International Journal of Mathematical Archive-3(4), 2012, Page: 1728-1742

 Available online through www.ijma.info ISSN 2229-5046
 DUAL GRAPHS AND CELLULAR FOLDING OF 2-MANIFOLDS

E. M. El-Kholy ${ }^{1}$ \& S. N. Daoud ${ }^{2,3}{ }^{3}$
${ }^{1}$ Department of Mathematics, Faculty of Science, Tanta University, Tanta, Egypt
${ }^{2}$ Department of Mathematics, Faculty of Science, El-Minufiya University, Shebeen EI-Kom, Egypt
${ }^{3}$ Department of Applied Mathematics, Faculty of Applied Science, Taibah University, Al-Madinah, K.S.A.
E-mail: salama_nagy2005@ahoo.com

(Received on: 31-03-12; Accepted on: 27-04-12)

Abstract

In this paper we have constructed dual graphs associated with the cellular folding in a natural way. Then we obtained the condition under which we may have a successive foldings of a CW-complex into itself. We also obtained the conditions for a cartesian product and a wedge sum of two cellular foldings to be a cellular folding. These conditions are obtained in terms of the dual graphs and by using the above results we also obtained some other results.

Keywords: Cellular folding, Dual graph, Cartesian product, Wedge sum, Suspension.
2001 Mathematics subject classification: 51H10. 57H10.

1. INTRODUCTION

A cellular folding is a folding defined on regular CW-complexes first defined by, E. El-Kholy and H. Al-Khurasani, [1] and various properties of this type of folding are also studied by them.

By a cellular folding of regular $C W$-complexes, it is meant a cellular map $f: K \rightarrow L$ which maps i-cells of K to i cells of L and such that $f \mid e^{i}$, for each i-cell e, is a homeomorphism onto its image.

The set of regular $C W$-complexes together with cellular foldings form a category denoted by $C(K, L)$. If $f \in C(K, L)$; then $x \in K$ is said to be a singularity of f iff f is not a local homeomorphism at x. The set of all singularities of f is denoted by $\sum f$. This set corresponds to the "folds" of the map. It is noticed that for a cellular folding f, the set $\sum f$ of singularities of f is a proper subset of the union of cells of dimension $\leq n-1$. Thus, when we consider any $f \in C(K, L)$, where K and L are connected regular $C W$-complexes of dimension 2, the set $\sum f$ will consists of 0 -cells, and 1-cells, each 0 -cell (vertex) has an even valency, [2, 3], of course, $\sum f$ need not to be connected. Thus in this case $\sum f$ has the structure of a locally finite graph Γ_{f} embedded in K, for which every vertex has an even valency. Note that if K is compact, then Γ_{f} is finite, also any compact connected 2-manifold without boundary (surface) K with a finite cell decomposition is a regular CW-complex, then the 0 - and 1 -cells of the decomposition K form a finite graph Γ_{f} without loops and f folds K along the edges or 1-cells of Γ_{f}.

Now a neat cellular folding $f: K \rightarrow L$ is a cellular folding such that $L^{n}-L^{n-1}$ consists of a single n-cell, Int L, [2].

2. DEFINITIONS

Let $f \in C(K, L)$, then there is a cellular subdivision S on K by singularities of f. In the following we give the definition of the dual graph Γ_{f}^{*} associated to this stratification in a natural way.

[^0]In fact the vertices of the graph Γ_{f}^{*} are just the n-cells of S and the edges are some $(n-1)$ cells. An edge $E \in S_{n-1}$ means that E lies in the frontiers of exactly two n-cells $\gamma, \gamma^{\prime} \in S_{n}$ where $f(\gamma)=f\left(\gamma^{\prime}\right)$ such that $E, E^{\prime} \in S_{n-1}$ are equivalent (the same) iff both E and E^{\prime} lies in the frontier of γ and γ^{\prime} and $\partial(\gamma)=\partial\left(\gamma^{\prime}\right)$ contains more than ($n-1$) -cells. We then say that E is an edge in Γ_{f}^{*} with end points γ, γ^{\prime}. It is possible to realize Γ_{f}^{*} as a graph $\tilde{\Gamma}_{f}^{*}$ embedded in K as follows:

For each n-cell $\gamma \in S_{n}$, we choose any point $u \in \gamma$. If $\gamma, \gamma^{\prime} \in S_{n}$ are end points of $E \in S_{n-1}$, then we can join u to v by an arc \tilde{E} in K that runs from u through γ and γ^{\prime} to v crossing E transversely at a single point. Trivially, the correspondence $\gamma \rightarrow u, E \rightarrow \tilde{E}$ is a graph isomorphism from Γ_{f}^{*} to $\tilde{\Gamma}_{f}^{*}$. It should be noted that the graph Γ_{f}^{*} has no multiple edges, no loops and generally disconnected. It will be connected in the case of neat cellular foldings, since all the n-cells will be send to the same n-cell. The graph Γ_{f}^{*} is the dual graph of Γ_{f}.

If (M, N) is a $C W$-pair consisting of a cell complex M and a subcomplex N, then the quotient space M / N inherits a natural cell complex structure from M. The cells of M / N are the cells of $M-N$ plus one new 0 -cell, the image of N in M / N, [4].

The suspension $S M$ of a complex M is the union of all line segments joining points of M to two external vertices, [4].

2-1 Examples

(a) Consider a complex K such that $|K|$ is a torus with cellular subdivision consisting of eight 0-cells, sixteen 1-cells and eight 2-cells, let $f: K \rightarrow K$ be a cellular folding given by

$$
\begin{aligned}
& f\left(e_{1}^{0}, \ldots, e_{8}^{0}\right)=\left(e_{1}^{0}, e_{2}^{0}, e_{3}^{0}, e_{4}^{0}, e_{2}^{0}, e_{1}^{0}, e_{3}^{0}, e_{4}^{0}\right) \\
& f\left(e_{1}^{2}, \ldots, e_{8}^{2}\right)=\left(e_{1}^{2}, e_{2}^{2}, e_{1}^{2}, e_{2}^{2}, e_{1}^{2}, e_{2}^{2}, e_{1}^{2}, e_{2}^{2}\right)
\end{aligned}
$$

$f(X)$

Fig. (1)
In this case the dual folding graph Γ_{f}^{*} is as shown in Fig. (2)

Fig. (2) : The dual folding graph $\boldsymbol{\Gamma}_{\boldsymbol{f}}^{\boldsymbol{*}}$.
(b) Let K be a complex such that $|K|$ is a cylinder with cellular subdivision consisting of eight vertices, sixteen 1-cells and eight 2-cells, see Fig. (3). Let $f: K \rightarrow K$ be a cellular folding given by:

$$
\begin{array}{ll}
f(a, b, c, d, e, f, g, h) & =(a, b, c, b, e, f, g, f) \\
f\left(\sigma_{i}\right)=\sigma_{7}, & i=1, \ldots, 7
\end{array}
$$

Fig. (3)
The dual folding graph Γ_{f}^{*} is as shown in Fig. (4), it is a connected graph.

Fig. (4) : The dual folding graph $\boldsymbol{\Gamma}_{\boldsymbol{f}}^{*}$.

3. MAIN RESULTS

The following theorem gives the condition satisfied by the dual graphs in order to have a successive folding of CWcomplex into itself.

Theorem 1: Let K, L and M be regular $C W$-complexes of the same dimension 2, such that $M \subset L \subset K$, let $f: K \rightarrow K, g: L \rightarrow L$ be cellular foldings such that $f(K)=L \neq K$ and $g(L)=M \neq L$ with dual folding graphs $\Gamma_{f}^{*}=\left(V_{f}, E_{f}\right)$ and $\Gamma_{g}^{*}=\left(V_{g}, E_{g}\right)$. Then $g \circ f$ is a cellular folding from K into M with dual folding graph $\Gamma_{g \circ f}^{*}=(V, E)$ such that $\Gamma_{g \circ f}^{*}=\Gamma_{f}^{*} \cup f^{-1}\left(\Gamma_{g}^{*}\right)$.

Proof: Let $f: K \rightarrow L, g: L \rightarrow M$ be cellular foldings, then K and L have stratifications S, S^{\prime} respectively, such that $V_{f}=\{n$ - cells of $S\}$ and $V_{g}=\left\{n-\right.$ cells of $\left.S^{\prime}\right\}$ where $S^{\prime} \subset S$. But the composition map $g \circ f$ has the same stratification S on K i.e., $V_{g \circ f}=V_{f}$.

Also if $e \in E$, then $e \in S_{n-1}$ and lies in the frontier of exactly two n-cells $\gamma, \gamma^{\prime} \in S_{n}$ such that $(g \circ f)(\gamma)=(g \circ f)\left(\gamma^{\prime}\right)$, thus $g(f(\gamma))=g\left(f\left(\gamma^{\prime}\right)\right)$ where $f(\gamma)$ and $f\left(\gamma^{\prime}\right) \in S_{n}^{\prime}$. Now there are three cases:
(1) $f(\gamma)=f\left(\gamma^{\prime}\right)=\sigma \in S_{n}^{\prime}$, then there exists an edge belongs to E_{f} lies in the frontier of γ and γ^{\prime}.
(2) $f(g)=\sigma \neq f\left(\gamma^{\prime}\right)=\sigma^{\prime}$ and $g(\sigma)=g\left(\sigma^{\prime}\right)=\alpha$, then there exists an edge belongs two E_{g} lies in the frontier of σ and σ^{\prime}.

E. M. EI-Kholy ${ }^{1}$ \& S. N. Daoud ${ }^{2,3^{*}}$ / Dual graphs and cellular folding of 2-manifolds/IJMA- 3(4), April-2012, Page: 1728-1742

(3) $f(\gamma)=\sigma \neq f\left(\gamma^{\prime}\right)=\sigma^{\prime}$ and $g(\sigma)=g\left(\sigma^{\prime}\right)=\sigma$ or $g(\sigma)=g\left(\sigma^{\prime}\right)=\sigma^{\prime}$, then there exists an edge belongs to E^{\prime} where $E^{\prime} \cup E_{g}=f^{-1}\left(E_{g}\right)$, lies in the frontier of σ and σ^{\prime}.

We conclude from the above possibilities that $E=E_{f} \cup f^{-1}\left(E_{g}\right)$. Thus we have $\Gamma_{g \circ f}^{*}=\Gamma_{f}^{*} \cup f^{-1}\left(\Gamma_{g}^{*}\right)$.
The above theorem can be generalized for a finite series of cellular foldings.

3-1 Example

Let K be a complex such that $|K|$ is a torus with cellular subdivision consisting of eight 0 -cells, twenty 1 -cells and sixteen 2-cells. Let $f: K \rightarrow K$ be a cellular folding given by:

$$
\begin{aligned}
& f\left(e_{1}^{0}, \ldots, e_{8}^{0}\right)=\left(e_{1}^{0}, e_{2}^{0}, e_{3}^{0}, e_{4}^{0}, e_{5}^{0}, e_{6}^{0}, e_{3}^{0}, e_{4}^{0}\right) \\
& \quad f\left(e_{1}^{2}, \ldots, e_{16}^{2}\right)=\left(e_{1}^{2}, e_{2}^{2}, e_{3}^{2}, e_{4}^{2}, e_{5}^{2}, e_{6}^{2}, e_{7}^{2}, e_{8}^{2}, e_{1}^{2}, e_{2}^{2}, e_{3}^{2}, e_{4}^{2}, e_{7}^{2}, e_{8}^{2}, e_{5}^{2}, e_{6}^{2}\right)
\end{aligned}
$$

Fig. (5)
The dual folding graph Γ_{f}^{*} is as shown in Fig. (6)

Fig. (6) : The dual folding graph $\boldsymbol{\Gamma}_{\boldsymbol{f}}^{*}$.
Now let $g: L \rightarrow L$ be a cellular folding where $L=f(K)$, defined by:

$$
\begin{aligned}
& g\left(e_{1}^{0}, \ldots, e_{6}^{0}\right)=\left(e_{1}^{0}, e_{2}^{0}, e_{3}^{0}, e_{4}^{0}, e_{2}^{0}, e_{1}^{0}\right) \\
& g\left(e_{1}^{2}, \ldots, e_{8}^{2}\right)=\left(e_{1}^{2}, e_{2}^{2}, e_{3}^{2}, e_{4}^{2}, e_{3}^{2}, e_{4}^{2}, e_{1}^{2}, e_{2}^{2}\right)
\end{aligned}
$$

L

$g(L)=M$

Fig. (7)

E. M. El-Kholy ${ }^{1}$ \& S. N. Daoud ${ }^{2,3^{*}} /$ Dual graphs and cellular folding of 2-manifolds/IJMA- 3(4), April-2012, Page: 1728-1742

The dual folding graph Γ_{g}^{*} is as shown in Fig. (8)

Fig. (8) : The dual folding graph $\boldsymbol{\Gamma}_{\boldsymbol{g}}^{*}$.
Then by theorem (1) $g \circ f$ is a cellular folding and the dual folding graph of $g \circ f: K \rightarrow M$ is as shown in Fig. (9).

Fig. (9) : The dual folding graph $\boldsymbol{\Gamma}_{\boldsymbol{g} \boldsymbol{f}}^{*}=\boldsymbol{\Gamma}_{\boldsymbol{f}}^{*} \cup \boldsymbol{f}^{-1}\left(\boldsymbol{\Gamma}_{\boldsymbol{g}}^{*}\right)$.
Again, let $h: M \rightarrow M, h(M)=N \neq M$ be a cellular folding defined by:

$$
h\left(e_{1}^{0}, e_{2}^{0}, e_{3}^{0}, e_{4}^{0}\right)=\left(e_{1}^{0}, e_{2}^{0}, e_{3}^{0}, e_{4}^{0}\right), h\left(e_{1}^{2}, e_{2}^{2}, e_{3}^{2}, e_{4}^{2}\right)=\left(e_{1}^{2}, e_{1}^{2}, e_{3}^{2}, e_{3}^{2}\right)
$$

Fig. (10)
The dual folding graph Γ_{h}^{*} is as shown in Fig. (11)

Fig. (11) : The dual folding graph $\boldsymbol{\Gamma}_{\boldsymbol{h}}^{*}$.

Then by theorem (1) $h \circ g \circ f$ is a cellular folding and the dual folding graph $\Gamma_{h \circ g \circ f}^{*}$ is as shown in Fig. (12).

Fig. (12) : $\boldsymbol{\Gamma}_{\boldsymbol{b} \circ g \circ f}^{*}=\boldsymbol{\Gamma}_{f}^{*} \cup f^{-1}\left(\Gamma_{g}^{*}\right) \cup(g \circ f)^{-1}\left(\Gamma_{h}^{*}\right)$.
Again, let $k: N \rightarrow N, k(N)=X \neq N$ be a cellular folding defined by:

$$
\begin{aligned}
& k\left(e_{1}^{0}, e_{2}^{0}, e_{3}^{0}, e_{4}^{0}\right)=\left(e_{1}^{0}, e_{2}^{0}, e_{3}^{0}, e_{1}^{0}\right) \\
& k\left(e_{1}^{2}, e_{3}^{2}\right)=\left(e_{1}^{2}, e_{1}^{2}\right)
\end{aligned}
$$

Fig. (13)
The dual folding graph Γ_{k}^{*} is as shown in Fig. (14).

Fig. (14): The dual folding graph $\boldsymbol{\Gamma}_{\boldsymbol{k}}^{*}$
Again by theorem (1) $k \circ h \circ g \circ f$ is a cellular folding and the dual folding graph $\Gamma_{k \circ h \circ g \circ f}^{*}$ is as shown in Fig. (15).

Fig. (15) : $\Gamma_{k \circ \infty \circ g \circ f}^{*}=\Gamma_{f}^{*} \cup f^{-1}\left(\Gamma_{g}^{*}\right) \cup(g \circ f)^{-1}\left(\Gamma_{h}^{*}\right) \cup(h \circ g \circ f)^{-1}\left(\Gamma_{k}^{*}\right)$.

E. M. El-Kholy ${ }^{1}$ \& S. N. Daoud ${ }^{2,3^{*}}$ / Dual graphs and cellular folding of 2-manifolds/ IJMA- 3(4), April-2012, Page: 1728-1742

Corollary 1: Let K, L and M be complexes of the same dimension 2 such that $M \subset L \subset K$, let $f: K \rightarrow L$ be a cellular folding with dual folding graph $\Gamma_{f}^{*}=\left(V_{f}, E_{f}\right), g: L \rightarrow M$ be a cellular map and $h=g \circ f: K \rightarrow M$ be a cellular folding with dual folding graph $\Gamma_{h}^{*}=\left(V_{h}, E_{h}\right)$. Then $g: L \rightarrow M$ is a cellular folding with dual folding graph $\Gamma_{g}^{*}=\left(V_{g}, E_{g}\right)$ such that $\Gamma_{g}^{*}=f\left[\Gamma_{h}^{*} \backslash E_{f}\right]$.

3-2 Example

Consider a complex on $|K|=S^{2}$, with cellular subdivision consisting of six 0-cells, twelve 1-cells and eight 2-cells, let $f: K \rightarrow K$ be a cellular folding defined by:

$$
\begin{aligned}
& f\left(e_{1}^{0}, \ldots, e_{6}^{0}\right)=\left(e_{1}^{0}, e_{2}^{0}, e_{3}^{0}, e_{4}^{0}, e_{5}^{0}, e_{1}^{0}\right) \\
& f\left(e_{1}^{1}, \ldots, e_{12}^{1}\right)=\left(e_{1}^{1}, e_{2}^{1}, e_{3}^{1}, e_{4}^{1}, e_{5}^{1}, e_{6}^{1}, e_{7}^{1}, e_{8}^{1}, e_{3}^{1}, e_{4}^{1}, e_{1}^{1}, e_{2}^{1}\right) \\
& f\left(e_{1}^{2}, \ldots, e_{8}^{2}\right)=\left(e_{1}^{2}, e_{2}^{2}, e_{3}^{2}, e_{4}^{2}, e_{3}^{2}, e_{4}^{2}, e_{1}^{2}, e_{2}^{2}\right)
\end{aligned}
$$

In this case $f(K)=L$ is a complex with five 0-cells, eight 1-cells and four 2-cells, see Fig. (16).

Fig. (16)
The dual folding graph Γ_{f}^{*} is as shown in Fig. (17).

Fig. (17): The dual folding graph $\boldsymbol{\Gamma}_{\boldsymbol{f}}^{*}$.
Now, let $h: K \rightarrow K$ be a cellular folding defined by:

$$
\begin{aligned}
& h\left(e_{1}^{0}, \ldots, e_{6}^{0}\right)=\left(e_{1}^{0}, e_{2}^{0}, e_{3}^{0}, e_{2}^{0}, e_{3}^{0}, e_{1}^{0}\right) \\
& h\left(e_{1}^{1}, \ldots, e_{12}^{1}\right)=\left(e_{4}^{1}, e_{3}^{1}, e_{3}^{1}, e_{4}^{1}, e_{8}^{1}, e_{8}^{1}, e_{8}^{1}, e_{8}^{1}, e_{3}^{1}, e_{4}^{1}, e_{4}^{1}, e_{3}^{1}\right), h\left(e_{i}^{2}\right)=\left(e_{1}^{2}\right), \quad i=1, \ldots, 8
\end{aligned}
$$

E. M. EI-Kholy ${ }^{1}$ \& S. N. Daoud ${ }^{2,3^{*}}$ / Dual graphs and cellular folding of 2-manifolds/IJMA- 3(4), April-2012, Page: 1728-1742

$h(K)=M$

Fig. (18)
The dual folding graph Γ_{h}^{*} is as shown in Fig. (19).

Fig. (19): The dual folding graph $\boldsymbol{\Gamma}_{\boldsymbol{h}}^{*}=\boldsymbol{\Gamma}_{\boldsymbol{g} \mathrm{f} \boldsymbol{f}}^{\boldsymbol{f}}$
Then by corollary (1) $g: L \rightarrow M$ is a cellular folding with dual folding graph is as shown in Fig. (20).

Fig. (20): $\boldsymbol{\Gamma}_{\boldsymbol{g}}^{\boldsymbol{*}}=\boldsymbol{f}\left[\boldsymbol{\Gamma}_{\boldsymbol{h}}^{*} \backslash \boldsymbol{E}_{\boldsymbol{f}}\right]$
The following theorem gives the condition satisfied by dual graphs in order to have the cartesian product of two cellular foldings is a cellular folding.

Theorem 2: Let K, L, M, and N be regular $C W$-complexes of the same dimension 2, let $f: K \rightarrow M$ and $g: L \rightarrow N$ be cellular foldings with dual folding graphs $\Gamma_{f}^{*}=\left(V_{f}, E_{f}\right)$ and $\Gamma_{g}^{*}=\left(V_{g}, E_{g}\right)$ respectively. Then $f \times g: K \times L \rightarrow M \times N$ is a cellular folding with dual folding graph $\Gamma_{f \times g}^{*}=(V, E)$ such that $\Gamma_{f \times g}^{*}=\Gamma_{f}^{*} \times \Gamma_{g}^{*}$. i.e., $V=V_{f} \times V_{g}, E=\left(V_{f} \times E_{g}\right) \bigcup\left(V_{g} \times E_{f}\right)$.

Proof: Let $f: K \rightarrow M, g: L \rightarrow N$ be cellular foldings, then K and L have stratifications S, S^{\prime} respectively such that $V_{f}=\{n$-cells of $S\}$ and $V_{g}=\left\{n\right.$-cells of $\left.S^{\prime}\right\}$. The map $f \times g: K \times L \rightarrow M \times N$ is a cellular folding iff there exists another stratification $S^{\prime \prime}$ on $K \times L$ such that $S^{\prime \prime}=S_{n} \times S_{n}^{\prime}$, thus $V_{f \times g}=V_{f} \times V_{g}$.

Now let $e \in E$, then $e \in S_{n-1}^{\prime \prime}$ and lies in the frontier of exactly two n-cells $\gamma, \gamma^{\prime} \in S_{n}^{\prime \prime}, \gamma=(u, v), \gamma^{\prime}=\left(u^{\prime}, v^{\prime}\right)$ such that $(f \times g)(\gamma)=(f \times g)\left(\gamma^{\prime}\right)$ or $(f \times g)(u, v)=(f \times g)\left(u^{\prime}, v^{\prime}\right)$. Then there are two cases:
(1) $f(u)=f\left(u^{\prime}\right), u, u^{\prime} \in S_{n}$, then there exists an edge belongs to E_{f} lies in the frontier of u and u^{\prime}.
(2) $g(v)=g\left(v^{\prime}\right), v, v^{\prime} \in S_{n}^{\prime}$, then there exists an edge belongs to E_{g} lies in the frontier of v and v^{\prime}.

Thus u and u^{\prime} are incident with an edge belongs to E_{f} and v, v^{\prime} are incident with an edge belongs to E_{g}.

Then E will be take the form $E=\left(V_{f} \times E_{g}\right) \bigcup\left(V_{g} \times E_{f}\right)$. Therefore

$$
\Gamma_{f \times g}^{*}=\Gamma_{f}^{*} \times \Gamma_{g}^{*}
$$

The above theorem can be generalized for a finite number of cellular foldings.

3-3 Examples

(a) Consider K and L are complexes such that $\mid K\}=|L|=S^{1}$, with cellular subdivision given as shown in Fig. (21), and let $f: K \rightarrow K, g: L \rightarrow L$ be neat cellular foldings which squash K and L respectively to a 1-cell and two 0 -cells.

Fig. (21)

Now, $f \times g: K \times L \rightarrow K \times L$ is a neat cellular folding with dual folding graph $\Gamma_{f \times g}^{*}$ is as shown in Fig. (22).
Fig. (22).

$$
(f \times g)(K \times L) \quad \Gamma_{f \times g}^{*}=\Gamma_{f}^{*} \times \Gamma_{g}^{*}
$$

E. M. EI-Kholy ${ }^{1}$ \& S. N. Daoud ${ }^{2,3^{*}}$ / Dual graphs and cellular folding of 2-manifolds/IJMA- 3(4), April-2012, Page: 1728-1742

Corollary 2: Let $M, N, M_{1}, M_{2}, N_{1}, N_{2}$ be complexes of the same dimension and let $f: M \rightarrow M_{1}$, $g: N \rightarrow N_{1}, h: M_{1} \rightarrow M_{2}$ and $k: N_{1} \rightarrow N_{2}$ be cellular foldings with dual folding graphs $\Gamma_{f}^{*}, \Gamma_{g}^{*}, \Gamma_{h}^{*}$ and Γ_{k}^{*} respectively. Then $(h \times k) \circ(f \times g)=(h \circ f) \times(k \circ g)$ is a cellular folding with dual folding graphs $\Gamma_{(h \times k) \circ(f \times g)}^{*}=\Gamma_{f \times g}^{*} U(f \times g)^{-1}\left(\Gamma_{h \times k}^{*}\right)=\Gamma_{(h \circ f) \times(k \circ g)}^{*}=\Gamma_{h \circ f}^{*} \times \Gamma_{k \circ g}^{*}$.

3-4 Example

Suppose $M, N, M_{1}, M_{2}, N_{1}, N_{2}$ are complexes such that $|M|=S^{1},|N|=\left|M_{1}\right|=\left|M_{2}\right|=\left|N_{1}\right|=\left|N_{2}\right|=I$, with cell decompositions shown in Fig. (23). Suppose $f: M \rightarrow M_{1}, h: M_{1} \rightarrow M_{2}, g: N \rightarrow N_{1}$ and $k: N_{1} \rightarrow N_{2}$ are cellular foldings.

Fig. (23)

The cellular foldings $(f \times g),(h \times k)$ and the dual folding graphs $\Gamma_{f \times g}^{*}, \Gamma_{h \times k}^{*}, \Gamma_{(h \times k) \circ(f \times g)}^{*}$ are as shown in Fig. (24).

Fig. (24)
Also the cellular foldings $h \circ f, k \circ g$ and the dual folding graphs $\Gamma_{h \circ f}^{*}, \Gamma_{k \circ g}^{*}, \Gamma_{(h \circ f) \times(k \circ g)}^{*}$ are as shown in Fig. (25).

M

$(h \circ f)(M)=M_{2}$

$\Gamma_{h o f}^{*}$

N
$(k \circ g)(N)=N_{2}$

$$
\left.\Gamma_{(\text {hof }}^{*}\right)(k \log)=\Gamma_{\text {bof }}^{*} \times \Gamma_{\text {kog }}^{*}
$$

Fig. (25)

The following theorem gives the condition satisfied by the dual graphs in order to have the wedge sum of two cellular folding is a cellular folding.

Theorem 3: Let $M, N, \quad K$ and L be regular $C W$-complexes of the same dimension, let $f: M \rightarrow M, f(M)=N \neq M$ and $g: K \rightarrow K, g(K)=L \neq K$ be cellular foldings with dual folding graphs $\Gamma_{f}^{*}=\left(V_{f}, E_{f}\right)$ and $\Gamma_{g}^{*}=\left(V_{g}, E_{g}\right)$ respectively. Then the wedge sum $f \vee g: M \vee K \rightarrow N \vee L$ is a cellular folding with dual folding graph $\Gamma_{f \vee g}^{*}=(V, E)$ such that $\Gamma_{f \vee g}^{*}=\Gamma_{f}^{*}+\Gamma_{g}^{*}$.

Proof: Let $f: K \rightarrow M, g: L \rightarrow N$ be cellular foldings, then K and L have stratifications S, S^{\prime} respectively such that $V_{f}=\{n$ - cells of $S\}$ and $V_{g}=\left\{n\right.$ - cells of $\left.S^{\prime}\right\}$ where $S \cap S^{\prime}=$ one 0 -cell.

The map $f \vee g: K \vee L \rightarrow M \vee N$ is a cellular folding iff there exists another stratification $S^{\prime \prime}$ on $K \vee L$ such that $S_{n}^{\prime \prime}=S_{n}+S_{n}^{\prime}$, thus $V_{f \vee g}=V_{f}+V_{g}$.

Now let $e \in E$, then $e \in S_{n-1}^{\prime \prime}$ and lies in the frontier of exactly two n-cells $\gamma, \gamma^{\prime} \in S_{n}^{\prime \prime}$ such that $(f \vee g)(\gamma)=(f \vee g)\left(\gamma^{\prime}\right)$. Then there are two cases:
(1) $f(\gamma)=f\left(\gamma^{\prime}\right), \gamma, \gamma^{\prime} \in S_{n}$, then there exists an edges to E_{f} lies in the frontier of γ and γ^{\prime}.
(2) $g(\gamma)=g\left(\gamma^{\prime}\right), \gamma, \gamma^{\prime} \in S_{n}^{\prime}$, then there exists an edge belongs to E_{g} lies in the frontier of γ and γ^{\prime}.

We conclude from the above possibilities that $E=E_{f}+E_{g}$. Thus $\Gamma_{f \vee g}^{*}=\Gamma_{f}^{*}+\Gamma_{g}^{*}$.
The above theorem can be generalized for a finite number of cellular foldings.

3-5 Example

Consider M and K are complexes such that $|M|=|K|=S^{1}$ with cell decompositions given in Fig. (26) and let $f: M \rightarrow M, g: K \rightarrow K$ be neat cellular foldings which squash M and K respectively to a 1-cell and two 0-cells.

Fig. (26)

Then the wedge sum $f \vee g: M \vee K \rightarrow N \vee L$ is a cellular folding with dual folding graph $\Gamma_{f \vee g}^{*}$ is as shown in Fig. (27).

Fig. (27)
Lemma 1: Let M be a regular $C W$-complex of dimension $2, N \subset M$, let $f: M \rightarrow M$ be a cellular folding with dual folding graph $\Gamma_{f}^{*}=\left(V_{f}, E_{f}\right)$. Then $g: M / N \rightarrow M / N$ is a cellular folding with dual folding graph $\Gamma_{g}^{*}=\left(V_{g}, E_{g}\right)$ such that $\Gamma_{g}^{*}=\Gamma_{f}^{*}$.

3-6 Example

Let $M=D^{2}$ be a disc with cellular subdivision consisting of five 0-cells, eight 1-cells and four 2-cells, and let $N=S^{1}=\partial\left(D^{2}\right), f: D^{2} \rightarrow D^{2}$ be a cellular folding defined by

$$
\begin{aligned}
& f\left(e_{1}^{0}, e_{2}^{0}, e_{3}^{0}, e_{4}^{0}, e_{5}^{0}\right)=\left(e_{1}^{0}, e_{2}^{0}, e_{3}^{0}, e_{2}^{0}, e_{3}^{0}\right) \\
& f\left(e_{1}^{1}, e_{2}^{1}, e_{3}^{1}, e_{4}^{1}, e_{5}^{1}, e_{6}^{1}, e_{7}^{1}, e_{8}^{1}\right)=\left(e_{1}^{1}, e_{1}^{1}, e_{3}^{1}, e_{3}^{1}, e_{5}^{1}, e_{5}^{1}, e_{5}^{1}, e_{5}^{1}\right), \\
& f\left(e_{i}^{2}\right)=\left(e_{1}^{2}\right), \quad i=1,2,3,4
\end{aligned}
$$

Fig. (28)

Then $g: D^{2} / N \rightarrow D^{2} / N$ is a cellular folding defined by:

$$
\begin{aligned}
& g\left(e_{1}^{0}, e_{6}^{0}\right)=\left(e_{1}^{0}, e_{6}^{0}\right) \\
& g\left(e_{1}^{1}, e_{2}^{1}, e_{3}^{1}, e_{4}^{1}\right)=\left(e_{1}^{1}, e_{1}^{1}, e_{3}^{1}, e_{3}^{1}\right) \\
& g\left(e_{i}^{2}\right)=\left(e_{1}^{2}\right), \quad i=1,2,3,4
\end{aligned}
$$

$g\left(D^{2} / S^{1}\right)$

$$
\Gamma_{g}^{*}=\Gamma_{f}^{*}
$$

Fig. (29)
Lemma 2: Let M and N be regular $C W$-complexes of the same dimension, let $f: M \rightarrow N$ be cellular folding with dual folding graph $\Gamma_{f}^{*}=\left(V_{f}, E_{f}\right)$. Then the suspension map $g=S f: S M \rightarrow S N$ is a cellular folding with dual folding graph $\Gamma_{g}^{*}=\left(V_{g}, E_{g}\right)$ such that $\Gamma_{g}^{*}=\Gamma_{f}^{*}+\Gamma_{f}^{*}$.

3-7 Example

Let M be a complex such that $|M|=S^{1}$ with cellular subdivision consisting of four 0-cells and four 1-cells and let $f: M \rightarrow M$ be a cellular folding defined by:

$$
f\left(e_{1}^{0}, e_{2}^{0}, e_{3}^{0}, e_{4}^{0}\right)=\left(e_{1}^{0}, e_{4}^{0}, e_{1}^{0}, e_{4}^{0}\right), f\left(e_{1}^{1}, e_{2}^{1}, e_{3}^{1}, e_{4}^{1}\right)=\left(e_{4}^{1}, e_{4}^{1}, e_{4}^{1}, e_{4}^{1}\right)
$$

E. M. El-Kholy ${ }^{1}$ \& S. N. Daoud ${ }^{2,3} 3^{*} /$ Dual graphs and cellular folding of 2-manifolds/IJMA- 3(4), April-2012, Page: 1728-1742

Fig. (30)
Then $g=S f: S M \rightarrow S N$ is a cellular folding defined by:

$$
\begin{aligned}
& g\left(e_{1}^{0}, e_{2}^{0}, e_{3}^{0}, e_{4}^{0}, e_{5}^{0}, e_{6}^{0}\right)=\left(e_{1}^{0}, e_{4}^{0}, e_{1}^{0}, e_{4}^{0}, e_{5}^{0}, e_{6}^{0}\right), \\
& g\left(e_{1}^{2}, \ldots, e_{8}^{2}\right)=\left(e_{1}^{2}, e_{1}^{2}, e_{1}^{2}, e_{1}^{2}, e_{5}^{2}, e_{5}^{2}, e_{5}^{2}, e_{5}^{2}\right)
\end{aligned}
$$

Fig. (31)

REFERENCES

[1] El-Kholy, E. M and Al-Khurasani, H. A. Folding of CW-complexes, J. Inst. Math. \& Comp. Sci. (Math. Ser.) Vol. 4, No. 1, pp. 41-48, India (1999).
[2] El-Kholy, E. M and Shahin, R. M. Cellular folding, J. Inst. Math. \& Comp. Sci. (Math. Ser.) Vol. 11, No. 3, pp. 177-181, India (1998).
[3] M. R. Zeen El-Deen, Cellular and Fuzzy folding, Ph. D. Thesis, Tanta Univ. Egypt. (2000).
[4] Allen Hatcher, Algebraic Topology, Cambridge University Press, London (2002).

[^0]: *Corresponding author: S. N. Daoud*, * E-mail: salama_nagy2005@ahoo.com

