International Journal of Mathematical Archive-3(4), 2012, Page: 1712-1717 MA Available online through <u>www.ijma.info</u> ISSN 2229 - 5046

THE DETERMINATION OF THE NUMBER OF DISTINCTFUZZY SUBGROUPS OF GROUP $Z_{p_1 \times p_1 \times \dots \times p_n}$ AND THEDIHEDRAL GROUP $D_{2 \times p_1 \times p_1 \times \dots \times p_n}$

HASSAN NARAGHI^{1*} & HOSEIN NARAGHI²

¹Department of Mathematics, Islamic Azad University, Ashtian Branch, P.O. Box 39618-13347, Ashtian, Iran ²Department of Mathematics, Payame Noor University, Ray Branch, Iran

E-mail: ¹naraghi@mail.aiau.ac.ir, ²h.naraghi56@yahoo.com,

(Received on: 03-04-12; Accepted on: 27-04-12)

ABSTRACT

In this paper, we use the natural equivalence of fuzzy subgroups studied by Iranmanesh and Naraghi [3] to determine the number of distinct fuzzy subgroups of some finite groups. We focus on the determination of the number of distinct fuzzy subgroups of group $Z_{p_1 \times p_2 \times \dots \times p_n}$ and the dihedral group $D_{2 \times p_1 \times p_2 \times \dots \times p_n}$ using this equivalence relation.

2000 Mathematics Subject Classification: 20N25.

Key words and phrases: Dihedral group, Equivalence relation, Fuzzy subgroups.

1. INTRODUCTION

Zadeh introduced the notion of fuzzy sets and fuzzy set operations, in his classic paper [15] of 1965. In an analogous application with groups, Rosenfeld [13] formulated the elements of a theory of fuzzy groups. One of the most important problems of fuzzy group theory is to classify the fuzzy subgroups of a finite group. This topic has enjoyed a rapid evolutionin the last years. Many papers have treated the particular case of finite cyclic groups. Thus, in [8] the number of distinct fuzzy subgroups of a finite cyclic group of square-free order is determined, while [11, 12, 14] deal with this number for cyclic groups of order p^nq^m (p, q primes). In the present paper we establish the recurrence relation verified by the number of distinct fuzzy subgroups of group $Z_{p_1 \times p_2 \times ... \times p_n}$ and the dihedral group $D_{2 \times p_1 \times p_2 \times ... \times p_n}$ such that $p_1, p_2, ..., p_n$ are distinct primes.

2. PRELIMINARIES

First of all, we present some basic notions and results of fuzzy sub group theory (for more details, see [4, 7, and 3]).

The dihedral group of order 2n, for $n \ge 2$, denoted by D_{2n} . A fuzzy subset of a set X is a mapping $\mu: X \to [0,1]$. Fuzzy subset μ of a group G is called a fuzzy subgroup of G if:

(G₁) $\mu(xy) \ge \mu(x) \land \mu(y)$ for all x; $y \in G$; (G₂) $\mu(x^{-1}) \ge \mu(x)$ for all $x \in G$

The set of all fuzzy subgroup of a group G is denoted by F (G).

Definition 2.1: Let G be a group and $\mu \in F(G)$. The set of $\{x \in G | \mu(x) > 0\}$ is called the support of μ and denoted by supp μ .

Let G be a group and $\mu \in F(G)$. We shall write Im μ for the image set of μ and F μ for the family $\{\mu_t | t \in \text{Im } \mu\}$.

*Corresponding author: ¹HASSAN NARAGHI, *E-mail: naraghi@mail.aiau.ac.ir

Theorem 2.2: Let G be a fuzzy group. If μ is a fuzzy subset of G, then $\mu \in F(G)$ if and only if for all $\mu_t \in F_{\mu}$, μ_t is a subgroup of G.

Let $F_1(G)$ be the set of all fuzzy subgroups μ of G such that $\mu(e) = 1$, and let \sim_R be an equivalence relation on $F_1(G)$. We denote the set $\{v \in F_1(G) | v \sim_R \mu\}$ by $\frac{\mu}{\sim_R}$ and the set $\{\frac{\mu}{\sim_R} | \mu \in F_1(G)\}$ by $\frac{F_1(G)}{\sim_R}$.

Definition 2.3: Let G be a group, and $\mu, v \in F_1(G)$. μ is equivalent to v, written as $\mu \sim v$ if (1) $\mu(x) > \mu(y) \Leftrightarrow v(x) > v(y)$ for all $x, y \in G$. (2) $\mu(x) = 0 \Leftrightarrow v(x) = 0$ for all $x \in G$.

The number of the equivalence classes ~ on $F_1(G)$ is denoted by s(G). We mean the number of distinct fuzzy subgroups of G is s (G).

Theorem 2.4: Let G be a finite group. The number of distinct fuzzy subgroups of G such that their support is exactly equal to G is $\frac{s(G)+1}{2}$.

Let G be a finite group. The number of distinct fuzzy subgroups of G such that their support is exactly equal to G is denoted by $s^*(G)$.

Theorem 2.5: [3] Let G be a finite group. Then the number of distinct fuzzy subgroups of G such that their support is exactly a subgroup of G is $\frac{s(G)-1}{2}$.

Theorem 2.6: [3] Let G be a finite group and H be a subgroup of G. Then the number of distinct fuzzy subgroups of G such that their support is exactly equal to H is $\frac{s(H)+1}{2}$.

Corollary 2.7: [3] Let G be a finite group and H be a subgroup of G. Then the number of distinct fuzzy subgroups of G such that their support is exactly a subgroup of H is $\frac{s(H)-1}{2}$.

Proposition 2.8: [6] Let $n \in N$. Then there are $2^{n+1} - 1$ distinct equivalence classes of fuzzy subgroups of Z_{n^n} .

3. THE NUMBER OF THE DISTINCT FUZZY SUBGROUPS OF THE ABELIANGROUPZ $_{p_1 \times p_2 \times \dots \times p_n}$

In this section, we characterize fuzzy subgroups of the abelian group $Z_{p_1 \times p_2 \times ... p_n}$ such that $p_1, p_2, ..., p_n$ are distinct primes numbers (n > 1).

Proposition 3.1: Suppose that p and q are distinct primes. Then there are 11 distinct equivalence classes of fuzzy subgroups of Z_{pq} .

Proof: See Theorem 8.2.4 of [6].

Proposition 3.2: Suppose that p, q and r are distinct primes. Then there are 51 distinct equivalence classes of fuzzy subgroups of Z_{par} .

Proof: We know that Z_{par} has the following maximal chains:

$$Z_{pqr} \supset Z_{pq} \supset Z_{p} \supset \{0\}, Z_{pqr} \supset Z_{q} \supset Z_{q} \supset \{0\}, Z_{pqr} \supset Z_{pr} \supset Z_{p} \supset \{0\},$$

$$Z_{pqr} \supset Z_{pr} \supset Z_{r} \supset \{0\}, Z_{pqr} \supset Z_{qr} \supset Z_{qr} \supset Z_{qr} \supset \{0\} \text{ and } Z_{pqr} \supset Z_{qr} \supset Z_{r} \supset \{0\}.$$

All of subgroups of the group Z_{pqr} are Z_{pq} , Z_{pr} , Z_{qr} , Z_{p} , Z_{q} , Z_{r} and $\{0\}$. Thus

$$\frac{s(G)-1}{2} = s^*(\{0\}) + s^*(Z_{pq}) + s^*(Z_{pr}) + s^*(Z_{qr}) + s^*(Z_p) + s^*(Z_p) + s^*(Z_r),$$

therefore

$$\frac{s(G)-1}{2} = 1 + 3s^* (Z_{pq}) + 3s^* (Z_p) = 1 + 3(6) + 3(2) = 2 \quad .$$

Hence

$$s(G) = 51$$

Theorem 3.3: Suppose that $p_1, p_2, ..., p_n$ are distinct primes. If $G = Z_{p_1 \times p_2 \times ... \times p_n}$ and n > 1, then $s(G) = \sum_{i=1}^{n-1} \binom{n}{i} s(Z_{\prod_{j=1}^{i} p_j}) + 2^n + 1$.

Proof: Denote $\prod_{k} = \{p_{i1} \times ... \times p_{ik} \mid i_{1}, ..., i_{k} \in \{1, ..., n\}, i_{1} < ... < i_{k}\}, k = 1, 2, ..., n$. We know that $G = Z_{p_{1} \times p_{2} \times ... \times p_{n}}$ has the following maximal chains each of which can be identified with the chain $Z_{\pi_{n}} \supset Z_{\pi_{n-1}} \supset \supset Z_{\pi_{1}} \supset \{0\}$ such that $\pi_{i} \in \Pi_{i}$, for all $i \in \{1, ..., n\}$. For all i = 1, ..., n, $\binom{n}{i} = \frac{n!}{i!(n-i)!}$ is the number of subgroups of the group G as $Z_{\pi_{i}}$. Therefore by theorem 2.5, $\frac{s(G)-1}{2} = s^{*}(\{0\}) + \sum_{i=1}^{n-1} \binom{n}{i} s^{*}(Z_{\pi_{i}})$ and hence $s(G) = 2\sum_{i=1}^{n-1} \binom{n}{i} s^{*}(Z_{\pi_{i}}) + 3$. By theorem 2.4, $s(G) = \sum_{i=1}^{n-1} \binom{n}{i} s(Z_{\pi_{i}}) + 2^{n} + 1$.

4. THE NUMBER OF DISTINCT FUZZY SUBGROUPS OF THE DIHEDRALGROUP $D_{2 \times p_1 \times p_2 \times \dots \times p_n}$

In this section, we determine the number of distinct fuzzy subgroups of the dihedral group $D_{2 \times p_1 \times p_2 \times ... \times p_n}$ such that $p_1, p_2, ..., p_n$ are odd distinct primes.

Theorem 4.1: Suppose that p is a prime and $p \ge 3$. If G is the dihedral group of order 2p, then s(G) = 4p + 7.

Proof: We know that D_{2p} has the following maximal chains:

 $D_{2p} \supset Z_p \supset \{0\}$ and $D_{2p} \supset Z_2 \supset \{0\}$ whose the number is p. Now 2 is the number of distinct fuzzy subgroups whose support is Z_p , 2^1p is the number of distinct fuzzy subgroups whose support is Z_2 , and 2^0 is the number of fuzzy subgroups whose support is $\{0\}$. Thus $\frac{s(G)-1}{2} = 2p + 2 + 1$, therefore s(G) = 4p + 7.

Theorem 4.2: Suppose that p and q are odd distinct primes. If G is the dihedral group of order 2pq, then s(G) = 12pq + 8(p+q) + 23.

Proof: We know that D_{2pq} has the following maximal chains:

$$\begin{split} D_{2pq} \supset D_{2p} \supset Z_2 \supset \{0\}, D_{2pq} \supset D_{2p} \supset Z_p \supset \{0\}, D_{2pq} \supset D_{2q} \supset Z_2 \supset \{0\}, D_{2pq} \supset D_{2q} \supset Z_q \supset \{0\}, \\ D_{2pq} \supset D_{pq} \supset Z_p \supset \{0\}, D_{2pq} \supset D_{pq} \supset Z_q \supset \{0\}. \end{split}$$
 Clearly, pq is the number of the subgroups Z_2 of the dihedral

group D_{2pq} , q is the number of the subgroups D_{2p} and p is the number of the subgroups D_{2q} of the dihedral group D_{2pq} and the dihedral group D_{2pq} has just one subgroup as Z_{qp} , Z_q , Z_p . So that

$$\frac{s(G)-1}{2} = s^*(\{0\}) + pqs^*(Z_2) + qs^*(D_{2p}) + ps^*(D_{2q}) + s^*(Z_{pq}) + s^*(Z_p) + s^*(Z_q).$$

Thus

$$\frac{s(G)-1}{2} = 1 + 2pq + q(2p+4) + p(2q+4) + 6 + 2 + 2$$

therefore

s(G) = 12pq + 8(p+q) + 23.

Table 1: The number of distinct fuzzy subgroups of dihedral group D_{2pq} for some selected primes.

$G = D_{2pq}$	s(G)
p = 3, q = 5	267
p = 3, q = 7	355
p = 3, q = 11	531
p = 3, q = 13	619
p = 13, q = 17	2915

Theorem 4.3: Suppose that p, q and r are odd distinct primes. If G is the dihedral group of order 2pqr, then s(G) = 52pqr + 24(pq + pr + qr) + 24(p + q + r) + 103.

Proof: We have

$$D_{2n} = \langle x, y | x^n = y^2 = 1, yxy = x^{-1} \rangle$$

It is well Known that for every divisor r of n, D_{2n} possesses a subgroup isomorphic to Z_r , namely $H_0^r = \langle x^{\frac{n}{r}} \rangle$ and $\frac{n}{r}$ subgroups isomorphic to D_{2r} , namely $H_i^r = \langle x^{\frac{n}{r}}, x^{i-1}y \rangle$, $i = 1, 2, ..., \frac{n}{r}$. We know that D_{2pqr} has the following maximal chains each of which can be identified with the Chain,

$$\begin{split} D_{2pqr} \supset D_{2pq} \supset D_{2p} \supset Z_{p} \supset \{0\}, D_{2pqr} \supset D_{2pq} \supset D_{2q} \supset Z_{q} \supset \{0\}, D_{2pqr} \supset D_{2pr} \supset D_{2pr} \supset D_{2p} \supset Z_{p} \supset \{0\}, \\ D_{2pqr} \supset D_{2pr} \supset D_{2r} \supset Z_{r} \supset \{0\}, D_{2pqr} \supset D_{2qr} \supset D_{2q} \supset Z_{q} \supset \{0\}, D_{2pqr} \supset D_{2qr} \supset D_{2r} \supset Z_{r} \supset \{0\}, \\ D_{2pqr} \supset D_{2pq} \supset D_{2p} \supset Z_{2} \supset \{0\}, D_{2pqr} \supset D_{2pq} \supset D_{2q} \supset Z_{2} \supset \{0\}, D_{2pqr} \supset D_{2pr} \supset D_{2pr} \supset D_{2p} \supset Z_{2} \supset \{0\}, \\ D_{2pqr} \supset D_{2pr} \supset D_{2r} \supset Z_{2} \supset \{0\}, D_{2pqr} \supset D_{2qr} \supset D_{2q} \supset Z_{2} \supset \{0\}, D_{2pqr} \supset D_{2qr} \supset D_{2pr} \supset D_{2r} \supset Z_{2} \supset \{0\}, \\ D_{2pqr} \supset D_{2pr} \supset D_{2r} \supset Z_{2} \supset \{0\}, D_{2pqr} \supset D_{2qr} \supset D_{2qr} \supset Z_{2} \supset \{0\}, D_{2pqr} \supset D_{2qr} \supset Z_{2} \supset \{0\}, \\ D_{2pqr} \supset Z_{pqr} \supset Z_{pqr} \supset Z_{pq} \supset Z_{pr} \supset Z_{pqr} \supset Z_{pqr$$

Clearly, pqr is the number of subgroups Z_2 of the dihedral group D_{2pqr} , qr is the number of the subgroups D_{2p} , pr is the number of the subgroups D_{2q} , pq is the number of the subgroups D_{2r} and p is the number of the subgroups D_{2qr} , q is the number of the subgroups D_{2pr} and r is the number of the subgroups D_{2pqr} of the dihedral group D_{2pqr} and the dihedral group D_{2pqr} has just one subgroup as Z_{pqr} , Z_{pq} , Z_{pr} , Z_{qr} , Z_{qr} , Z_{pr} , Z_{r} . So that

$$\frac{s(G)-1}{2} = s^*(\{0\}) + p \quad s_q^*(\mathbb{Z}_2) + s^*(\mathbb{Z}_p) + s^*(\mathbb{Z}_q) + s^*(\mathbb{Z}_r) + s^*(\mathbb{Z}_{pq}) + s^*(\mathbb{Z}_{pr}) + s^*(\mathbb{Z}_{qr}) + s^*(\mathbb{Z}_{pqr}) + s^*(\mathbb{Z}_{pqr})$$

Therefore

$$\frac{s(G)-1}{2} = 1 + 2pqr + 3(2Z_p) + 3(6) + 26 + qr(2p+4) + pr(2q+4) + pq(2r+4) + pq(2r+4) + p\frac{(12qr+8(q+r)+24)}{2} + q\frac{(12pr+8(p+r)+24)}{2} + r\frac{(12pq+8(p+q)+24)}{2} + r\frac$$

Thus

$$s(G) = 52pqr + 24(pq + pr + qr) + 24(p + q + r) + 103$$

Table 2: The number of distinct fuzzy subgroups the dihedral group $D_{2_{par}}$ for some selected primes.

$G = D_{2pqr}$	s(G)
p = 3, q = 5, r = 7	7627
p = 3, q = 7, r = 11	15763
p = 5, q = 7, r = 13	28947
p = 7, q = 13, r = 17	91779
p = 13, q = 17, r = 19	238611

Theorem 4.4: Suppose that $p_1, p_2, ..., p_n$ are odd distinct primes and $P = 2 \times p_1 \times p_2 \times ... \times p_n$. If $G = D_p$ and n > 1, then

$$s(G) = 2P + \sum_{i=1}^{n} {n \choose i} s(Z_{\prod_{j=1}^{i} P_{j}}) + \frac{P}{2} \sum_{t \mid P, 2 < t < P} s(D_{2t}) + \frac{P}{2} (2^{n+1} - 3) + 2^{n} + 2$$

Proof: We have

$$D_{2n} = \langle x, y | x^n = y^2 = 1, yxy = x^{-1} \rangle.$$

It is well Known that for every divisor r of n, D_{2n} possesses a sub group isomorphic to Z_r , namely $H_0^r = \langle x^{\frac{n}{2}} \rangle$ and $\frac{n}{r}$ subgroups isomorphic to D_{2r} , namely $H_i^r = \langle x^{\frac{n}{r}}, x^{i-1}y \rangle$, $i = 1, 2, ..., \frac{n}{r}$. Let

$$\Pi_{k} = \left\{ p_{i_{1}} \times \dots \times p_{i_{k}} \mid i_{1}, \dots, i_{k} \in \left\{ 1, \dots, n \right\}, i_{1} < \dots < i_{k} \right\}, k = 1, 2, \dots, n$$

We know that $G = D_p$ has the following maximal chains each be identified with the chain

$$D_{2\pi_n} \supset D_{2\pi_{n-1}} \supset \dots \supset D_{2\pi_1} \supset Z_{\pi_1} \supset \left\{0\right\}$$
$$D_{2\pi_n} \supset Z_{\pi_n} \supset Z_{\pi_{n-1}} \supset \dots \supset Z_{\pi_1} \supset \left\{0\right\},$$
$$D_{2\pi_n} \supset D_{2\pi_{n-1}} \supset \dots \supset D_{2\pi_1} \supset Z_2 \supset \left\{0\right\},$$

such that $\pi_i \in \Pi_i$ for all $i \in \{1, ..., n\}$. Now $\frac{P}{2}$ is the number of subgroups of the group G as Z_2 , and for all i = 1, ..., n, $\binom{n}{i} = \frac{n!}{i!(n-i)!}$ is the number of subgroups of the group G as Z_{π_i} . Also $\frac{P}{2t}$ is the number of subgroups

of the group G as D_{2t} , for every divisor t of $\frac{P}{2}$. Therefore by theorem 2.5,

$$\frac{(G)-1}{2} = s^*(\{0\}) + \frac{P}{2}s^*(Z_2) + \sum_{i=1}^n \binom{n}{i} s^*(Z_{\pi_i}) + \sum_{t \mid P, 2 \le t \le P} \frac{P}{2t}s^*(D_{2t}),$$

Then

$$s(G) = 2P + 2\sum_{i=1}^{n} {n \choose i} s^{*}(Z_{\pi_{i}}) + P \sum_{t \mid P, 2 \le t \le P} s(D_{2t}) + \frac{P}{t} s^{*}(D_{2t}) + 3,$$

Thus

$$s(G) = 2P + \sum_{i=1}^{n} {n \choose i} s(Z_{\pi_i}) + \frac{P}{2} \sum_{t \mid P, 2 < t < P} \frac{s(D_{2t}) + 1}{t} + 2^n + 2.$$

REFERENCES

[1] P. S. Das, Fuzzy groups and level subgroups, Math. Appl.8 (1981), 264-269.

[2] C. Degang and J. Jiashang, Some notes on equivalence fuzzy sets and fuzzy sub-groups, Fuzzy sets and systems.152 (2005) 403-409.

[3] A. Iranmanesh and H. Naraghi, THE CONNECTION BETWEEN SOME EQUIVALENCE RELATIONS ON FUZZY SUBGROUPS, Iranian Journal of Fuzzy Systems, **8**(5)(2011)69-80.

[4] R. Kumar, Fuzzy Algebra, vol. I, University of Delhi, Publication Division, (1993).

[5] M. Mashinchi and M. Mukaidonon, On fuzzy subgroups classification, Research Report of Meiji University, Japan.9 (65) (1993), 31-36.

[6] John N. Mordeson, Kiran R. Bhutani and Azriel Rosenfeld, Fuzzy Group Theory, Springer-Verlag Berlin Heidelberg, (2005).

[7] J.N. Mordeson, N. Kuroki, D.S. Malik, Fuzzy Semigroups, Springer, Berlin, (2003).

[8] V. Murali and B.B. Makamba, On an equivalence of fuzzy subgroups I, Fuzzy sets and systems. 123 (2001)259-264.

[9] V. Murali and B.B. Makamba, On an equivalence of fuzzy subgroups II, Fuzzy sets and systems. **136** (1) (2003)93-104.

[10] V. Murali and B. B. Makamba, On an equivalence of fuzzy subgroups III, Internat. J. Math. Sci.36 (2003)2303-2313.

[11] V. Murali and B.B. Makamba, Counting the number of fuzzy subgroups of an abelian group of order pnqm, Fuzzy sets and systems.**144** (2004) 459{470.

[12] V. Murali and B. B. Makamba, Fuzzy subgroups of infinite abelian groups, FJMS.14 (1) (2004) 113-125.

[13] A. Rosenfeld, Fuzzy groups, J.Math.Anal.Appl.35 (1971)512-517.

[14] M. Tarnauceanu and L. Bentea, On the number of fuzzy subgroup S of finite abelian groups, Fuzzy Sets and systems, 159(2008) 1084-1096.

[15] L. A. Zadeh, Fuzzysets, information and control.8 (1965) 338-353.

[16] Y. Zhang and K. Zou, A not on an equivalence relation on fuzzy subgroups, Fuzzy Sets and Systems, **95**(1998)243-247.

Source of support: Nil, Conflict of interest: None Declared