International Journal of Mathematical Archive-3(4), 2012, Page: 1712-1717 Available online through www.ijma.info ISSN 2229-5046

THE DETERMINATION OF THE NUMBER OF DISTINCTFUZZY SUBGROUPS OF GROUP $Z_{p_{1} \times p_{2} \times x p_{n}}$ AND THEDIHEDRAL GROUP $D_{2 \times p_{1} \times x_{2} \times \times x p_{n}}$

HASSAN NARAGHI ${ }^{{ }^{*}}$ \& HOSEIN NARAGHI ${ }^{2}$
${ }^{1}$ Department of Mathematics, Islamic Azad University, Ashtian Branch, P.O. Box 39618-13347, Ashtian, Iran
${ }^{2}$ Department of Mathematics, Payame Noor University, Ray Branch, Iran

E-mail: ${ }^{1}$ naraghi@mail.aiau.ac.ir, ${ }^{2}$ h.naraghi56@yahoo.com,
(Received on: 03-04-12; Accepted on: 27-04-12)

Abstract

In this paper, we use the natural equivalence of fuzzy subgroups studied by Iranmanesh and Naraghi [3] to determine the number of distinct fuzzy subgroups of some finite groups. We focus on the determination of the number of distinct fuzzy subgroups of group $Z_{p_{1} \times p_{2} \times \ldots \times p_{n}}$ and the dihedral group $D_{2 \times p_{1} \times p_{2} \times \ldots \times p_{n}}$ using this equivalence relation.

2000 Mathematics Subject Classification: $20 N 25$.
Key words and phrases: Dihedral group, Equivalence relation, Fuzzy subgroups.

1. INTRODUCTION

Zadeh introduced the notion of fuzzy sets and fuzzy set operations, in his classic paper [15] of 1965. In an analogous application with groups, Rosenfeld [13] formulated the elements of a theory of fuzzy groups. One of the most important problems of fuzzy group theory is to classify the fuzzy subgroups of a finite group. This topic has enjoyed a rapid evolutionin the last years. Many papers have treated the particular case of finite cyclic groups. Thus, in [8] the number of distinct fuzzy subgroups of a finite cyclic group of square-free order is determined, while $[11,12,14]$ deal with this number for cyclic groups of order $\mathrm{p}^{\mathrm{n}} \mathrm{q}^{\mathrm{m}}$ (p , q primes). In the present paper we establish the recurrence relation verified by the number of distinct fuzzy subgroups of group $Z_{p_{1} \times p_{2} \times \ldots \times p_{n}}$ and the dihedral group $D_{2 \times p_{1} \times p_{2} \times \ldots \times p_{n}}$ such that $\mathrm{p}_{1}, \mathrm{p}_{2}, \ldots, \mathrm{p}_{\mathrm{n}}$ are distinct primes.

2. PRELIMINARIES

First of all, we present some basic notions and results of fuzzy sub group theory (for more details, see [4, 7, and 3]).
The dihedral group of order 2 n , for $\mathrm{n} \geq 2$, denoted by $D_{2 n}$. A fuzzy sub set of a set X is a mapping $\mu: X \rightarrow[0,1]$. Fuzzy subset μ of a group G is called a fuzzy subgroup of G if:
$\left(\mathrm{G}_{1}\right) \mu(\mathrm{xy}) \geq \mu(\mathrm{x}) \wedge \mu(\mathrm{y})$ for all $\mathrm{x} ; \mathrm{y} \in \mathrm{G}$;
$\left(\mathrm{G}_{2}\right) \mu\left(\mathrm{x}^{-1}\right) \geq \mu(\mathrm{x})$ for all $\mathrm{x} \in \mathrm{G}$
The set of all fuzzy subgroup of a group G is denoted by F (G).
Definition 2.1: Let G be a group and $\mu \in F(G)$. The set of $\{x \in G \mid \mu(x)>0\}$ is called the support of μ and denoted by supp μ.

Let G be a group and $\mu \in F(G)$. We shall write $\operatorname{Im} \mu$ for the image set of μ and $\mathrm{F} \mu$ for the family $\left\{\mu_{t} \mid t \in \operatorname{Im} \mu\right\}$.

[^0]Theorem 2.2: Let G be a fuzzy group. If μ is a fuzzy subset of G , then $\mu \in F(G)$ if and only if for all $\mu_{t} \in F_{\mu}$, μ_{t} is a subgroup of G.

Let $F_{1}(G)$ be the set of all fuzzy subgroups μ of G such that $\mu(e)=1$, and let \sim_{R} be an equivalence relation on $F_{1}(G)$. We denote the set $\left\{v \in F_{1}(G) \mid v \sim_{R} \mu\right\}$ by $\frac{\mu}{\sim_{R}}$ and the set $\left\{\left.\frac{\mu}{\sim_{R}} \right\rvert\, \mu \in F_{1}(G)\right\}$ by $\frac{F_{1}(G)}{\sim_{R}}$.

Definition 2.3: Let G be a group, and $\mu, v \in F_{1}(G) \cdot \mu$ is equivalent to v, written as $\mu \sim v$ if
(1) $\mu(x)>\mu(y) \Leftrightarrow v(x)>v(y)$ for all $x, y \in G$.
(2) $\mu(x)=0 \Leftrightarrow v(x)=0$ for all $x \in G$.

The number of the equivalence classes \sim on $F_{1}(G)$ is denoted by $s(G)$. We mean the number of distinct fuzzy subgroups of G is s (G).

Theorem 2.4: Let G be a finite group. The number of distinct fuzzy subgroups of G such that their support is exactly equal to G is $\frac{s(G)+1}{2}$.

Let G be a finite group. The number of distinct fuzzy subgroups of G such that their support is exactly equal to G is denoted by s* (G).

Theorem 2.5: [3] Let G be a finite group. Then the number of distinct fuzzy subgroups of G such that their support is exactly a subgroup of G is $\frac{s(G)-1}{2}$.

Theorem 2.6: [3] Let G be a finite group and H be a subgroup of G. Then the number of distinct fuzzy subgroups of G such that their support is exactly equal to H is $\frac{s(H)+1}{2}$.

Corollary 2.7: [3] Let G be a finite group and H be a subgroup of G. Then the number of distinct fuzzy subgroups of G such that their support is exactly a subgroup of H is $\frac{s(H)-1}{2}$.

Proposition 2.8: [6] Let $n \in N$. Then there are $2^{n+1}-1$ distinct equivalence classes of fuzzy subgroups of $Z_{p^{n}}$.

3. THE NUMBER OF THE DISTINCT FUZZY SUBGROUPS OF THE ABELIANGROUP $Z_{p_{1} \times p_{2} \times \ldots \times p_{n}}$

In this section, we characterize fuzzy subgroups of the abelian group $Z_{p_{1} \times p_{2} \times \ldots p_{n}}$ such that $p_{1}, p_{2}, \ldots, p_{n}$ are distinct primes numbers ($\mathrm{n}>1$).

Proposition 3.1: Suppose that p and q are distinct primes. Then there are 11 distinct equivalence classes of fuzzy subgroups of $Z_{p q}$.

Proof: See Theorem 8.2.4 of [6].
Proposition 3.2: Suppose that p, q and r are distinct primes. Then there are 51 distinct equivalence classes of fuzzy subgroups of $Z_{p q r}$.

Proof: We know that $Z_{p q r}$ has the following maximal chains:

$$
\begin{aligned}
& Z_{p q r} \supset Z_{p q} \supset Z_{p} \supset\{0\}, Z_{p q r} \supset Z_{p q} \supset Z_{q} \supset\{0\}, Z_{p q r} \supset Z_{p r} \supset Z_{p} \supset\{0\}, \\
& Z_{p q r} \supset Z_{p r} \supset Z_{r} \supset\{0\}, Z_{p q r} \supset Z_{q r} \supset Z_{q} \supset\{0\} \text { and } Z_{p q r} \supset Z_{q r} \supset Z_{r} \supset\{0\} .
\end{aligned}
$$

All of subgroups of the group $Z_{p q r}$ are $Z_{p q}, Z_{p r}, Z_{q r}, Z_{p}, Z_{q}, Z_{r}$ and $\{0\}$. Thus

$$
\frac{s(G)-1}{2}=s^{*}(\{0\})+s^{*}\left(Z_{p q}\right)+s^{*}\left(Z_{p r}\right)+s^{*}\left(Z_{q r}\right)+s^{*}\left(Z_{p}\right)+s^{*}\left(Z_{q}\right)+s^{*}\left(Z_{r}\right),
$$

therefore

$$
\frac{s(G)-1}{2}=1+3 s^{*}\left(Z_{p q}\right)+3 s^{*}\left(Z_{p}\right)=1+3(6)+3(2)=2 .
$$

Hence

$$
s(G)=51 .
$$

Theorem 3.3: Suppose that $p_{1}, p_{2}, \ldots, p_{n}$ are distinct primes. If $G=Z_{p_{1} \times p_{2} \times, \times p_{n}}$ and $n>1$, then $s(G)=\sum_{i=1}^{n-1}\binom{n}{i} s\left(Z_{\prod_{j=1}^{\prod_{j}}}\right)+2^{n}+1$.

Proof: Denote $\prod_{k}=\left\{p_{i 1} \times \ldots \times p_{i k} \mid i_{1}, \ldots, i_{k} \in\{1, \ldots, n\}, i_{1}<\ldots<i_{k}\right\}, k=1,2, \ldots, n$. We know that $G=Z_{p_{1} \times p_{2} \times \times p_{n}}$ has the following maximal chains each of which can be identified with the chain $Z_{\pi_{n}} \supset Z_{\pi_{n-1}} \supset \ldots . \supset Z_{\pi_{1}} \supset\{0\}$ such that $\pi_{i} \in \Pi_{i}$, for all $i \in\{1, \ldots, n\}$. For all $i=1, \ldots, n,\binom{n}{i}=\frac{n!}{i!(n-i)!}$ is the number of subgroups of the group G as $Z_{\pi_{i}}$. Therefore by theorem 2.5, $\frac{s(G)-1}{2}=s^{*}(\{0\})+\sum_{i=1}^{n-1}\binom{n}{i} s^{*}\left(Z_{\pi_{i}}\right)$ and hences $(G)=2 \sum_{i=1}^{n-1}\binom{n}{i} s^{*}\left(Z_{\pi_{i}}\right)+3$.By theorem 2.4, $s(G)=\sum_{i=1}^{n-1}\binom{n}{i} s\left(Z_{\pi_{i}}\right)+2^{n}+1$.

4. THE NUMBER OF DISTINCT FUZZY SUBGROUPS OF THE DIHEDRALGROUP $\boldsymbol{D}_{2 \times p_{1} \times p_{2} \times \ldots \times p_{n}}$

In this section, we determine the number of distinct fuzzy subgroups ofthe dihedral group $D_{2 \times p_{1} \times p_{2} \times \times \times p_{n}}$ such that $p_{1}, p_{2}, \ldots, p_{n}$ are odd distinct primes.

Theorem 4.1: Suppose that p is a prime and $p \geq 3$. If G is the dihedral group of order 2 p , then $\mathrm{s}(\mathrm{G})=4 \mathrm{p}+7$.
Proof: We know that $D_{2 p}$ has the following maximal chains:
$D_{2 p} \supset Z_{p} \supset\{0\}$ and $D_{2 p} \supset Z_{2} \supset\{0\}$ whose the number is p . Now 2 is the number of distinct fuzzy subgroups whose support is $Z_{p}, 2^{1} p$ is the number of distinct fuzzy subgroups whose support is Z_{2}, and 2^{0} is the number of fuzzy subgroups whose support is $\{0\}$. Thus $\frac{s(G)-1}{2}=2 p+2+1$, therefore $s(G)=4 p+7$.

Theorem 4.2: Suppose that p and q are odd distinct primes. If G is the dihedral group of order 2 pq , then $s(G)=12 p q+8(p+q)+23$.

Proof: We know that $D_{2 p q}$ has the following maximal chains:
$D_{2 p q} \supset D_{2 p} \supset Z_{2} \supset\{0\}, D_{2 p q} \supset D_{2 p} \supset Z_{p} \supset\{0\}, D_{2 p q} \supset D_{2 q} \supset Z_{2} \supset\{0\}, D_{2 p q} \supset D_{2 q} \supset Z_{q} \supset\{0\}$, $D_{2 p q} \supset D_{p q} \supset Z_{p} \supset\{0\}, D_{2 p q} \supset D_{p q} \supset Z_{q} \supset\{0\}$. Clearly, pq is the number of the subgroups Z_{2} of the dihedral group $D_{2 p q}, \mathrm{q}$ is the number of the subgroups $D_{2 p}$ and p is the number of the subgroups $D_{2 q}$ of the dihedral group $D_{2 p q}$ and the dihedral group $D_{2 p q}$ has just one subgroup as $Z_{q p}, Z_{q}, Z_{p}$. So that

$$
\frac{s(G)-1}{2}=s^{*}(\{0\})+p q s^{*}\left(Z_{2}\right)+q s^{*}\left(D_{2 p}\right)+p s^{*}\left(D_{2 q}\right)+s^{*}\left(Z_{p q}\right)+s^{*}\left(Z_{p}\right)+s^{*}\left(Z_{q}\right) .
$$

Thus

$$
\frac{s(G)-1}{2}=1+2 p q+q(2 p+4)+p(2 q+4)+6+2+2
$$

therefore

$$
s(G)=12 p q+8(p+q)+23 .
$$

Table 1: The number of distinct fuzzy subgroups of dihedral group $D_{2 p q}$ for some selected primes.

$G=D_{2 p q}$	$\mathrm{~s}(\mathrm{G})$
$p=3, q=5$	267
$p=3, q=7$	355
$p=3, q=11$	531
$p=3, q=13$	619
$p=13, q=17$	2915

Theorem 4.3: Suppose that p, q and r are odd distinct primes. If G is the dihedral group of order 2 pqr , then $s(G)=52 p q r+24(p q+p r+q r)+24(p+q+r)+103$.

Proof: We have

$$
D_{2 n}=<x, y \mid x^{n}=y^{2}=1, y x y=x^{-1}>.
$$

It is well Known that for every divisor r of $n, D_{2 n}$ possesses a subgroup isomorphic to Z_{r}, namely $H_{0}^{r}=<x^{\frac{n}{r}}>$ and $\frac{n}{r}$ subgroups isomorphic to $D_{2 r}$, namely $H_{i}^{r}=\left\langle x^{\frac{n}{r}}, x^{i-1} y>, i=1,2, \ldots, \frac{n}{r}\right.$. We know that $D_{2 p a r}$ has the following maximal chains each of which can be identified with the Chain,

$$
\begin{aligned}
& D_{2 p q r} \supset D_{2 p q} \supset D_{2 p} \supset Z_{p} \supset\{0\}, D_{2 p q r} \supset D_{2 p q} \supset D_{2 q} \supset Z_{q} \supset\{0\}, D_{2 p q r} \supset D_{2 p r} \supset D_{2 p} \supset Z_{p} \supset\{0\}, \\
& D_{2 p q r} \supset D_{2 p r} \supset D_{2 r} \supset Z_{r} \supset\{0\}, D_{2 p q r} \supset D_{2 q r} \supset D_{2 q} \supset Z_{q} \supset\{0\}, D_{2 p q r} \supset D_{2 q r} \supset D_{2 r} \supset Z_{r} \supset\{0\}, \\
& D_{2 p q r} \supset D_{2 p q} \supset D_{2 p} \supset Z_{2} \supset\{0\}, D_{2 p q r} \supset D_{2 p q} \supset D_{2 q} \supset Z_{2} \supset\{0\}, D_{2 p q r} \supset D_{2 p r} \supset D_{2 p} \supset Z_{2} \supset\{0\}, \\
& D_{2 p q r} \supset D_{2 p r} \supset D_{2 r} \supset Z_{2} \supset\{0\}, D_{2 p q r} \supset D_{2 q r} \supset D_{2 q} \supset Z_{2} \supset\{0\}, D_{2 p q r} \supset D_{2 q r} \supset D_{2 r} \supset Z_{2} \supset\{0\}, \\
& D_{2 p q r} \supset Z_{p q r} \supset Z_{p q} \supset Z_{p} \supset\{0\}, D_{2 p q r} \supset Z_{p q r} \supset Z_{p q} \supset Z_{q} \supset\{0\}, D_{2 p q r} \supset Z_{p q r} \supset Z_{p r} \supset Z_{p} \supset\{0\}, \\
& D_{2 p q r} \supset Z_{p q r} \supset Z_{p r} \supset Z_{r} \supset\{0\}, D_{2 p q r} \supset Z_{p q r} \supset Z_{r q} \supset Z_{q} \supset\{0\} \text { and } D_{2 p q r} \supset Z_{p q r} \supset Z_{r q} \supset Z_{r} \supset\{0\} .
\end{aligned}
$$

Clearly, pqr is the number of subgroups Z_{2} of the dihedral group $D_{2 p q r}, \mathrm{qr}$ is the number of the subgroups $D_{2 p}$, pr is the number of the subgroups $D_{2 q}$, pq is the number of the subgroups $D_{2 r}$ and p is the number of the subgroups $D_{2 q r}$, q is the number of the subgroups $D_{2 p r}$ and r is the number of the subgroups $D_{2 p q}$ of the dihedral group $D_{2 p q r}$ and the dihedral group $D_{2 p q r}$ has just one subgroup as $Z_{p q r}, Z_{p q}, Z_{p r}, Z_{q r}, Z_{q}, Z_{p}, Z_{r}$. So that

$$
\begin{gathered}
\frac{s(G)-1}{2}=s^{*}(\{0\})+p s^{*}\left(Z_{2}\right)+s^{*}\left(Z_{p}\right)+s^{*}\left(Z_{q}\right)+s^{*}\left(Z_{r}\right)+s^{*}\left(Z_{p q}\right)+s^{*}\left(Z_{p r}\right)+s^{*}\left(Z_{q r}\right)+s^{*}\left(Z_{p q r}\right) \\
+q r s^{*}\left(D_{2 p}\right)+p r s^{*}\left(D_{2 q}\right)+p q s^{*}\left(D_{2 r}\right)+p s^{*}\left(D_{2 q r}\right)+q s^{*}\left(D_{2 p r}\right)+r s^{*}\left(D_{2 p q}\right),
\end{gathered}
$$

Therefore

$$
\begin{aligned}
& \frac{s(G)-1}{2}=1+2 p q r+3\left(2 Z_{p}\right)+3(6)+26+q r(2 p+4)+p r(2 q+4)+p q(2 r+4) \\
& +p \frac{(12 q r+8(q+r)+24)}{2}+q \frac{(12 p r+8(p+r)+24)}{2}+r \frac{(12 p q+8(p+q)+24)}{2} .
\end{aligned}
$$

Thus

$$
s(G)=52 p q r+24(p q+p r+q r)+24(p+q+r)+103 .
$$

Table 2: The number of distinct fuzzy subgroups the dihedral group $D_{2 p q r}$ for some selected primes.

$G=D_{2 p q r}$	$\mathrm{~s}(\mathrm{G})$
$p=3, q=5, r=7$	7627
$p=3, q=7, r=11$	15763
$p=5, q=7, r=13$	28947
$p=7, q=13, r=17$	91779
$p=13, q=17, r=19$	238611

Theorem 4.4: Suppose that $p_{1}, p_{2}, \ldots, p_{n}$ are odd distinct primes and $P=2 \times p_{1} \times p_{2} \times \ldots \times p_{n}$. If $G=D_{p}$ and $n>1$, then

$$
s(G)=2 P+\sum_{i=1}^{n}\binom{n}{i} s\left(Z_{\prod_{j=1}^{i} p_{j}}\right)+\frac{P}{2} \sum_{t \mid P, 2<t<P} s\left(D_{2 t}\right)+\frac{P}{2}\left(2^{n+1}-3\right)+2^{n}+2 .
$$

Proof: We have

$$
D_{2 n}=<x, y \mid x^{n}=y^{2}=1, y x y=x^{-1}>.
$$

It is well Known that for every divisor r of $n, D_{2 n}$ possesses a sub group isomorphic to Z_{r}, namely $H_{0}^{r}=<X^{\frac{n}{2}}>$ and $\frac{n}{r}$ subgroups isomorphic to $D_{2 r}$, namely $H_{i}^{r}=\left\langle x^{\frac{n}{r}}, x^{i-1} y>, i=1,2, \ldots, \frac{n}{r}\right.$. Let

$$
\Pi_{k}=\left\{p_{i_{1}} \times \ldots \times p_{i_{k}} \mid i_{1}, \ldots ., i_{k} \in\{1, \ldots ., n\}, i_{1}<\ldots<i_{k}\right\}, k=1,2, \ldots, n .
$$

We know that $G=D_{P}$ has the following maximal chains each be identified with the chain

$$
\begin{gathered}
D_{2 \pi_{n}} \supset D_{2 \pi_{n-1}} \supset \ldots \ldots \supset D_{2 \pi_{1}} \supset Z_{\pi_{1}} \supset\{0\}, \\
D_{2 \pi_{n}} \supset Z_{\pi_{n}} \supset Z_{\pi_{n-1}} \supset \ldots \supset Z_{\pi_{1}} \supset\{0\}, \\
D_{2 \pi_{n}} \supset D_{2 \pi_{n-1}} \supset \ldots . \supset D_{2 \pi_{1}} \supset Z_{2} \supset\{0\},
\end{gathered}
$$

such that $\pi_{i} \in \Pi_{i}$ for all $i \in\{1, \ldots, n\}$. Now $\frac{P}{2}$ is the number of subgroups of the group G as Z_{2}, and for all $i=1, \ldots, n,\binom{n}{i}=\frac{n!}{i!(n-i)!}$ is the number of subgroups of the group G as $Z_{\pi_{i}}$. Also $\frac{P}{2 t}$ is the number of subgroups of the group G as $D_{2 t}$, for every divisor t of $\frac{P}{2}$. Therefore by theorem 2.5,

$$
\frac{s(G)-1}{2}=s^{*}(\{0\})+\frac{P}{2} s^{*}\left(Z_{2}\right)+\sum_{i=1}^{n}\binom{n}{i} s^{*}\left(Z_{\pi_{i}}\right)+\sum_{t \mid P, 2<t<P} \frac{P}{2 t} s^{*}\left(D_{2 t}\right),
$$

Then

$$
s(G)=2 P+2 \sum_{i=1}^{n}\binom{n}{i} s^{*}\left(Z_{\pi_{i}}\right)+P \sum_{t \mid P, 2<t<P} s\left(D_{2 t}\right)+\frac{P}{t} s^{*}\left(D_{2 t}\right)+3,
$$

Thus

$$
s(G)=2 P+\sum_{i=1}^{n}\binom{n}{i} s\left(Z_{\pi_{i}}\right)+\frac{P}{2} \sum_{t \mid P, 2<t<P} \frac{s\left(D_{2 t}\right)+1}{t}+2^{n}+2 .
$$

REFERENCES

[1] P. S. Das, Fuzzy groups and level subgroups, Math. Appl. 8 (1981), 264-269.
[2] C. Degang and J. Jiashang, Some notes on equivalence fuzzy sets and fuzzy sub-groups, Fuzzy sets and systems. 152 (2005) 403-409.
[3] A. Iranmanesh and H. Naraghi, THE CONNECTION BETWEEN SOME EQUIVALENCE RELATIONS ON FUZZY SUBGROUPS, Iranian Journal of Fuzzy Systems, 8(5)(2011)69-80.

```
HASSAN NARAGHI** & HOSEIN NARAGHI' / THE DETERMINATION OF THE NUMBER OF DISTINCT FUZZY SUBGROUPS.../ IJMA- 3(4), April-2012, Page: 1712-1717
```

[4] R. Kumar, Fuzzy Algebra, vol. I, University of Delhi, Publication Division, (1993).
[5] M. Mashinchi and M. Mukaidonon, On fuzzy subgroups classification, Research Report of Meiji University, Japan. 9 (65) (1993), 31-36.
[6] John N. Mordeson, Kiran R. Bhutani and Azriel Rosenfeld, Fuzzy Group Theory, Springer-Verlag Berlin Heidelberg, (2005).
[7] J.N. Mordeson, N. Kuroki, D.S. Malik, Fuzzy Semigroups, Springer, Berlin, (2003).
[8] V. Murali and B.B. Makamba, On an equivalence of fuzzy subgroups I, Fuzzy sets andsystems. 123 (2001)259-264.
[9] V. Murali and B.B. Makamba, On an equivalence of fuzzy subgroups II, Fuzzy sets andsystems. 136 (1) (2003)93104.
[10] V. Murali and B. B. Makamba, On an equivalence of fuzzy subgroups III, Internat. J. Math. Sci. 36 (2003)23032313.
[11] V. Murali and B.B. Makamba, Counting the number of fuzzy subgroups of an abelian group of order pnqm, Fuzzy sets and systems. 144 (2004) $459\{470$.
[12] V. Murali and B. B. Makamba, Fuzzy subgroups of infinite abelian groups, FJMS. 14 (1) (2004) 113-125.
[13] A. Rosenfeld, Fuzzy groups, J.Math.Anal.Appl. 35 (1971)512-517.
[14] M. Tarnauceanu and L. Bentea, On the number of fuzzy subgroup S of finite abelian groups, Fuzzy Sets and systems, 159(2008) 1084-1096.
[15] L. A. Zadeh, Fuzzysets, information and control. 8 (1965) 338-353.
[16] Y. Zhang and K. Zou, A not on an equivalence relation on fuzzy subgroups, Fuzzy Sets and Systems, 95(1998)243-247.

Source of support: Nil, Conflict of interest: None Declared

[^0]: * Corresponding author: ${ }^{1}$ HASSAN NARAGHI, *E-mail: naraghi@mail.aiau.ac.ir

