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ABSTRACT 

The unsteady state flow of a visco elastic fluid of a second order type over an inclined porous plate has been examined in this 

paper when a uniform tangential force F  acts on the free surface for a finite interval of time.  In the fitness of the situation the 

gravitational force that acts on the system has been taken into account. Throughout the analysis, the angle of inclination is held 

constant at an angle of .6/π  It is noticed that as the visco elasticity increases, the skin friction is found to be gradually 

decreasing and thereafter remains almost constant. An interesting situation is that, as the porosity of the bounding surface 

increases, the skin friction is found to be in the decreasing trend.  Initially, for the small values of visco elasticity, a relatively 

significant change in the skin friction is observed.  The effect of various flow entities that affects the skin friction has been 

analyzed and they are illustrated graphically. 
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INTRODUCTION: 

Due to wide ranging applications in the fields of Physics, Chemistry, and Chemical Technology and in situations 

demanding efficient transfer of mass over inclined beds, the viscous drainage over an inclined rigid plane has been the subject of 

considerable interest to theoretical and experimental investigators during the last several years. In all experiments, where the 

transfer of viscous liquid from one container to another is involved, the rate at which the transfer takes place and the thin film 

adhering to the surfaces of the container is to be taken into account for the purpose of chemical calculations. Failure to do so leads 

to experimental error. Hence there is need for such analysis. 

 

In many chemical processing industries generally slurry adheres to the reactor vessels and gets consolidated. As a result 

of this, the chemical compounds within the reactor vessel percolates through the boundaries causing loss of production and then 

consuming more reaction time. The slurry thus formed inside the reactor vessel often acts as a porous boundary for the next cycle 

of chemical processing. 

 

 Flow through porous media has been the subject of considerable research activity in recent years because of its several 

important applications notably in the flow of oil through porous rock, the extraction of geothermal energy from the deep interior 

of the earth to the shallow layers, the evaluation of the capability of heat removal from particulate nuclear fuel debris that may 

result from a hypothetical accident in a nuclear reactor, the filtration of solids from liquids, flow of liquids through ion-exchange 

beds, drug permeation through human skin, chemical reactor for economical separation or purification of mixtures and so on. 

 

Flow in a porous medium can be considered as an ordered flow in a disordered geometry. The transport process of fluid 

through a porous medium involves two substances, the fluid and the porous matrix, and therefore it will be characterized by 

specific properties of these two substances. A porous medium usually consists of a large number of interconnected pores each of 

which is saturated with the fluid. The exact form of the structure, however, is highly complicated and differs from medium to 

medium. A porous medium may be either an aggregate of a large number of particles such as sand or gravel or solid containing 

many capillaries such as a porous rock.  When the fluid percolates through a porous material, because of the complexity of 

microscopic flow in the pores, the actual path of an individual fluid particle cannot be followed analytically. In all such cases, one 

has to consider the gross effect of the phenomena represented by a macroscopic view applied to the masses of fluid, large 

compared to the dimensions of the pore structure of the medium. The process can be described in terms of equilibrium of forces. 

The driving force necessary to move a specific volume of fluid at a certain speed through a porous medium is in equilibrium with 

the resistance force generated by internal friction between the fluid and the pore structure. This resistance force is characterized by 

Darcy’s semi-empirical law established by Darcy [1]. The simplest model for flow through a porous medium is the one-

dimensional model derived by Darcy [1]. Obtained from empirical evidence, Darcy’s law indicates that for an incompressible 

fluid flowing through a channel filled with a fixed, uniform and isotropic porous matrix, the flow speed varies linearly with 

longitudinal pressure variation. Subsequently, Dupuit and Frochheimer presented empirical evidence that, the Darcy law, or the 

linearity between speed and pressure variation, breaks down for large enough flow speed (a compilation of several experimental 

results) is presented by MacDonald et al. [2]. This was emphasized later by Joseph et al. [3] who stressed�������������	
��	���
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force modeled by the Frochheimer acts in a direction opposite to the velocity vector. It follows that, in multidimensional flow, the 

momentum equations for each velocity component derived using the Frochheimer extended Darcy equation is at least speculative. 

Later Knupp and Lage [4] analyzed the theoretical generalization to the tensor permeability case (anisotropic medium) of the 

empirically obtained Frochheimer extended Darcy unidirectional flow model.  

 

A numerical and experimental investigation of the effects of the presence of a solid boundary and initial forces on mass 

transfer in porous media was presented by Vafai and Tien [5]. The local volume averaging technique has been used to establish 

the governing equations. The numerical solution of the governing equations is used to investigate the mass concentration field 

inside a porous media close to an impermeable boundary. In conjunction with the numerical solution, a transient mass transfer 

experiment has been conducted to demonstrate the boundary and inertia effects on mass transfer. This was accomplished by 

measuring the time and space averaged mass flux through a porous medium. The results clearly indicate the presence of these 

effects on mass transfer through porous media. 

 

When the bounding surface is porous, then the rate of percolation of the fluid is found experimentally to be directly 

proportional to the cross sectional area of the filter bed and the total force, say the sum of pressure gradient and the gravity force. 

In the sense of Darcy 

                                    1 2

1 2

P P
q CA G

H H
ρ

� �−
= +� �

−� �
                                                                                                           (1)  

where A  is the cross sectional area of the filter bed, 
K

C
µ

=   in which K  is the permeability of the material and µ  is 

the coefficient of viscosity and q is the flux of the fluid. A straight forward generalization of the above equation yields 

                                    [ ]
K

V P Gρ η
µ

= − ∇ +                                                                                                                  (2) 

where V  is the velocity vector and η  is the unit vector along the gravitational force taken in the negative direction. If any other 

external forces are acting on the system, instead of gravitational force, then we have 

                                       [ ]
K

V P Fρ
µ

= − ∇ −                                                                                                                 (3)�������������������������

��In the absence of external forces, 
K

V P
µ

−
= ∇  as a result of which P V

K

µ−
∇ = . 

 

The problem of flow of viscous incompressible fluid moving under gravity down a fixed inclined plane with the 

assumption that the velocity of the fluid at the free surface is given has been examined earlier by Sneddon. Jeffreys [6] initiated 

the problem of steady state profile over a vertical flat plate which was further examined by Green [7]. Later, Gutfinger and 

Tallmadge [8] investigated steady state drainage over a vertical cylinder. Later Bhattacharya [9] examined the problem when 

uniform tangential force ' 'F  acts on the upper surface for a finite interval of time. These authors examined the problem in the 

absence of fluid inertia. 

 

The constitutive relation of a second order fluid is given by:                    

 
2(1) (2) (1)

1 2 3ij ij ij ij ijS P E E Eδ φ φ φ= − + + +                                                                                                 (4) 

 where  
(1)

, ,ij i j j iE U U= +                                                                                              (5)                  

 and    
(2)

, , , ,2
ij i j j i m i m j

E A A U U= + +                                                                                             (6) 

 

In the above equations, 
ij

S  is the stress-tensor, ,i iU A  are the components of velocity and acceleration in the direction 

of the i th co-ordinate
i

X  ,  P  is indeterminate hydrostatic pressure and the coefficients 1 2,φ φ and 3φ are material constants. 

 

In view of several industrial and technological importance, Ramacharyulu [10] studied the problem of the exact solutions 

of two dimensional flows of a second order incompressible fluid by considering the rigid boundaries. Later, Lekoudis et al [11] 

presented a linear analysis of the compressible boundary layer flow over a wall. Subsequently, Shankar and Sinha [12] studied 

the problem of Rayleigh for wavy wall. The effect of small amplitude wall waviness upon the stability of the laminar boundary 

layer had been studied by Lessen and Gangwani [13]. Further, the problem of free convective heat transfer in a viscous 

incompressible fluid confined between vertical wavy wall and a vertical flat wall was examined by Vajravelu and Shastri [14] 

and thereafter by Das and Ahmed [15]. The free convective flow of a viscous incompressible fluid in porous medium between 

two long vertical wavy walls was investigated by Patidar and Purohit [16]. Rajeev Taneja and Jain [17] had examined the 

problem of MHD flow with slip effects and temperature dependent heat in a viscous incompressible fluid confined between a 

long vertical wall and a parallel flat plate. 
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Recently, Ramana Murthy et al [18] presented a detailed investigation of the second order fluid flow between two 

parallel plates with the lower plate possessing natural permeability. In their analysis it is observed that the skin friction on the 

upper plate is almost linear with respect to the visco elasticity of the fluid. However, the situation seems to be not stated as above 

at the lower plate. But it is certain that as the visco elasticity increases, the skin friction on the plate increases. The class of exact 

solutions due to sinusoidal forced oscillations on the porous boundary has been investigated by Ramana Murthy et al [19]. 

Recently Ramana Murthy and Kavitha [20] presented a linear analysis of the flow of second order fluid over an inclined porous 

plate in which the effect of various flow entities on the velocity profiles were presented. Similar such analysis was presented by 

Ramana Murthy and Gowthami et al [21], but of course the problem was confined only to a rigid plane. In such an analysis the 

nature of velocity profiles and the magnitude of amplification factor were discussed with respect to critical parameters affecting 

the flow field. Though the concept of skin friction was of prime importance, the factor has been totally ignored in the above 

analysis.         

 

EQUATIONS OF THE MOTION IF THE BOUNDING SURFACE IS POROUS: 

By taking the porosity into account, the equations of motion in X, Y and Z directions can be expressed as: 

   1
1

XX XY XZ
X

DU S S S
F U

DT X Y Z K

µ
ρ ρ

∂ ∂ ∂
= + + + −

∂ ∂ ∂
                                                                            (7) 

2
2

YX YY YZ
Y

DU S S S
F U

DT X Y Z K

µ
ρ ρ

∂ ∂ ∂
= + + + −

∂ ∂ ∂
                                                                             (8) 

3
3-ZX ZY ZZ

Z

DU S S S
F U

DT X Y Z K

µ
ρ ρ

∂ ∂ ∂
= + + +

∂ ∂ ∂
                                                                             (9) 

 

           The aim of the present note is to examine the unsteady state flow (by considering the gravitational force) of a visco elastic 

fluid of a second order type over an inclined porous plate when a uniform tangential force F  acts on the free surface for a finite 

interval of time and to examine the effect of various flow entities on the skin friction.  

      

MATHEMATICAL FORMULATION OF THE PROBLEM: 

           The constitutive relation for a visco elastic fluid of second order type as stated in eqn. (4) is considered. The problem is 

examined hereunder with reference to the rectangular Cartesian co-ordinate system with the x - axis along the plate in the 

direction of the motion and y - axis into the fluid perpendicular to this direction. The motion is assumed to be unidirectional i.e., 

along x - axis and hence the components of the velocity can be regarded as   ( ), ,0,0u y t� �� � . 

 The equation of motion in the dimensional form is given by the relation:  

                           

2

1 2 2

1 1
sin

u p u u
g

t x t y k
φ φ α

ρ ρ

∂ − ∂ ∂ ∂� �
= + + − −� �∂ ∂ ∂ ∂� �

                                                                             (10) 

where α  is the angle of inclination of the plane with the horizontal,  ρ  is the fluid density which is assumed to be constant 

throughout and g  is the acceleration due to gravity. 

 

            The condition of no slip on the boundary would yield 0u = , when 0y = . Further, the condition of uniform tangential 

force F  on the free surface for a finite interval of time is 

 

                ( )1 2 0( ) , 0
u

F H t H t t t
t y

φ φ
∂ ∂� �

+ = − − >� �� �� �∂ ∂� �
                                                                                    (11)                 

 

together,  with the initial condition  ( ), 0 0u y = .                                                        (12)                          

Introducing the following non - dimensionalization scheme 

 

 X x H= ,           Y y H= ,               
2

2 Hφ ρ β=  

            
2

1/t H Tρ φ= ,    
2

1 / ( )u U Hφ ρ= ,     
3 2

1/( )k H Kρ φ=                                                                                           (13) 

            
2 2 3

1 / ( )g G Hφ ρ= ,   
2 2

1 /( )P p Hφ ρ=  

 

where β  is the non-dimensional visco elastic parameter.    

The governing equation for the fluid motion in the non-dimensional form together with the required conditions reduces to 
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2 3

2 2
sin

U P U U U
G

T X Y Y T K
β α

∂ −∂ ∂ ∂
= + + − −

∂ ∂ ∂ ∂ ∂
                                                        (14)                

 

with  the condition   0U =  when  0Y = ,                                                                                                                                    (15)                              

together  with:  

 

 ( ) ( )
2

0

U U
F H T H T T

Y Y T
β

∂ ∂
+ = − −� �� �∂ ∂ ∂

  at 1Y = .                                                        (16)           

( )H T  in eqn. (11) represents the Heavisides Unit step function given by 

 ( ) 0H T =  for 0T <                                                          (17) 

            1=  for 0T >    

 

Eqn. (14) after applying Laplace transforms will be: 

 

 

2

2

1 1
[1 ] sin

d U P
s s U G

dY K s X
β α

∂� � � �
+ − + = +	 
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                                                             (18)             

 

together   with the conditions on the boundary as  

 

           0U =  when 0Y = ,                                                        (19)            

and ( )0[1 ] 1 exp
dU F

s T s
dY s

β+ = − −� �� �  at   1Y =                                                                                                         (20)             

 

The solution of eqn. (18) satisfying conditions eqn. (19) and eqn. (20) is given by:  
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where    
2

1

1

s
K

C
sβ

� �
+ 	 

� �=

+
  and 

P
D

X

∂
=

∂
                                                        (22)              

Taking inverse Laplace transform of eqn. (21) the velocity field is obtained as 
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Skin friction on the plate is  

2 2

2

U U U

Y Y T Y
ψ β

� �∂ ∂ ∂
= + −� �

∂ ∂ ∂ ∂� �
  when 0Y =                                                                                 (24) 

Hence, 

( )
1

sin tanD G K h
K

ψ α β
� �

= − + + +	 
	 

� �

 

( )
( )

( ) ( ) ( )

2
2

2 2 2
2 2 2

1
2 1 1

4
2 sin exp

1
1 2 1 1 2 1 2 1

4 4 4

n T
K K

D G

n n n
K

π β

α
π π π

β β

� �� �� � � �− + + −� �	 
	 
 	 

� � � �� �	 
+ 


� �	 
 � �� �
+ + + + + +� �	 
 	 
	 


� �� �� �� �� �

 

 

( ) ( )

( ) ( )
2 2

2 2

1 2 1 1
2

2
1

1 2 1 2 1
4 4

n
n

K
F

n n
K

π β

π π
β

� �� �
− + −� �	 


� �� �−
� �� �� �

+ + + +� �	 
	 

� �� �� �


  

 

( )

( )

( ) ( )

( )

2 2
2 2

0

2 2
2 2

1 1
2 1 2 1

4 4
exp exp

1 2 1 1 2 1
4 4

n T n T T
K K

n n

π π

π π
β β

� �� � � �� � � �
− + + − + + −� �	 
 	 
	 
 	 

� � � �� �	 
 	 
−

� �	 
 	 

+ + + +� �	 
 	 


� �� � � �� �

                                                                   (25) 

 

 

RESULTS AND CONCLUSIONS: 

1. Fig. 1 illustrates the combined effect of porosity and visco 

elasticity of the fluid on skin friction.  It is noticed that as the 

visco elasticity increases, the skin friction is found to be 

decreasing gradually and thereafter, remains almost constant.  

Further, it is noticed that, when the visco elasticity of the fluid 

medium is held constant and as the porosity increases, the skin 

friction decreases. 

 

 

 
 

Fig. 1: Profiles for skin friction Vs porosity values when 

           T =0.5 

 

 

 

 

2. The effect of porosity on the skin friction is illustrated in 

fig. 2 and fig. 3. It is noticed that, as the porosity of the 

bounding surface increases, the skin friction is found to be in 

the decreasing trend. Further, as the visco elasticity increases, 

the skin friction is found to be on raise and subsequently 

converges to a common point. It is further noticed that the 

contribution of porosity of the bounding surface (K) has not 

much of influence on the profiles as seen in both situations 

inspite of variation in visco elaticity. 

 

 
 

Fig. 2: Profiles for skin friction as the porosity of the   

            boundary varies when T =3 
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Fig. 3: Variation of skin friction for different porosity values   

           when T = 3 

 

3 Fig. 4 illustrates the effect of visco elasticity of the 

fluid and porosity of the bounding surface on the skin 

friction. Initially, for the small values of visco 

elasticity, relatively significant change in the skin 

friction is observed. However, as it increases, the 

skin friction is found to be almost absent. It is 

noticed that, the skin friction takes negative values 

which indicates that the friction is offered by the 

plate to the fluid than by the fluid on the plate. 

 
Fig. 4: Effect of porosity on skin friction for T =1.5 

 

4 The effect of porosity, relatively for higher values of 

visco elasticity parameter is illustrated in fig. 5. As 

found in the earlier cases, even if visco elasticity 

increases, significant drop in the skin friction is 

noticed. In addition to the above, as the porosity 

increases, a decreasing trend in the skin friction is 

observed. 

 
Fig. 5: Skin friction Vs porosity values when T = 3 

5 Figs. 6, 7 and 8 illustrates the combined effect of 

time as well as porosity on the skin friction. It is 

noticed that as the time parameter T advances, the 

skin friction increases. However, as the pore size of 

the fluid bed increases, the skin friction is found to 

be on decreasing trend.  Such a pattern can be 

attributed to the fact that the fluid particles are 

trapped in the pores of the fluid bed resulting in the 

lower skin friction. 

 
Fig. 6: Skin friction Vs porosity values when β  = 0.7 

 
Fig. 7: Effect of porosity on skin friction as time (T) advances for    

          β  = 0.6 

 
Fig. 8: Profiles for skin friction for different porosity values   

           when β  = 4 
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6 The effect of time on the skin friction is exhibited in figs. 

9 and 10. It is noticed that when the time parameter T is 

held constant and as the porosity increases,  the skin 

friction decreases. However, as T increases, the skin 

friction is found to be inversely related. 

 
Fig. 9: Effect of Time on skin friction for different porosity  

            values when β  = 7 

 
Fig. 10: Effect of Time on skin friction for different porosity  

             values when β  = 6 

 

7 Figs. 11 and 12 illustrates the effect of visco elasticity on 

skin friction. It is noticed that, as the visco elasticity 

increases, the skin friction decreases. Such a situation is 

due to the strong intra molecular forces that exists in 

between the fluid particles. Greater the visco elasticity, 

stronger is the intra molecular forces.  

 
Fig. 11: Profiles for skin friction for different visco elasticity  

             values when T = 3 

 
Fig. 12: Skin friction  Vs  visco elasticity  when T =1.5 

 

8 The effect of time on the relatively lower values of visco 

elasticity parameter which affects the skin friction is 

observed in fig. 13. Initially for the smaller values of 

visco elasticity, as time parameter (T) increases, the skin 

friction is found to be on the lower side. For the visco 

elasticity parameter slightly above and higher for β ≥  

0.3 the effect is found to be on reverse. 

 
Fig. 13: Effect of time on skin friction at different when K = 2 

 

9 While all other conclusions stated above are found to be 

in common in many parameters, it is seen that the effect 

of time parameter T and visco elasticity ( β ) is found to 

be zero for β  = 0.3 and K= 2 in fig. 13. The situation is 

found to be similar now when β  = 0.25 and K = 1.5 in 

fig. 14. Such an observation indicates that the nil effect is 

found to be shifting towards the left as the porosity of the 

fluid bed decreases. 

 
Fig. 14: Skin friction Vs Time when K = 1.5 
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