 Definition: The Rees algebra of an ideal $I \subset R$ by definition a graded algebra satisfying $R(I)=R \bigoplus I \bigoplus I^2 \bigoplus \dots$

3. NON COHEN - MACAULAY REES ALGEBRAS

Given a three dimensional regular local Near ring (N, m) and normal four – generated height two unmixed ideal I of N, it is natural to ask about the Cohen – Macaulayness of the Rees algebra NIt]. Assume further that I is generically a complete intersection (that is, Ip is a complete intersection for every prime ideal P minimal over I). Our main result of this section will characterize, in terms of a presentation matrix of I, when N[It] is Cohen – Macaulay for such an ideal. It builds on work of Vasconcelos and Aberbach – Huneke where techniques for studying Rees algebras via presentation matrices were staged. The assumption that I is normal is not needed for the proof of our theorem however. Instead we need only the weaker condition that $(mI^2 : m) = I^2$. If I^2 is integrally closed then it satisfies this condition. For if $w \in (mI^2 : m)$ then $\omega m \subset mI^2$, thus $\omega \in \overline{I^2} = I^2$ by the determinant trick.

Theorem 3.1: Let (N,m) be a d-dimensional regular local near ring containing a field and I a height d-1 unmixed ideal of N. Assume that I is generically a complete intersection, I has a d – generated reduction, $\mu(I) = d + 1$, and $I^2m : m = I^2$, but I^2 is not unmixed. Then there is a generating set $\{x_1, ..., x_d\}$ for m, positive integers $m \ge n$, and a presentation matrix ϕ for I, such that $I_1\phi = (x_2, ..., x_d, x_1^n)$ and

Proof: By our assumption, $m \in Ass(N/I^2)$. In particular, $(I^2:m) \neq I^2$. Choose an element $e \in (I^2:m) \setminus I^2$. Because $(mI^2:m) = I^2$, $em \not \leq mI^2$. Choose $x \in m \setminus m^2$ such that $ex \notin mI^2$. Expand $x = x_1$ to a minimal generating set $\{x_1, ..., x_d\}$ for m. Using that $ex \in I^2 \setminus mI^2$ we may assume that $I = (p_1..., p_{d+1})$ is a minimal generating set for I, and that $ex = ap^{2_1} + p$ for some $p \in (p_2, ..., p_{d+1})I$ and unit α . Set $ex_i = g_i \in I^2$. Consider the homomorphism

$$\psi: R[T_1, \dots, T_{d+1}] \to R[It]$$

Given by $T_i \rightarrow p_i t$. Let F, $G_i \in R[T_1,...,T_{d+1}]$ be homogeneous of degree 2 (in the T'_i s) such that $\psi(F) = pt^2$, $\psi(G_i) = g_i t^2$. By our choice of p we can assume that $F \in (T_2,...,T_{d+1})R[T_1,...,T_{d+1}]$. Let Q be the kernel of ψ , © 2012, UMA. All Rights Reserved 1790

and let Q_j denote the ideal generated by the homogeneous elements of Q having degree at most j. The trivial relation $(ex)x_i = (ex_i)x$ forces $x_i(\alpha T_1^2 + P) - xG_i \in Q_2$. But $Q_2 = Q_1$ because I is syzygetic [8], thus there are linear homogeneous polynomials $A_i \in R[T_1, ..., T_{d+1}]$ such that $x_i(\alpha T_1^2 + P) - xG_i = A_1L_1 + ... + A_sL_s$ where $Q_1 = (L_1...L_s)$. The coefficient of T_1^2 must be $x_i - xb_{1i}$ for some $b_{1i} \in R$ and the coefficients of L_i all lie in m, therefore Q_1 contains polynomials of the form $(x_i - xb_{1i})T_1 + b_{2i}T_2 + ...b_{si}T_s$. The existence of these linear polynomials implies that $(x_i - xb_{1i}x \in ((p_2, ..., p_{d+1}) : p_1)$. Replacing x_i with $x_i - xb_{1i}x$ yields that $x_i \in ((p_2, ..., p_{d+1}) : p_1)$. Therefore invertible row and column operations yield that ϕ may be reduced to the form described in (1). In particular, $I_1(\phi) = (x_2, ..., x_d, x^n)$ for some $n \le m$.

We are particularly interested in applying (3.1) to curves in 3 – space, where several of our assumptions automatically are valid.

Corollary 3.2. Let (N,m) be a 3 – dimensional regular local near ring containing a field and I a height 2 unmixed ideal of N. Assume that I is generically a complete intersection, I has a 3 – generated reduction, $\mu(I) = 4$, and $I^2m: m = I^2$. There is a generating set {x, y, z} for m, positive integers $m \ge n$, and a presentation matrix ϕ for I,

Proof: This follows at once from Proposition 3.1 as soon as we observe that the assumption that I^2 is not unmixed is automatic in this case we first analyze to have precisely three generators by the Hilbert – Burch theorem.

We recall Vasconcelos' construction. That is, let ϕ be a 4 X 3 presentation matrix of $I = (p_1, p_2, p_3, p_4)$ and assume $I_1(\phi)$ (the ideal generated by the entries of ϕ is a complete intersection, generated by {a,b,c}. Consider t he homomorphism

$$\psi: N[T_1, T_2, T_3, T_4] \rightarrow N[It]$$

given by $T_i \rightarrow p_i t$. The symmetric algebra of I is a complete intersection whose defining ideal is generated by three elements L_1, L_2 and L_3 . These elements satisfy the matrix equation

$$\begin{pmatrix} L_1 & L_2 & L_3 \end{pmatrix} = \begin{pmatrix} T_1 & T_2 & T_3 & T_4 \end{pmatrix}.\phi$$

Build an associated matrix $B(\phi)$ via the matrix equation

$$3.3(T_1 \ T_2 \ T_3 \ T_4).\emptyset = (L_1 \ L_2 \ L_3) = (a \ b \ c).B(\emptyset)$$

We also define C(\emptyset) to be the image of B(\emptyset) in k($T_1 T_2 T_3 T_4$), i.e. the matrix B(\emptyset) reduced modulo the maximal ideal of N

Remark 3.4: We will need to perform various changes on the generations of I, the choice of presentation ϕ , and the matrix $B(\phi)$. It is convenient to record exactly what changes we will use and how they affect the rest of the data.

First, consider column operations upon $B(\phi)$. Let ϕ be a 3 by 3 invertible matrix with coefficients in R. Column operations upon $B(\phi)$ coming from the base ring R are obtained by replacing $B(\phi)$ by $B(\phi)\theta$. To preserve equation (3.3) we must also multiply ϕ by θ and then the corresponding equation (2.3) is valid. This only changes the generators for the syzygies of I, and not the chosen generating set. Otherwise stated, $B(\phi\theta) = B(\phi)\theta$.

© 2012, IJMA. All Rights Reserved

Row operations on $B(\phi)$ coming from ~Correspond to multiplying $B(\phi)$ by an invertible 3 by 3 matrix θ with coefficients in R on the left side of $B(\phi)$. To insure that (3.3) continues to hold, we must then multiply the matrix (a,b,c) by θ^{-1} on the right, basically changing the choice of generators for the ideal (a, b, c).

Finally, we are free to change the chosen generators of I. In this case we replace ϕ by $\theta\phi$, with θ in this case a 4 by 4 invertible matrix with coefficients in N. If we change the corresponding T_i by multiplying on the right by θ^{-1} , then (3.3) is still valid without change to the complete intersection a,b,c or the matrix $B(\phi)$.

Vasconcelos proved that if I is a prime ideal such that $\det(C(\phi)) \neq 0$ then N [It] is Cohen – Macaulay. Implicit in the work of Aberbach and Huneke is an improvement of this statement.

Proposition 3.5: Let (N, m) be three – dimensional regular local Near ring containing a field of characteristic not 2 and I a four – generated height tow unmixed ideal of Nwhich is generically a complete intersection. Assume further that I has a three – generated minimal reduction (automatic if N/m is infinite) and $I_1(\phi)$ is a complete intersection. Then N[It] is Cohen – Macaulay if and only if det $(C(\phi)) \neq 0$.

Proof: The proof of the forward direction is contained in the proof of the (1) implies (3) part of the argument given in [2]. Conversely, if det $(B(\phi)) \notin mN[T_1, T_2, T_3, T_4]$ then we may assume (after changing the generators of I if necessary) that det $(B(\phi)) = T_1^3 + A$ for some homogeneous (in the T's) degree 3 polynomial A contained in $(T_2, T_3, T_4)N[T_1, T_2, T_3, T_4]$. Because the elements $\psi(f), \psi(g)$ and $\psi(h)$ vanish, $\psi(\det(B(\phi)) = 0$. Hence $p_1^3 \in (p_2, p_3, p_4)I^2$ which means I has reduction number two, therefore N[It] is Cohen – Macaulay by [3].

The following theorem is the key theorem of this paper upon which the examples are based.

Theorem 3.6: Let (N,m) be a 3 – dimensional regular local ring containing a field of characteristic not 2 and I a height 2 un mixed ideal of N. Assume that I is generically a complete intersection, I has a 3 – generated reduction, $\mu(I) = 4$, and $I^2m : m = I^2$. Further assume that a generating set {x,y,z} for m and a presentation matrix ϕ for I have been chosen as in (3.2). Then R[It] is not C – M if and only if $I_1\phi = (y, z, x^n) = (u, v, w)$ and there is a presentation matrix θ for I of the form

$$\theta = \begin{pmatrix} v & w & 0 \\ u & 0 & w \\ 0 & u & -v \\ 0 & 0 & 0 \end{pmatrix} \mod mI_1(\theta)$$

Proof: If θ has the form described in (3.6) then it easy to see that det $(C(\theta)) = 0$. Therefore R[It] is not Cohen – Macaulay by Proposition 3.5.

Assume R [It] is not Cohen – Macaulay and that ϕ is a presentation matrix for I having the form prescribed in (3.2), that is

 $\phi = \begin{pmatrix} y & z & x^m \\ \vdots & \vdots & \vdots \\ \vdots & \vdots & \vdots \end{pmatrix},$

Where $m \ge n$ and $I_1(\phi) = (y, z, x^n)$. By using invertible row operations we may also assume that m is the least power of x appearing in the last column of ϕ . We will analyze the matrix $B(\phi) = \begin{pmatrix} T_1 + A & B & C \\ D & T_1 + E & F \\ G & H & x^{m-n}(T_1 + K) \end{pmatrix}$,

Where A, B,...K $\in N[T_2, T_3, T_4]$. If m = n the ϕ satisfies the row condition, leading to the contradiction that N[It] is Cohen – Macaulay. Therefore we assume m>n. Let C = C(ϕ) denote the image of B modulo $mN[T_1, T_2, T_3, T_4]$, and use lower-case letters to denote images modulo $mN[T_1, T_2, T_3, T_4]$. Then

(3.7)
$$C(\phi) = \begin{pmatrix} t_1 + a & b & c \\ d & t_1 + e & f \\ g & h & 0 \end{pmatrix}.$$

Here a, b, c...,h $\in k[t_1, t_2, t_3, t_4]$ are liner forms. In addition, the fact that $I_1(\phi) = (y, z, x^n)$ implies that either $g \neq 0$ or $h \neq 0$ (else the least pure power of x in $I_1(\phi)$ would be greater than n).

Since R[It] is not Cohen – Macaulay the determinant of $C(\phi)$ is zero by Proposition 3.5, therefore (3.8) $g(bf - ct_1 - ce) - h(ft_1 + af - cd) = 0$

We consider two cases; either g and h are relatively prime or not. First suppose that g and h are relatively prime. Because a,b,..., $h \in k[t_2, t_3, t_4]$, (2.8) implies that gc + hf = 0. Therefore there exists an $\alpha \in k$ such that $c = -\alpha h$ and $f = \alpha g$. Substituting into (3.7) yields

$$C(\phi) = \begin{pmatrix} t_1 + a & b & -\alpha h \\ d & t_1 + e & \alpha g \\ g & h & 0 \end{pmatrix}$$

Thus,

$$0 = \det(C) = \alpha(bg^2 + ghe - gha - dh^2)$$

Using that g and h are relatively prime we obtain that h divides b, hence $b = \beta h$ for some $\beta \in k$.

Substituting above and factoring out h implies that

$$\beta g^2 + ge - ga - dh = 0$$

Therefore g divides d, hence $d = \gamma g$ for some $\gamma \in k$.

Substituting and factoring our g implies that $\beta g + e - a - \gamma h$, therefore

$$e - \gamma h = a - \beta g$$

Further, after making the substitutions $b = \beta h$ and $d = \gamma g, C(\phi)$ takes the form

$$C(\phi) = \begin{pmatrix} t_1 + a & \beta h & -\alpha h \\ \gamma g & t_1 + e & \alpha g \\ g & h & 0 \end{pmatrix}$$

By using row operations $C(\phi)$ may be reduced to

$$C(\phi) = \begin{pmatrix} t_1 + a - \beta g & 0 & -h \\ 0 & t_1 + e - \gamma h & g \\ g & h & 0 \end{pmatrix}$$

© 2012, IJMA. All Rights Reserved

As in Remark 2.4, these row operations will change the choice of generators of the ideal (y, z, x^n) . Let us call the new generations u, v, w. Set $q = a - \beta g = e - \gamma h$. By the above calculation

$$C(\phi) = \begin{pmatrix} t_1 + q & 0 & -h \\ 0 & t_1 + q & g \\ g & h & 0 \end{pmatrix}.$$

Note that $\{t_1 + q, g, h\}$ are independent linear forms in $k[t_1, t_2, t_3, t_4]$ because g and h are relatively prime linear forms and do not involve t_1 . Therefore by changing variables we may replace $t_1 + q$, g and h with t_1, t_2 and t_3 (respectively replace $T_1 + Q$, G and H with T_1, T_2 and T_3). As in Remark 2.4 this change also will change our original choice of generators for I. Substituting this variable – change yields that

$$C(\phi) = \begin{pmatrix} t_1 & 0 & -t_3 \\ 0 & t_1 & t_2 \\ t_2 & t_3 & 0 \end{pmatrix}$$

And lifting back to N $N[T_1, T_2, T_3, T_4]$

$$B(\phi) = \begin{pmatrix} T_1 & 0 & -T_3 \\ 0 & T_1 & T_2 \\ T_2 & T_3 & 0 \end{pmatrix} \mod mN[T_1, \dots, T_4]$$

Finally, to see that the matrix ϕ may be chose to have the form described in the statement of the theorem, use the matrix equation.

 $B(\phi) = (T_1 \quad T_2 \quad T_3 \quad T_4)\phi$ to re build \varnothing .

This completes the proof of theorem3.6 in the case that g and h are relatively prime.

REFERENCES

[1] D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Springer – Verlag, New York – 1995.

[2] I. M. Aberbach and C. Huneke, An improved Braincon – Skoda theorem with applications to the Cohen – Macaulayaness of Rees algebras, Math. Annalen 297 (1993), 343 – 369

[3] J.C. Beidleman "A Note on Regular Near – Rings" J.Indian Math. Soc 33 (1969), 207 – 210.

[4] Pilz, G. (1983). Near - rings. Amsterdam: North - Holland / American Elsevier.

[5] O. Zariski and P.Samuel, Commulative Algebra, vol.2, Springer - Verlag, New York, 1960.

[6] SAM HUCKABA AND CRAIG HUNEKE, Normal ideals in Regular rings.

[7] S. Itoh, Integral closures of ideals generated by regular sequences, J. Algebra 117 (1988), 390 - 401.

[8] S. Morey and B. Ulrich, Rees algebras of ideals with low codimension, Proc. Amer. Math. Soc.124 (1996) 3653 – 3661.

[9] T. Marley, The coefficients of the Hilbert polynomial and the reduction number of an ideal J. London Math. Soc.40 (1989), 1-8.

Source of support: Nil, Conflict of interest: None Declared