International Journal of Mathematical Archive-3(5), 2012, 1784-1788 MA Available online through <u>www.ijma.info</u> ISSN 2229 - 5046

APPLICATIONS OF δ -PRECONTINUOUS MAPS IN TOPOLOGICAL VECTOR SPACES

E. Edfawy*

Current address: Department of Mathematics, Faculty of Science, Taif University, Taif, KSA Permanent address: Department of Mathematics, Faculty of Science, Assiut University, Assiut, Egypt

(Received on: 17-04-12; Accepted on: 09-05-12)

ABSTRACT

It is shown that linear functional on topological vector spaces are δ -precontinuous. Also we gave some application for δ -precontinuous on topological vector spaces, our results can be viewed as a generalization to the results in [12].

Keywords: δ – Preopen sets, δ – precompact sets, δ – precontinuous maps

1. INTRODUCTION

N. Levine [7] introduced the theory of semi-open sets and the theory of α -sets for topological spaces. For a systematic development of semi-open sets and the theory of α -sets one may refer to [1, 2, 4, 5, 9]. Mashhour et al. in [8] introduced preopen sets and precontinuous functions in topological spaces. On the other hand, Velicko [15] introduced the notion of δ -open sets which are stronger than open sets. Since then, δ -open sets have been widely used in order to introduce new spaces and functions. Recently, Raychaudhuri and Mukherjee [13] have introduced the notions of δ -preopen sets and δ -almost continuity in topological spaces. The class of δ -preopen sets is larger than that of preopen sets. By using δ -preopen sets, in [14], they introduced and investigated δ -pclosed spaces. These concepts above are closely related. It is known that, in a topological space, a set is preopen and semi-open if and only if it is an α -set [10, 11]. In section 2, we show that every linear functional on a topological vector space is δ -precontinuous . In section 3, we define a δ -prebounded set, totally δ -prebounded set, and δ -precompact set in a topological vector space and find the relations between them. In section 4, we show that every topological vector space is a δ -prehausdorff space, and also identify totally δ -prebounded and δ -precompact subset of any topological vector space. Finally our result are extended to the results which found in [12].

2. δ – PRECONTINUOUS MAPS

Definition 2.1 (12): Let X be a topological space. A subset S of X is said to be preopen if $S \subset int(cl(S))$. A preneighbourhood of the point $x \in X$ is any preopen set containing x.

Definition 2.2 (14): Let X be a topological space. A point $x \in X$ is said to be a δ -cluster point of a set S if $S \cap U \neq \emptyset$ for every regular preopen set U containing x.

Definition 2.3: (14) *.Let* X *be a topological space. The set of all* δ *-cluster points of* S *forms the* δ *-preclosure , denoted by precl*_{δ}(S).

Definition 2.4: Let X be a topological vector space. A subset S of X is said to be δ -preopen if $S \subseteq int(cl_{\delta}(S))$ The set of all δ -cluster points of A forms the δ -preclosure, denoted by $precl_{\delta}(A)$. A δ -preneighbourhood of the point $x \in X$ is any δ -preopen set containing x.

Definition 2.5: Let X and Y be topological vector spaces and $f: X \to Y$. The function f is said to be δ -precontinuous if the inverse image $f^{-1}(B)$ of each open set B in Y is a δ -preopen set in X. The function f is said to be δ -preopen if the image f (A) of every open set A in X is δ -preopen in Y.

Lemma 2.1: Let X and Y be topological vector spaces and $f : X \to Y$ linear. The function f is δ -preopen if and only if, for every open set U containing $0 \in X$, $0 \in Y$ is an interior point of $cl_{\delta}(f(U))$.

Proof: Trivial

Theorem 2.1: Let X, Y be topological vector spaces and let Y have the Baire property, that is, whenever $Y = \bigcup_{n=1}^{\infty} B_n$ with closed sets B_n , there is N such that $\operatorname{int}_{\delta}(B_N)$ is nonempty. Let $f : X \to Y$ be linear and f(X) = Y. Then f is δ -preopen.

Proof: Let $U \subset X$ be a neighborhood of 0. There is a neighborhood V of 0 such that $V - V \subset U$. Since V is a neighborhood of 0 we have $X = \bigcup_{n=1}^{\infty} nV$. It follows from linearity and surjectivity of f that $Y = \bigcup_{n=1}^{\infty} nf(V)$. Since Y has the Baire property, there is N such that $\operatorname{cl}_{\delta}(Nf(V)) = \operatorname{Ncl}_{\delta}(f(V))$ contains an open set S which is not empty. Then $\operatorname{cl}_{\delta}(f(V))$ contains the open set $T = \frac{1}{N}S$. It follows that

 $T - T \subset \operatorname{cl}_{\delta}(f(V)) - \operatorname{cl}_{\delta}(f(V)) \subset \operatorname{cl}_{\delta}(f(V) - f(V)) = \operatorname{cl}_{\delta}(f(V - V)) \subset \operatorname{cl}_{\delta}(f(U)).$

The set T - T is open and contains 0. Therefore, $0 \in Y$ is an interior point of $cl_{\delta}(f(U))$. From Lemma 2.1 we conclude that f is δ -preopen.

Note that f can be any linear surjective map. It is not necessary to assume that f is continuous or δ -precontinuous.

Theorem 2.2: Let X, Y be topological vector spaces, and let X have the Baire property. Then every linear map $f: X \to Y$ is δ -precontinuous.

Proof: Let $G = \{(x, f(x)) : x \in X\}$ be the graph of f. The projections $\pi_1 : G \to X$ and $\pi_2 : G \to Y$ are continuous. The projection $\pi_1 : G \to X$ is bijective. It follows from Theorem 2.1 that π_1 is δ -preopen. Therefore, the inverse mapping π_1^{-1} is δ -precontinuous. Then $f = \pi_2 \circ \pi_1^{-1}$ is δ -precontinuous.

Theorem 2.2 shows that many linear maps are automatically precontinuous. Therefore, it is natural to ask for an example of a linear map which is not δ – precontinuous.

Let X = C[0,1] be the vector space of real-valued continuous functions on [0,1] equipped with the norm

$$||f||_{1} = \int_{0}^{1} |f(x)| dx.$$

Let Y = C[0,1] be equipped with the norm

$$||f||_{\infty} = \max_{x \in [0,1]} |f(x)|.$$

Lemma 2.2: The identity operator $T : X \to Y$ is not δ -precontinuous.

Proof: Let $U = \{f \in C[0,1] : ||f||_{\infty} < 1\}$ which is an open subset of Y. Let $cl_{\delta}(U)$ be the closure of U in X. We claim that

$$cl_{\delta}(U) \subset \{ f \in C[0,1] : \| f \|_{\infty} \le 1 \}.$$
 (1)

For the proof, consider a sequence $f_n \in U$ and a function $f \in C[0,1]$ such that $\{f_n\}$ converges to f in X.

Suppose that there is $x_0 \in 0,1$] such that $f(x_0) > 1$. By continuity of f, there are a < b and $\delta > 0$ such that $0 \le a \le x_0 \le b \le 1$ and $f(x) > 1 + \delta$ for $x \in (a,b)$. Then, as $n \to \infty$,

$$(b-a)\delta \le \int_{a}^{b} |f_{n}(x) - f(x)| dx \le \int_{0}^{1} |f_{n}(x) - f(x)| dx \to 0$$

which is a contradiction. Therefore, $f(x) \le 1$ for all $x \in 0,1$. Similarly, we show that $f(x) \ge -1$ for all $x \in 0,1$. Now $0 \in U = T^{-1}(U)$ but U is not δ -preopen in X. We see this as follows. Suppose that U is δ -preopen in X. The sequence $g_n(x) = 2x^n$ converges to 0 in X. Therefore, $g_n \in cl_{\delta}(U)$ for some n and (1) implies $2 = ||g_n||_{\infty} \le 1$ which is a contradiction.

We can improve Theorem 2.2 for linear functionals.

Theorem 2.3: Let f be a linear functional on a topological vector space X. If V is a δ -preopen subset of \mathbb{R} then $f^{-1}(V)$ is a δ -preopen subset of X. In particular, f is δ -precontinuous.

Proof: We distinguish the cases that f is continuous or discontinuous.

Suppose that f is continuous. If f(x) = 0 for all $x \in X$ the statement of the theorem is true. Suppose that f is not zero. We choose $u \in X$ such that f(u) = 1. Let V be a δ -preopen subset of \mathbb{R} , and set $U := f^{-1}(V)$. Let $x \in U$ so $f(x) \in V$. Since V is δ -preopen, there is $\delta > 0$ such that

$$I := (f(x) - \delta, f(x) + \delta) \subset \operatorname{cl}_{\delta}(V).$$
⁽²⁾

Since f is continuous, $f^{-1}(I)$ is an open subset of X containing x. We claim that

$$f^{-1}(I) \subset \operatorname{cl}_{\delta}(U). \tag{3}$$

In order to prove (3), let $y \in f^{-1}(I)$ so $f(y) \in I$. By (2), there is a sequence $\{t_n\}$ in V converging to f(y). Set

$$y_n := y + (t_n - f(y))u.$$

We have $f(y_n) = t_n \in V$ so $y_n \in U$. Since X is a topological vector space, y_n converges to y. This establishes (3). It follows that U is δ -preopen.

Suppose now that f is not continuous. By [3, Corollary 22.1], $N(f) = \{x \in X : f(x) = 0\}$ is not closed. Therefore, there is $y \in \operatorname{cl}(N(f))$ such that $y \notin N(f)$ so $f(y) \neq 0$. Let x be any vector in X. There is $t \in \mathbb{R}$ such that f(x) = tf(y) and so $x - ty \in N(f)$. It follows that $x \in \operatorname{cl}_{\delta}(N(f))$. We have shown that N(f) is dense in X. Let $a \in \mathbb{R}$. There is $y \in X$ such that f(y) = a. Then $f^{-1}(\{a\}) = y + N(f)$ and so the closure of $f^{-1}(\{a\})$ is $y + \operatorname{cl}_{\delta}(N(f)) = X$. Therefore, $f^{-1}(\{a\})$ is dense for every $a \in \mathbb{R}$. Let V be a δ -preopen set in \mathbb{R} . If V is empty then $f^{-1}(V)$ is empty and so is δ -preopen. If V is not empty choose $a \in V$. Then $f^{-1}(V) \supset f^{-1}(\{a\})$ and so $f^{-1}(V)$ is dense. Therefore, $f^{-1}(V)$ is δ -preopen.

3. MAIN RESULTS

We need the following known lemma.

Lemma 3.1: If U, V are two vector spaces, and W is a linear subspace of U and $f : W \to V$ is a linear map. then there is a linear map $g : U \to V$ such that f(x) = g(x) for all $x \in W$. **Proof:** We choose a basis A in W and then extend to a basis $B \supset A$ in U. We define h(a) = f(a) for $a \in A$ and h(b) arbitrary in V for $b \in B - A$. There is a unique linear map $g: U \rightarrow V$ such that g(b) = h(b) for $b \in B$. Then g(x) = f(x) for all $x \in W$.

We obtain the following result.

Theorem 3.1: Every topological vector space X is a δ -prehausdorff space, that is, for each x, $y \in X$, $x \neq y$, there exists a δ -preneighbourhood U of x and a δ -preneighbourhood V of y such that $U \cap V = \emptyset$.

Proof: Let $x, y \in X$ and $x \neq y$. If x, y are linearly dependent we choose a linear functional on the span of $\{x, y\}$ such that f(x) < f(y). If x, y are linearly independent we set f(sx + ty) = t. By Lemma 3.1 we extend f to a linear functional g with g(x) < g(y). Choose $c \in (g(x), g(y))$ and define $U = g^{-1}((-\infty, c))$, and $V = g^{-1}((c, \infty))$. Then, using Theorem 2.3, U, V are δ -preopen. Also U and V are disjoint and $x \in U$, $y \in V$.

We now determine totally δ – prebounded subsets in \mathbb{R} . The result may not be surprising but the proof requires some care.

Lemma 3.2: A subset of \mathbb{R} is totally δ – prebounded if and only if it is finite.

Proof: It is clear that a finite set is totally δ -prebounded. Let E be a countable (finite or infinite) subset of \mathbb{R} which is totally δ -prebounded. Let $A := \{x - y : x, y \in E\}$. The set A is countable. We define a sequence $\{u_n\}$ of real numbers inductively as follows. We set $u_1 = 0$. Then we choose $u_2 \in (-1, 0)$ such that $u_2 - u_1 \not\in A$. Then we choose $u_3 \in (0,1)$ such that $u_3 - u_i \not\in A$ for i = 1, 2. Then we choose $u_4 \in (-1, -\frac{1}{2})$ such that $u_4 - u_i \not\in A$ for i = 1, 2, 3. Continuing in this way we construct a set $U = \{u_n : n \in \mathbb{N}\} \subset (-1, 1)$ such that every interval of the form $(m2^{-k}, (m+1\ 2)^k)$ with $-2^k \leq m < 2^k$, $k \in \mathbb{N}$, contains at least one element of U, and such that $0 \in U$ and $u - v \not\in A$ for all $u, v \in U$, $u \neq v$. Then $cl_{\delta}(U) = [-1,1]$ so U is a δ -preneighborhood of 0. Since E is totally δ -prebounded, there is a finite set F such that $E \subset F + U$. If $z \in F$ and $x, y \in E$ lie in z + U then x = z + u, y = z + v with $u, v \in U$. It follows that $u - v = x - y \in A$ and, by construction of U, u = v. Therefore, x = y and so each set z + U, $z \in F$, contains at most one element of E. Therefore, E is finite. We have shown that every countable set which is totally δ -prebounded is finite. It follows hat every totally δ -prebounded set is finite.

Combining several of our results we can now identify totally δ -prebounded and precompact subset of any topological vector space.

Theorem 3.2: Let X be a topological vector space. A subset of X is totally δ -prebounded if and only if it is finite. Similarly, a subset of X is δ -precompact if and only it is finite.

Proof: Every finite set is totally δ -prebounded. Conversely, suppose that E is a totally δ -prebounded subset of X. Let f be a linear functional on X. It follows easily from Theorem 2.3 that f(E) is a totally δ -prebounded subset of \mathbb{R} . By Lemma 3.2, f(E) is finite. It follows that E is finite as we see as follows. Suppose that E contains a sequence $\{x_n\}_{n=1}^{\infty}$ which is linearly independent. Then, using Lemma 3.1, we can construct a linear functional f on X such that $f(x_n) \neq f(x_m)$ if $n \neq m$. This is a contradiction so E must lie in a finite dimensional subspace Y of X. We choose a basis y_1, \ldots, y_k in Y, and represent each $x \in E$ in this basis $x = f_1(x)y_1 + \ldots + f_k(x)y_k$.

Every f_j is a linear functional on Y so $f_j(E)$ is a finite set for each j = 1, 2, ..., k. It follows that E is finite.

Clearly, every finite set is δ -precompact. Conversely, by Lemma ??, a δ -precompact subset of X is totally δ -prebounded, so it is finite.

REFERENCES

- [1] Andrijevic D., Some properties of the topology of α sets, Mat. Vesnik 36, 1-10, (1984).
- [2] Andrijevic D., Semi-preopen sets, Math. Vesnik 38, 24-32, (1986).
- [3] Berberian S., Lectures in Functional Analysis and Operator Theory, Springer-Verlag, New York 1974.
- [4] Bourbaki N., Topological Vector Spaces. Chapters1-5, Springer- Verlag, 2001.

[5] Dlaska K., Ergun, n. and Ganster, M., On the topology generalized by semi regular sets, Indian. J. Pure Appl. Math. 25 (11), 1163-1170, (1994).

[6] Khedr, F.H., Al-areefl, S. M. and Noiri. T., Precontinuity and semi-precontinuity in bitopological spaces, Indian J. Pure Appl. Math. 23 (9), 625-633 (1992).

[7] Levine, N., Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly 70, 36-41, (1963).

[8] Mashhour, A. S. Abd El-Monsef, M. E. and El-Deep, S.N., On precontinuous Band weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt 53, 47-53, (1982).

[9] Maheshwari, S. N. and Prasad, R., semi-open sets and semicontinuous functions in bitopological spaces, Math. Notae 26, 29-37, (1977/78).

[10] Noiri, T., On α – continuous functions, Casopis Pest. Math. 109, 118-126, (1984).

[11] Reilly, I. L. and Vamanamurthy, M. K., On α continuity in topological spaces, Univ. auckland Report Ser. 193, (1982).

[12] Elagan, S.K, Smaranndachely precontuinous maps and preopen sets in topological vector spaces, International J.Math. Combin.(.2), 21-26, (2009).

[13] Raychaudhuri, S. and Mukherjee, M. N. , On δ -almost continuity and δ -preopen sets, Bull. Inst. Math. Acad. Sinica, 21(1993), 357-366.

[14] Raychaudhuri, S. and Mukherjee, M. N, δ – pclosedness for topological spaces, J. Indian Acad. Math., 18(1996), 89-99.

[15] Velicko, N. V., H-closed topological spaces, Mat. Sb. 70(1966), 98-112; English transl., in Amer. Math. Soc. Transl., 78(2)(1968), 102-118.

Source of support: Nil, Conflict of interest: None Declared