IMA Available online through www.ijma.info

A NOTE ON NORMAL IDEALS IN REGULAR NEAR RINGS

P. Jyothi*

Asst. Prof. in Mathematics, Laqshya Institute of Technology and Sciences, Khammam (AP)
T. V. Pradeep Kumar
Asst. Prof. In Mathematics, ANU college of engineering and Technology Acharya Nagarjuna University (Guntur AP)

(Received on: 18-04-12; Accepted on: 09-05-12)

Abstract

In this paper we study and characterize the cohen-macaulay property of the Rees algebras of a normal ideal of regular local near ring in the 3 -dimensional case by assuming the ideal is 4-generated, has height2, is u mixed and is generally a complete intersection.

Keywords: Ring, Near-ring, Regular near ring, Regular -local -ring, Regular local near ring, Rees algebra.

1. INTRODUCTION

This paper studies the depth of Rees algebras associated to normal ideals .If I is an ideal in a commutative Near ring N , the integral closure of I , denoted \bar{I}, is the set of elements $\mathrm{x} \in \mathrm{N}$ such that x satisfies an equation of the form $x^{n}+a_{1} x^{n-1}+\ldots+a_{n}=0$ where $a_{j} \in I^{j}$ for $1 \leq j \leq n$.If $\mathrm{x} \in \bar{I}$ we say x is integral over I. It is not difficult to prove that \bar{I} is an ideal. An ideal I of a commutative Noetherian near ring N is said to be normal if all of its powers are integrally closed. If Nis an integrally closed domain then the normality of I is equivalent to the normality of the Rees algebra of N with respect to $\mathrm{I}, \mathrm{N}[\mathrm{It}]=\underset{n \geq 0}{\oplus} I^{n} t^{n}$. This paper was originally motivated by trying to prove that normality of the Rees algebra implied the Cohen-Macaulay property of the Rees algebra for a particular class of ideals in regular local Near rings.

2. PRELIMINARIES

In this section we shall give the definitions and required examples related to the next section topics.
2.1Definition: A non empty set R with two binary operations '+'and '.' Is said to be a ring if i$)(\mathrm{R},+$)is a commutative ring ; ii)(R,.)is a semi group
iii) Distributive laws hold good.
2.2 Example: The set off all integers modulo m under addition and multiplication modulo m is a ring
2.3 Definition: A near ring N is said to be Regular ring if for each element $x \in N$ then there exists an element $y \in N$ such that $x=x y x$.

2.4 Example:

(i) M (Γ) and $M_{0}(\Gamma)$ are regular rings (Beidleman (10) NR Text)
(ii) Constant rings
(iii) Direct sum and product of fields.
2.5. Definition: A nonempty set N is said to be a Right near-ring with two binary operations '+'and '.' If
i) $(\mathrm{N},+)$ is a group (not necessarily abelian)
ii) (N, .) is a semi group and
iii) $(x+y) z=x z+y z \quad$ for all $x, y, z \in N$

Corresponding author: P. Jyothi*
Asst.Prof. in Mathematics, Laqshya Institute of Technology and Sciences, Khammam (AP)

P. Jyothi* \& T. V. Pradeep Kumar/ A NOTE ON NORMAL IDEALS IN REGULAR NEAR RINGS / IJMA- 3(5), May-2012, Page: 1789-1794

2.6 Example: Let Z be the set of positive, negative integers with ' 0 ', then ($\mathrm{z},+,$.) is a near ring with usual addition and multiplication.
2.7 Definition: A near ring N is said to be Regular near ring if for each element $x \in N$ then there exists an element $y \in N$ such that $\mathrm{x}=\mathrm{xyx}$.
2.8 Example: (i) M (Γ) and $M_{0}(\Gamma)$ are regular near rings (Beidleman (10) NR Text)
2.9 Definition: Let (R, M, k) be a Noetherian local ring. (The notation means that the maximal ideal is M and the residue field is $k=R / M$.) If d is the dimension of R, then by the dimension theorem every generating set of M has at least d elements. If M does in fact have a generating set S of d elements, we say that R is regular and that S is a regular system of parameters
2.10 Example: If R has dimension 0 , then R is regular iff $\{0\}$ is a maximal ideal, in other words, iff R is a field.
2.11 Definition: A Local near ring which satisfy regular property then it is called a regular local near ring.
2. 12 Definition: The Rees algebra of an ideal $I \subset R$ by definition a graded algebra satisfying $\mathrm{R}(\mathrm{I})=\mathrm{R} \oplus I \oplus I^{2} \oplus \ldots$

3. NON COHEN - MACAULAY REES ALGEBRAS

Given a three dimensional regular local Near ring (N, m) and normal four - generated height two unmixed ideal I ofN, it is natural to ask about the Cohen - Macaulayness of the Rees algebra NIt]. Assume further that I is generically a complete intersection (that is, Ip is a complete intersection for every prime ideal P minimal over I). Our main result of this section will characterize, in terms of a presentation matrix of I, when N[It] is Cohen - Macaulay for such an ideal. It builds on work of Vasconcelos and Aberbach - Huneke where techniques for studying Rees algebras via presentation matrices were staged. The assumption that I is normal is not needed for the proof of our theorem however. Instead we need only the weaker condition that $\left(m I^{2}: m\right)=I^{2}$. If I^{2} is integrally closed then it satisfies this condition. For if $w \in\left(m I^{2}: m\right)$ then $\omega \mathrm{m} \subset m I^{2}$, thus $\omega \in \overline{I^{2}}=I^{2}$ by the determinant trick.

Theorem 3.1: Let (N, m) be a d-dimensional regular local near ring containing a field and I a height $\mathrm{d}-1$ unmixed ideal of N . Assume that I is generically a complete intersection, I has a $\mathrm{d}-$ generated reduction, $\mu(I)=d+1$, and $I^{2} m: m=I^{2}$, but I^{2} is not unmixed. Then there is a generating set $\left\{x_{1}, \ldots, x_{d}\right\}$ for m, positive integers $m \geq n$, and a presentation matrix ϕ for I , such that $I_{1} \phi=\left(x_{2}, \ldots, x_{d}, x^{n}{ }_{1}\right)$ and

$$
\phi=\left(\begin{array}{ccccc}
x_{2} & \ldots & x_{d} & x_{1}^{m} & 0
\end{array} \ldots_{0} . .0 .\right.
$$

Proof: By our assumption, $m \in \operatorname{Ass}\left(N / I^{2}\right)$. In particular, $\left(I^{2}: m\right) \neq I^{2}$. Choose an element $e \in\left(I^{2}: m\right) \backslash I^{2}$. Because $\left(m I^{2}: m\right)=I^{2}$, em $\not \subset m I^{2}$. Choose $x \in m \backslash m^{2}$ such that $e x \notin m I^{2}$. Expand $x=x_{1}$ to a minimal generating set $\left\{x_{1}, \ldots, x_{d}\right\}$ for m. Using that $e x \in I^{2} \backslash m I^{2}$ we may assume that $I=\left(p_{1} \ldots, p_{d+1}\right)$ is a minimal generating set for I , and that $e x=a p^{2}{ }_{1}+p$ for some $p \in\left(p_{2}, \ldots, p_{d+1}\right) I$ and unit α. Set $e x_{i}=g_{i} \in I^{2}$. Consider the homomorphism

$$
\psi: R\left[T_{1}, \ldots, T_{d+1}\right] \rightarrow R[I t]
$$

Given by $T_{i} \rightarrow p_{i} t$. Let $\mathrm{F}, G_{i} \in R\left[T_{1} \ldots, T_{d+1}\right]$ be homogeneous of degree 2 (in the T_{i}^{\prime} s) such that $\psi(F)=p t^{2}$, $\psi\left(G_{i}\right)=g_{i} t^{2}$. By our choice of p we can assume that $F \in\left(T_{2}, \ldots T_{d+1}\right) R\left[T_{1}, \ldots, T_{d+1}\right]$. Let Q be the kernel of ψ,

P. Jyothi* \& T. V. Pradeep Kumar/ A NOTE ON NORMAL IDEALS IN REGULAR NEAR RINGS / IJMA- 3(5), May-2012, Page: 1789-1794

and let Q_{j} denote the ideal generated by the homogeneous elements of Q having degree at most j . The trivial relation (ex) $x_{i}=\left(e x_{i}\right) x$ forces $x_{i}\left(\alpha T_{1}^{2}+P\right)-x G_{i} \in Q_{2}$. But $Q_{2}=Q_{1}$ because I is syzygetic [8], thus there are linear homogeneous polynomials $A_{i} \in R\left[T_{1}, \ldots, T_{d+1}\right]$ such that $x_{i}\left(\alpha T_{1}^{2}+P\right)-x G_{i}=A_{1} L_{1}+\ldots+A_{s} L_{s}$ where $Q_{1}=\left(L_{1} \ldots L_{s}\right)$. The coefficient of T_{1}^{2} must be $x_{i}-x b_{1 i}$ for some $b_{1 i} \in R$ and the coefficients of L_{i} all lie in m, therefore Q_{1} contains polynomials of the form $\left(x_{i}-x b_{1 i}\right) T_{1}+b_{2 i} T_{2}+\ldots b_{s i} T_{s}$. The existence of these linear polynomials implies that $\left(x_{i}-x b_{1 i} x \in\left(\left(p_{2}, \ldots, p_{d+1}\right): p_{1}\right)\right.$. Replacing x_{i} with $x_{i}-x b_{1 i} x$ yields that $x_{i} \in\left(\left(p_{2}, \ldots, p_{d+1}\right): p_{1}\right)$. Therefore invertible row and column operations yield that ϕ may be reduced to the form described in (1). In particular, $I_{1}(\phi)=\left(x_{2}, \ldots, x_{d}, x^{n}\right)$ for some $n \leq m$.

We are particularly interested in applying (3.1) to curves in 3 - space, where several of our assumptions automatically are valid.

Corollary 3.2. Let (N, m) be a 3 - dimensional regular local near ring containing a field and I a height 2 unmixed ideal ofN. Assume that I is generically a complete intersection, I has a 3 - generated reduction, $\mu(I)=4$, and $I^{2} m: m=I^{2}$. There is a generating set $\{\mathrm{x}, \mathrm{y}, \mathrm{z}\}$ for m , positive integers $m \geq n$, and a presentation matrix ϕ for I ,
such that $I_{1}(\phi)=\left(y, z, x^{n}\right)$ and $\phi=\left(\begin{array}{lll}y & z & x^{m} \\ . & \cdot & . \\ . & . & . \\ . & . & .\end{array}\right)$.
Proof: This follows at once from Proposition 3.1 as soon as we observe that the assumption that I^{2} is not unmixed is automatic in this case we first analyze to have precisely three generators by the Hilbert - Burch theorem.

We recall Vasconcelos' construction. That is, let ϕ be a 4 X 3 presentation matrix of $I=\left(p_{1}, p_{2}, p_{3}, p_{4}\right)$ and assume $I_{1}(\phi)$ (the ideal generated by the entries of ϕ is a complete intersection, generated by $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$. Consider t he homomorphism

$$
\psi: N\left[T_{1}, T_{2}, T_{3}, T_{4}\right] \rightarrow N[I t]
$$

given by $T_{i} \rightarrow p_{i} t$. The symmetric algebra of I is a complete intersection whose defining ideal is generated by three elements L_{1}, L_{2} and L_{3}. These elements satisfy the matrix equation

$$
\left(\begin{array}{lll}
L_{1} & L_{2} & L_{3}
\end{array}\right)=\left(\begin{array}{llll}
T_{1} & T_{2} & T_{3} & T_{4}
\end{array}\right) \cdot \phi
$$

Build an associated matrix $\mathrm{B}(\phi)$ via the matrix equation

$$
3.3\left(T_{1} T_{2} T_{3} T_{4}\right) \cdot \varnothing=\left(\begin{array}{lll}
L_{1} & L_{2} & L_{3}
\end{array}\right)=(a b c) \cdot B(\varnothing)
$$

We also define $\mathrm{C}(\emptyset)$ to be the image of $\mathrm{B}(\varnothing)$ in $\mathrm{k}\left(T_{1} T_{2} T_{3} T_{4}\right)$, i.e the matrix $\mathrm{B}(\emptyset)$ reduced modulo the maximal ideal of N

Remark 3.4: We will need to perform various changes on the generations of I, the choice of presentation ϕ, and the matrix $B(\phi)$. It is convenient to record exactly what changes we will use and how they affect the rest of the data.

First, consider column operations upon $B(\phi)$. Let ϕ be a 3 by 3 invertible matrix with coefficients in R. Column operations upon $B(\phi)$ coming from the base ring R are obtained by replacing $B(\phi)$ by $B(\phi) \theta$. To preserve equation (3.3) we must also multiply ϕ by θ and then the corresponding equation (2.3) is valid. This only changes the generators for the syzygies of I , and not the chosen generating set. Otherwise stated, $B(\phi \theta)=B(\phi) \theta$.

P. Jyothi* \& T. V. Pradeep Kumar/ A NOTE ON NORMAL IDEALS IN REGULAR NEAR RINGS / IJMA- 3(5), May-2012, Page: 1789-1794

Row operations on $B(\phi)$ coming from \sim Correspond to multiplying $B(\phi)$ by an invertible 3 by 3 matrix θ with coefficients in R on the left side of $B(\phi)$. To insure that (3.3) continues to hold, we must then multiply the matrix (a, b, c) by θ^{-1} on the right, basically changing the choice of generators for the ideal (a, b, c).

Finally, we are free to change the chosen generators of I. In this case we replace ϕ by $\theta \phi$, with θ in this case a 4 by 4 invertible matrix with coefficients inN. If we change the corresponding T_{i} by multiplying on the right by θ^{-1}, then (3.3) is still valid without change to the complete intersection a,b,c or the matrix $B(\phi)$.

Vasconcelos proved that if I is a prime ideal such that $\operatorname{det}(C(\phi)) \neq 0$ then $\mathrm{N}[\mathrm{It}]$ is Cohen - Macaulay. Implicit in the work of Aberbach and Huneke is an improvement of this statement.

Proposition 3.5: Let (N, m) be three - dimensional regular local Near ring containing a field of characteristic not 2 and I a four - generated height tow unmixed ideal of Nwhich is generically a complete intersection. Assume further that I has a three - generated minimal reduction (automatic if N / m is infinite) and $I_{1}(\phi)$ is a complete intersection. Then $\mathrm{N}[\mathrm{It}]$ is Cohen - Macaulay if and only if $\operatorname{det}(C(\phi)) \neq 0$.

Proof: The proof of the forward direction is contained in the proof of the (1) implies (3) part of the argument given in \{2]. Conversely, if $\operatorname{det}(B(\phi)) \notin m N\left[T_{1}, T_{2}, T_{3}, T_{4}\right]$ then we may assume (after changing the generators of I if necessary) that $\operatorname{det}(B(\phi))=T_{1}^{3}+A$ for some homogeneous (in the T^{\prime} s) degree 3 polynomial A contained in $\left(T_{2}, T_{3}, T_{4}\right) N\left[T_{1}, T_{2}, T_{3}, T_{4}\right]$. Because the elements $\psi(f), \psi(g)$ and $\psi(h)$ vanish, $\psi(\operatorname{det}(B(\phi))=0$. Hence $p_{1}^{3} \in\left(p_{2}, p_{3}, p_{4}\right) I^{2}$ which means I has reduction number two, therefore N[It] is Cohen - Macaulay by [3].

The following theorem is the key theorem of this paper upon which the examples are based.
Theorem 3.6: Let (N, m) be a 3 - dimensional regular local ring containing a field of characteristic not 2 and I a height 2 un mixed ideal of N . Assume that I is generically a complete intersection, I has a 3 - generated reduction, $\mu(I)=4$, and $I^{2} m: m=I^{2}$. Further assume that a generating set $\{x, y, z\}$ for m and a presentation matrix ϕ for I have been chosen as in (3.2). Then $\mathrm{R}[\mathrm{It}]$ is not $\mathrm{C}-\mathrm{M}$ if and only if $I_{1} \phi=\left(y, z, x^{n}\right)=(\mathrm{u}, \mathrm{v}, \mathrm{w})$ and there is a presentation matrix θ for I of the form

$$
\theta=\left(\begin{array}{lll}
v & w & 0 \\
u & 0 & w \\
0 & u & -v \\
0 & 0 & 0
\end{array}\right) \bmod m I_{1}(\theta)
$$

Proof: If θ has the form described in (3.6) then it easy to see that $\operatorname{det}(C(\theta))=0$. Therefore R[It] is not Cohen Macaulay by Proposition 3.5 .

Assume R [It] is not Cohen - Macaulay and that ϕ is a presentation matrix for I having the form prescribed in (3.2), that is
$\phi=\left(\begin{array}{lll}y & z & x^{m} \\ \cdot & \cdot & \cdot \\ . & \cdot & \cdot\end{array}\right)$,
Where $m \geq n$ and $I_{1}(\phi)=\left(y, z, x^{n}\right)$. By using invertible row operations we may also assume that m is the least power of x appearing in the last column of ϕ. We will analyze the matrix $B(\phi)=\left(\begin{array}{lll}T_{1}+A & B & C \\ D & T_{1}+E & F \\ G & H & x^{m-n}\left(T_{1}+K\right)\end{array}\right)$,

P. Jyothi* \& T. V. Pradeep Kumar/ A NOTE ON NORMAL IDEALS IN REGULAR NEAR RINGS / IJMA- 3(5), May-2012, Page: 1789-1794

Where $\mathrm{A}, \mathrm{B}, \ldots \mathrm{K} \in N\left[T_{2}, T_{3}, T_{4}\right]$. If $\mathrm{m}=\mathrm{n}$ the ϕ satisfies the row condition, leading to the contradiction that $\mathrm{N}[\mathrm{It}]$ is Cohen - Macaulay. Therefore we assume $\mathrm{m}>\mathrm{n}$. Let $\mathrm{C}=\mathrm{C}(\phi)$ denote the image of B modulo $m N\left[T_{1}, T_{2}, T_{3}, T_{4}\right]$, and use lower-case letters to denote images modulo $m N\left[T_{1}, T_{2}, T_{3}, T_{4}\right]$. Then
(3.7) $C(\phi)=\left(\begin{array}{lcc}t_{1}+a & b & c \\ d & t_{1}+e & f \\ g & h & 0\end{array}\right)$.

Here $\mathrm{a}, \mathrm{b}, \mathrm{c} \ldots, \mathrm{h} \in k\left[t_{1}, t_{2}, t_{3}, t_{4}\right]$ are liner forms. In addition, the fact that $I_{1}(\phi)=\left(y, z, x^{n}\right)$ implies that either $g \neq 0$ or $h \neq 0$ (else the least pure power of x in $I_{1}(\phi)$ would be greater than n).

Since $\mathrm{R}[\mathrm{It}]$ is not Cohen - Macaulay the determinant of $\mathrm{C}(\phi)$ is zero by Proposition 3.5, therefore
(3.8) $g\left(b f-c t_{1}-c e\right)-h\left(f t_{1}+a f-c d\right)=0$

We consider two cases; either g and h are relatively prime or not. First suppose that g and h are relatively prime. Because a, b, $\ldots . \mathrm{h} \in k\left[t_{2}, t_{3}, t_{4}\right]$, (2.8) implies that $\mathrm{gc}+\mathrm{hf}=0$. Therefore there exists an $\alpha \in k$ such that $c=-\alpha h$ and $f=\alpha g$. Substituting into (3.7) yields
$C(\phi)=\left(\begin{array}{lcc}t_{1}+a & b & -\alpha h \\ d & t_{1}+e & \alpha g \\ g & h & 0\end{array}\right)$
Thus,
$0=\operatorname{det}(C)=\alpha\left(b g^{2}+g h e-g h a-d h^{2}\right)$

Using that g and h are relatively prime we obtain that h divides b , hence $\mathrm{b}=\beta \mathrm{h}$ for some $\beta \in k$.
Substituting above and factoring out h implies that

$$
\beta g^{2}+g e-g a-d h=0
$$

Therefore g divides d , hence $\mathrm{d}=\gamma g$ for some $\gamma \in k$.

Substituting and factoring our g implies that $\beta g+e-a-\gamma h$, therefore

$$
e-\gamma h=a-\beta g
$$

Further, after making the substitutions $b=\beta h$ and $d=\gamma g, C(\phi)$ takes the form
$C(\phi)=\left(\begin{array}{llc}t_{1}+a & \beta h & -\alpha h \\ \gamma g & t_{1}+e & \alpha g \\ g & h & 0\end{array}\right)$
By using row operations $C(\phi)$ may be reduced to
$C(\phi)=\left(\begin{array}{lcr}t_{1}+a-\beta g & 0 & -h \\ 0 & t_{1}+e-\gamma h & g \\ g & h & 0\end{array}\right)$

P. Jyothi* \& T. V. Pradeep Kumar/ A NOTE ON NORMAL IDEALS IN REGULAR NEAR RINGS / IJMA- 3(5), May-2012, Page: 1789-1794

As in Remark 2.4, these row operations will change the choice of generators of the ideal $\left(y, z, x^{n}\right)$. Let us call the new generations $\mathrm{u}, \mathrm{v}, \mathrm{w}$. Set $q=a-\beta g=e-\gamma h$. By the above calculation
$C(\phi)=\left(\begin{array}{ccr}t_{1}+q & 0 & -h \\ 0 & t_{1}+q & g \\ g & h & 0\end{array}\right)$.
Note that $\left\{t_{1}+q, g, h\right\}$ are independent linear forms in $k\left[t_{1}, t_{2}, t_{3}, t_{4}\right]$ because g and h are relatively prime linear forms and do not involve t_{1}. Therefore by changing variables we may replace $t_{1}+q, g$ and h with t_{1}, t_{2} and $t_{3}($ respectively replace $T_{1}+Q$, G and H with T_{1}, T_{2} and T_{3}). As in Remark 2.4 this change also will change our original choice of generators for I. Substituting this variable - change yields that
$C(\phi)=\left(\begin{array}{ccc}t_{1} & 0 & -t_{3} \\ 0 & t_{1} & t_{2} \\ t_{2} & t_{3} & 0\end{array}\right)$
And lifting back to $\mathrm{N} N\left[T_{1}, T_{2}, T_{3}, T_{4}\right]$
$B(\phi)=\left(\begin{array}{rrr}T_{1} & 0 & -T_{3} \\ 0 & T_{1} & T_{2} \\ T_{2} & T_{3} & 0\end{array}\right) \bmod m N\left[T_{1}, \ldots, T_{4}\right]$.
Finally, to see that the matrix ϕ may be chose to have the form described in the statement of the theorem, use the matrix equation.

$$
B(\phi)=\left(\begin{array}{llll}
T_{1} & T_{2} & T_{3} & T_{4}
\end{array}\right) \phi
$$

to re build \emptyset.
This completes the proof of theorem 3.6 in the case that g and h are relatively prime.

REFERENCES

[1] D. Eisenbud, Commutative Algebra with a View Toward Algebraic Geometry, Springer - Verlag, New York 1995.
[2] I. M. Aberbach and C. Huneke, An improved Braincon - Skoda theorem with applicationsto the Cohen Macaulayaness of Rees algebras, Math. Annalen 297 (1993), 343-369
[3] J.C. Beidleman "A Note on Regular Near - Rings" J.Indian Math. Soc 33 (1969), 207 - 210.
[4] Pilz, G. (1983). Near - rings. Amsterdam: North - Holland / American Elsevier.
[5] O. Zariski and P.Samuel, Commulative Algebra, vol.2, Springer - Verlag, New York, 1960.
[6] SAM HUCKABA AND CRAIG HUNEKE, Normal ideals in Regular rings.
[7] S. Itoh, Integral closures of ideals generated by regular sequences, J. Algebra 117 (1988), 390-401.
[8] S. Morey and B. Ulrich, Rees algebras of ideals with low codimension, Proc. Amer. Math. Soc. 124 (1996) 3653 3661.
[9] T. Marley, The coefficients of the Hilbert polynomial and the reduction number of an ideal J. London Math. Soc. 40 (1989), 1-8.

Source of support: Nil, Conflict of interest: None Declared

