ANTI Q-FUZZY FINITE DIMENSIONAL G – MODULAR DISTRIBUTIVE LATTICES

Dr. R. NAGARAJAN*

Associate Professor & Head, Department of Mathematics

J.J. College of Engineering & Technology, Tiruchirappalli- 620009, Tamilnadu, India

E-mail: nagalogesh@yahoo.co.in

(Received on: 30-03-12; Accepted on: 19-04-12)

ABSTRACT

We study the characterization of fuzzy G-modular distributive lattice such as ring sums, lattice homomorphism and upper level sets and characterization of these lattices which is similar to a well known result of lattice theory. The main goal of this paper is to study the finite groups whose lattices of fuzzy G-modular are distributive.

Key Words: Fuzzy lattices, level set, G-modular, anti Q-Fuzzy G-modular lattices, fuzzy filter, fuzzy ideal, lattice homomorphism.

.

SECTION-1: INTRODUCTION

The theory of fuzzy sets which was introduced by L. A. Zadeh [14] is applied to many mathematical branches. Rosenfeld [14] inspired the fuzzification of algebraic structures and introduced the notion of fuzzy sub groups. P. Das [6] characterized fuzzy sub groups by their level sub groups. A.Solairaju and R.Nagarajan introduced the notion of Q-fuzzy groups [15]. In [11] Liu applied the concept of fuzzy sets to the theory of rings and introduced and examined the notion of a fuzzy ideal of a ring. The study of fuzzy sub module was introduced by pan and Golan in [7]. Also Pan [13] studied the fuzzy finitely generated modules and fuzzy quotient modules. Later Katsaras and D.B. Liu introduced the concept of fuzzy vector spaces and fuzzy topological vector spaces. The formation of a lattice of sub modules of a module is well known features in classical algebra. However the same has not been explored in fuzzy setting. In order to initiate such studies the concept of fuzzy sub-module generated by an arbitrary fuzzy set is formulate in this note. Using this concept S.K. Bambri and Pratibakumar [5] introduced Lattice of fuzzy sub modules and established an embedding of the lattice of all sub module of a module M into the lattice of fuzzy sub module.

Q. Zhang and Meng [17] considered the sub property to be an assumption and established the more general result that "the lattice I_t (R) of all fuzzy ideals of a ring R with the same tip "t" is modular. On the other hand in [11] the authors have arrived at the false result that The lattice I(R) is distributive. In fact the lattice I(R) of ideals of a ring R is not distributive and has an obvious embedding in I(R). The corrected result has already appeared in several papers [10, 16]. I Jahan in [8], by constructing and employing the technique of strong level subsets, he proved that the lattice (R) of all ideals of a ring R is modular. This proof of the modularity of I(R) is different from the Ajmal's proof of modularity of the lattice of fuzzy normal sub groups of group appeared in [1]. K. C. Gupta and S. Roy in introduce the indirect proof of the above result that the modularity of the quasi Hamiltonians fuzzy sub groups. Hence N. Ajmal and K.V. Thomas in [2] initiated a discussion on the aspect of modularity of the set of fuzzy normal sub groups. A special class of fuzzy normal sub groups of group has been shown to constitute a modular sub lattice of its fuzzy sub group lattice. They first established that the sub lattice (G) is modular. Moreover using the same technique in [3], they demonstrate that whenever the set (G) of all fuzzy quasi normal sub groups of a given group forms a lattice, the lattice is modular. B. Yuan and Wu. Wangning in [4], introduced fuzzy ideals on a distributive lattice. In this paper, we study the characterization of fuzzy G-modular distributive lattice such as ring sums, lattice homomorphism and upper level sets and characterization of these lattices which is similar to a well known result of lattice theory

SECTION- 2: PRELIMINARIES

Definition: 2.1 A non empty set L together with two binary operations V and Λ on L is called a lattice if it satisfies the following identities.

L1: $x V y \approx y V x$, $x \Lambda y \approx y \Lambda x$

L2: $x V (y V z) \approx (x V y) V z, x \Lambda (y \Lambda z) \approx (x \Lambda y) \Lambda z$

L3: $x V x \approx x, x \Lambda x \approx x$

L4: $x \approx x \ V \ (x \ \Lambda \ y), x \approx x \ \Lambda \ (x \ V \ y)$. The operation Λ is called meet and the operation V is called join. Let L be the set of proposition and let V denote the connective "or" and Λ denote the connective "and". Then L1 to L4 are well known properties from prepositional logic.

Definition: 2.2 A distributive lattice is a lattice which satisfies either of the distributive laws.D1.x Λ (y V z) \approx (x Λ y) V (x Λ z), D2. xV(y Λ z) \approx (x V y) Λ (x V z).One can see a lattice L satisfies D1 if and only if satisfies D2.

Definition: 2.3 Let G be a group and L be a vector distributive lattice then L is called G-modular if for $a \in G$ and $l \in L$, there exist a product $a, l \in L$ satisfies the following axioms.

- (i) e. l = l, for all $l \in L$
- (ii) (a. h) . l = a (h . l)
- $(iii) \quad a. \ (k_1 \ m_1 + k_2 \ m_2) = k_1 \ (am_1) + k_2 (am_2) \ for \ all \ k_1, \ k_2 \in K \ and \ m_1, \ m_2 \in M.$

Definition: 2.4 A mapping $\mu: X \times Q \to [0, 1]$ where X is an arbitrary non-empty set and is called a Q-fuzzy set in X.

Definition: 2.5 Let X be a Q-fuzzy set and μ : $X \times Q \to G$ be a lattice ordered group of X. Then μ is called Q-fuzzy lattice ordered group (QFLG) if

- (i) $\mu(x + y, q) \ge \min \{\mu(x, q), \mu(y, q)\}$
- (ii) $\mu(-x, q) \ge \mu(x, q)$
- (iii) $\mu(0, q) = 1$, for all $x, y \in G$.

Definition: 2.6 Let μ be a Q-fuzzy lattice ordered group of G and μ :X×Q \rightarrow G. Then μ is called Q-fuzzy lattice if

- (i) $\mu(x + y, q) \ge \min \{\mu(x, q), \mu(y, q)\}$
- (ii) $\mu(-x, q) \ge \mu(x, q)$
- (iii) $\mu(x \ V \ y) \ge \min \{\mu(x), \mu(y)\}\$
- (iv) $\mu(x \land y) \ge \min \{\mu(x), \mu(y)\}, \text{ for all } x, y \in G.$

Definition: 2.7 Let X be any group and L be a vector distributive lattice extended real valued functions on X. If μ is called a anti Q-fuzzy G-modular lattice on L then it satisfies the following conditions.

- (i) $\mu (ax + by, q) \le max \{\mu(x), \mu (y)\}$
- (ii) $\mu(gx, q) \leq \mu(x)$
- (iii) μ (x V y)_q Λ μ (x Λ y)_q \leq max{ μ (x, q), μ (y, q)}, for all x, y \in L.

Definition: 2.8 A Q-fuzzy sub set μ is called monotonic if

(i) $\mu(x,q) \le \mu(y,q)$ whenever $x \le y$

Definition: 2.9 Let μ be any Q-fuzzy sub set of X. Then the set

 $\mu_t = \{x \in X \mid \mu(x,q) \ge t, t \in [0,1]\}$ is called a level sub set of μ .

Definition: 2.10

- (i) A monotonic fuzzy G-modular lattice is called a fuzzy filter of L.
- (ii) A anti-monotonic fuzzy G-modular lattice is called a fuzzy ideal of L.
- (iii) A Q-fuzzy sub set μ is called a Q-fuzzy filter if and only if $\mu(x \wedge y)_q = \mu(x,q) \wedge \mu(y,q)$, for all $x,y \in L$.
- $\text{(iv)} \quad \text{A Q-fuzzy subset } \mu \text{ is called a Q-fuzzy ideal if and only if } \ \mu(x \ V \ y)_q = \mu(x, \, q) \ \Lambda \ \mu(y, \, q), \text{ for all } x, \, y \in L.$

Definition: 2.11

(i) A Q-fuzzy filter is prime if $\mu \ (x \ V \ y)_q \leq S\{\mu(x \ , q \), \ \mu(y \ , q)\}$

(ii) A Q-fuzzy ideal is prime if

 μ (x Λ y)_q \leq S { μ (x, q), μ (y, q)}, holds for all x, y \in L.

Definition: 2.12 A Q-fuzzy G-modular lattice A is modular if and only if

 $A(x, z) \ge 0 \Rightarrow x V(y \land z) = (x V y) \land z$. for all x, y and $z \in X$.

Definition: 2.13 Let μ be a anti Q-fuzzy G-modular lattice. If μ is distributive then

- (i) $x \Lambda (y V z) = (x \Lambda y) V (x \Lambda y)$ and
- (ii) $x V (y \Lambda z) = (x V y) \Lambda (x V z)$ for all x, y and $Z \in X$.

Definition: 2.14 Let L and L' be lattices. A mapping f: $L \to L'$ is said to be lattice homomorphism if

- (i) f(x + y) = f(x) + f(y) and
- (ii) $f(xy) = f(x) \cdot f(y)$, for all $x, y \in L$.

Definition: 2.15 We say that a Anti Q-fuzzy G-modular distributive lattice $M = (L, \mu_M)$ in L satisfies the imaginable property if

$$I_m(\mu_M) \subseteq \, \Delta T$$

Definition: 2.16 Let λ and μ be two anti Q-fuzzy G-modular distributive lattice of L then the sum of λ and μ are denoted by $\lambda + \mu$ and is defined as

$$\begin{array}{ll} (\lambda + \mu) \ (z,\,q) = \ inf \left\{ max \ \{ \lambda(x,\,q), \ \mu(y,\,q) \} \right\} & \ where \ x,\,y \in L. \\ z = x + y \end{array}$$

Clearly $\lambda + \mu$ is a anti Q-fuzzy G modular distributive lattice in L.

Definition: 2.17 Let λ and μ be two anti Q-fuzzy G-modular distributive lattice of L, Then the ring sum of λ and μ is defined as

$$\begin{array}{ll} (\lambda\oplus\mu)\ (z,q)=\ inf\ \{(\mu_1+\mu_2)\ (z,q)\ /\ x=f^{-1}(\lambda,\!,\!q),\ y=f^{-1}(\mu,\!q)\}\ for\ all\ x,\ y\ and\ z\in L\\ Z\in\ \lambda\oplus\mu \end{array}$$

SECTION -3: CHARACATERIZATION OF ANTI Q-FUZZY G-MODULAR DISTRUBUTIVE LATTICES

Throughout this paper G be a finite groups and $L = \langle L, +, \cdot \rangle$ denotes a lattice.

That is of maps from L into < [0, 1]; V, $\Lambda >$, where [0, 1] is the set of real's between 0 and 1. and

- (i) x V y = max(x, y), if $y \le x$ then $\mu(y) \ge \mu(x)$ and
- (ii) $x \wedge y = \min(x, y)$, if $x \le y$ then $\mu(x) \ge \mu(y)$

Proposition: 3.1 Let M be a G-modular lattice and N be a anti Q-fuzzy G-sub modular lattice of M has a anti Q-fuzzy G-modular distributive lattice then M/N and N has anti Q-fuzzy G-modular distributive lattice.

Proof: Let μ be a fuzzy sub modular lattice of M then V: μ_N is anti Q-fuzzy G-modular lattice on N.

Define
$$\mu:\frac{M}{N}\times Q\rightarrow [0,\,1]$$
 by $\mu\;(x+N,\,q)=\mu\;(x,\,q),$ for all $x\in G$ and $n\,\in\,\frac{M}{N}$

(1)
$$\mu (a(x + N) + b(y + N), q) = \mu ((ax + by) + N, q)$$

$$= \mu (ax + by, q)$$

$$\leq max \{ \mu (x, q) + \mu (y, q) \}$$

$$\leq max \{ \mu (x + N, q) + \mu (y + N, q) \}$$

(2)
$$\mu (g(x+N,q)) = \mu (gx+N,q) = \mu (gx,q)$$

$$\leq \mu (x,q)$$

$$\leq \mu (x+N,q)$$

$$(3) \qquad (\mu \ (x \ V \ y)q \ \Lambda \ \mu(x \ \Lambda \ y))q + N = max \{ \ \mu \ ((x \ V \ y)q + N, \ \mu(x \ \Lambda \ y)q + N \}$$

$$\leq max \{ max \{ (\mu(x, q), \ \mu(y, q)) + N \}, \ \{ \ max \{ \ (\mu(x, q), \ \mu(y, q)) + N \} \}$$

$$\leq max \{ \ \mu \ (x, q) + N, \ \mu \ (y, q) + N \}$$

$$\leq max \{ \mu \ (x + N, q), \ \mu \ (y + N, q) \}$$

$$\leq max \{ \mu \ (x, q), \ \mu \ (y, q) \}, \ for \ all \ x, \ y \in G$$

Therefore $\frac{M}{N}$ and N are anti Q-fuzzy G-modular distributive lattice.

Proposition: 3.2 Let $f: L \to L^*$ be a G-modular distributive lattice homomorphism. Where L and L* are G-modular distributive lattices. If V is anti Q-fuzzy G-modular distributive lattice on L* then $f^{-1}(v)$ is anti Q-fuzzy G-modular distributive lattice on L.

Proof: Since V is anti Q-fuzzy G-modular distributive lattice on L* and f: $L \to L^*$ be a G-modular lattice homomorphism. For any a, $b \in K$ and $x, y \in L$, we have

(1)
$$f^{-1}(V) (ax + by, q) = V (f(ax + by, q))$$

$$= V (f(ax, q) + f(by, q))$$

$$\leq V \{(f(x, q) + f(y, q)\}$$

$$\leq max \{V f(x, q), V f(y, q)\}$$

$$\leq max \{f^{-1}(V)(x, q), f^{-1}(V) (y, q)\}$$

(2)
$$f^{-1}(V) (gm, q) = V f (gm, q)$$

$$\leq V f(m, q)$$

$$\leq f^{-1}(V) (m, q)$$

(3)
$$f^{-1}(V) (x \ V \ y) q \ \Lambda \ f^{-1}(V) (x \ \Lambda \ y) q = \max \{ f^{-1}(V) ((x \ V \ y) q, \ f^{-1}(V) (x \ \Lambda \ y) q \}$$

$$= \max \{ V \ f(x \ V \ y, \ q), \ V \ f(x \ \Lambda \ y, \ q) \}$$

$$= \max \{ V \ (f(x, \ q) + f(y, \ q)), \ V \ (f(x, \ q), \ f(y, \ q)) \} (\text{since } V \ \text{is homomorphism}$$

$$\leq \max \{ W \ f(x, \ q), \ V \ f(y, \ q) \}, \ \{ \max \{ V \ f(x, \ q), \ V \ f(y, \ q) \} \}$$

$$\leq \max \{ V \ f(x, \ q), \ V \ f(y, \ q) \}$$

$$\leq \max \{ f^{-1}(v)(x, \ q), \ f^{-1}(v)(y, \ q) \}$$

Therefore f⁻¹ (V) is anti Q- fuzzy G-modular distributive lattice on L.

Preposition: 3.3 Let S be a t-norm, then every imaginable anti Q-fuzzy G-modular distributive lattice of L is anti Q-fuzzy G-modular distributive lattice.

Proof: Let $M = (L, \mu_M)$ be an imaginable anti Q-fuzzy G-modular distributive lattice of L under S-norms. Then

- (i) $\mu_{M}(ax + by, q) \leq S \{\mu_{M}(x, q), \mu_{M}(y, q)\}$
- (ii) μ_{M} (gm, q) $\leq \mu_{M}$ (m, q),
- $(iii) \ \mu_{M} \ (x \ V \ y) q \ \Lambda \ \mu_{M} \ (x \ \Lambda \ y) q \leq S\{\mu_{M} \ (x, q), \ \mu_{M} \ (y, q)\} \\ for all \ a, \ b \in G, \ x, \ y \ and \ m \in M.$

We have

$$\begin{split} \max \; \{ \mu_{M}(x,\,q), \, \mu_{M}(y,\,q) \} &= S \; \{ \max \{ \mu_{M} \; (x,\,q), \, \mu_{M} \; (y,\,q) \}, \, \max \; \{ \mu_{M} \; (x,\,q), \, \mu_{M} \; (y,\,q) \} \\ &\geq S \; \{ \mu_{M} \; (x,\,q), \, \mu_{M} \; (y,\,q) \} \\ &\geq \max \; \{ \mu_{M} \; (x,\,q), \, \mu_{M} \; (y,\,q) \} \end{split}$$

It follows that μ_{M} (ax + by, q) \leq S { μ_{M} (x, q), μ_{M} (y, q)}

Therefore $M = (L, \mu_M)$ is an imaginable anti Q-fuzzy G-modular distributive lattice of L.

Proposition: 3.4 If L is a complete lattice then the intersection of a family of anti Q- fuzzy G-modular distributive lattice is a fuzzy G-modular distributive lattice.

Proof: Let $\{M_i : j \in J\}$ be a family of anti Q-fuzzy G-modular distributive lattice and let $M = \bigcup M$

We have
$$\mu_M(x, q) = \sup \mu_{M_1}(x, q)$$
 and $\mu_M(y, q) = \sup \mu_{M_1}(y, q)$

$$\begin{split} (1) \;\; \mu_{M} \left(ax + by, \, q \right) &= sup \, \mu_{M_{j}} \; \left(ax + by, \, q \right) \\ &\leq Sup \; \{ max \; \{ \, \mu_{M_{j}} \left(x, \, q \right), \; \mu_{M_{j}} \left(y, \, q \right) \} \} \\ &\leq Max \; \{ sup \, \mu_{M_{j}} \left(x, \, q \right), \, sup \, \mu_{M_{j}} \left(y, \, q \right) \} \\ &\leq Max \; \{ \; \mu_{M} \left(x, \, q \right), \, \mu_{M} \left(y, \, q \right) \} \end{split}$$

$$(2) \ \mu_{M} \ (gx, q) = \sup \mu_{M_{j}} (gx, q)$$

$$\leq \sup \mu_{M_{j}} (x, q)$$

$$\leq \mu_{M} (x, q)$$

$$\begin{split} (3) \; \mu_M \, (x \; V \; y) q \; \Lambda \; \; \mu_M \; (x \; \Lambda \; y) q &= max \; \{ \mu_M \, ((x \; V \; y, \; q), \; \mu_M \, (x \; \Lambda \; y, \; q) \; \} \\ &= max \; \{ sup \; \mu_{M_j} \; (x \; V \; y, \; q), \; sup \; \mu_{M_j} \; (x \; \Lambda \; y, \; q) \; \} \\ &= max \; \{ sup \; max \{ \; \mu_{M_j} \, (x, \; q) \; , \; \; \mu_{M_j} \, (y, \; q) \}, \; Sup \; max \{ \; \mu_{M_j} \, (x, \; q) \; , \; \; \mu_{M_j} \, (y, \; q) \} \} \\ &\leq max \{ sup \; \mu_{M_j} \, (x, \; q), \; sup \; \mu_{M_j} \, (y, \; q) \} \\ &\leq T \; \{ \; \mu_M (x, \; q), \; \mu_M (y, \; q) \} \; , \; \text{for all} \; x, \; y \in L. \end{split}$$

Therefore $\Breve{U}\,\mu_{M_{\,i}}$ is a anti Q-fuzzy G-modular distributive lattice.

Proposition: 3.5 Any finite dimensional G-modular distributive lattice over a sub lattice L is anti Q- fuzzy G-modular distributive lattice over L.

Proof: Let μ : M \rightarrow [0, 1] be a map and M be a finite n-dimensional anti Q-fuzzy G-modular distributive lattice over L.

For all α , $\beta \in L$ and $x, y \in M$

Such that
$$\mu^n \ (\alpha x, \, q) = \mu(n(\alpha x, \, q) = \mu^n(x, \, q)$$

$$(1) \qquad \mu^n \ (\alpha x + \beta y, \, q) = \mu(n(\alpha \, x + \beta y, \, q))$$

$$= n \ \mu \ (\alpha \, x + \beta \, y, \, q)$$

$$\leq n \ \{ \{ \max\{\mu(\alpha x, \, q) + \ \mu(\beta y, \, q) \}$$

$$\leq \max \ \{ \ n\mu(\alpha x, \, q) \ , \ \mu^n(\beta y, \, q) \}$$

$$\leq \max \ \{ \mu^n(\alpha x, \, q) \ , \ \mu^n(\beta y, \, q) \}$$

$$\leq \max \ \{ \mu^n(x, \, q) \ , \ \mu^n(y, \, q) \}$$

(2)
$$\mu^{n} (gx, q) = \mu(n(gx, q))$$

 $= n\mu (gx, q)$
 $\leq n\mu(x, q)$
 $\leq \mu^{n} (x, q)$

$$\begin{split} (3) \ \ \mu^n \ (x \ V \ y) q \ \Lambda \ \ \mu^n \ (x \ \Lambda \ y) q &= max \ \{ \mu^n \ ((x \ V \ y, \ q), \ \mu^n \ (x \ \Lambda \ y, \ q) \} \\ &= max \ \{ \mu \ (n \ (x \ V \ y, \ q), \ \mu(n \ (x \ \Lambda \ y, \ q) \} \\ &= max \ \{ n\mu\{(x \ V \ y, \ q), \ n\mu \ (x \ \Lambda \ y, \ q) \} \\ &\leq max \{ n\{max \ \{ \mu \ (x, \ q), \ \mu \ (y, \ q) \}, \ n\{max \ \{ \mu \ (x, \ q), \ \mu \ (y, \ q) \} \} \\ &\leq max \ \{ n\mu(x, \ q), \ n\mu(y, \ q) \}, \ \text{for all} \ x, \ y \in M. \end{split}$$

Therefore, n-dimensional anti Q-fuzzy G-modular distributive lattice is anti Q-fuzzy G-modular distributive lattice.

Proposition: 3.6 If M and N are anti Q-fuzzy G-modular distributive lattices over a fuzzy sub-lattice L then $L = M \oplus D$ N is anti Q- fuzzy G-modular distributive lattice on L. Here ⊕ is referred as a ring sum.

Proof: Let M and N be two anti Q-fuzzy G-modular distributive lattices of μ_1 and μ_2 respectively. Then we define the ring sum of M. and N as

$$(M \oplus N) (z, q) = \inf \{ (\mu_1 + \mu_2) (z, q) / x = f^{-1}(\mu_1, q), y = f^{-1}(\mu_2, q) \}$$
$$z \in M \oplus N$$

Now

$$(1) (M \oplus N) (\alpha x + \beta y, q) = (\mu_1 + \mu_2) (\alpha x + \beta y, q)$$

$$\leq \max \left\{ ((\mu_1 + \mu_2) (x, q), (\mu_1 + \mu_2) (y, q) \right\}$$

$$\leq \max \left\{ (i \mu_1 + \mu_2) (x, q), \inf \mu_2 (z, q) \right\}$$

$$z \in M \oplus N \qquad z \in M \oplus N$$

$$\leq \max \left\{ (M \oplus N) (z, q), M \oplus N (z, q) \right\}$$

$$\leq \max \left\{ (M \oplus N) (x, q), M \oplus N (y, q) \right\}$$

$$(2) (M \oplus N) (gz, q) = (\mu_1 + \mu_2) (gz, q)$$

$$\leq (\mu_1 + \mu_2) (z, q)$$

$$\leq \inf\{\mu_1 + \mu_2\} (z, q)$$

$$z \in M \oplus N$$

$$\leq M \oplus N (z, q)$$

$$(3) (M \oplus N)(x \vee y) q \Lambda(M \oplus N)(x \wedge y) q = \max\{ (M \oplus N) (x \vee y, q), (M \oplus N)(x \wedge y, q) \}$$

$$= \max \left\{ (\mu_1 + \mu_2) (x \vee y, q), (\mu_1 + \mu_2) (x \wedge y, q) \right\}$$

$$\leq \max \left\{ \max\{ (\mu_1 + \mu_2) (x, q), (\mu_1 + \mu_2) (y, q) \right\}, \max\{ (\mu_1 + \mu_2) (x, q), (\mu_1 + \mu_2) (y, q) \}$$

$$\leq \max \left\{ (\mu_1 + \mu_2) (x, q), (\mu_1 + \mu_2) (y, q) \right\}$$

$$\leq \max \left\{ (\mu_1 + \mu_2) (x, q), (\mu_1 + \mu_2) (y, q) \right\}$$

$$\leq \max \left\{ (\mu_1 + \mu_2) (x, q), (\mu_1 + \mu_2) (y, q) \right\}$$

$$\leq \max \left\{ (\mu_1 + \mu_2) (x, q), (\mu_1 + \mu_2) (y, q) \right\}$$

$$\leq \max \left\{ (\mu_1 + \mu_2) (x, q), (\mu_1 + \mu_2) (y, q) \right\}$$

$$\leq \max \left\{ (\mu_1 + \mu_2) (x, q), (\mu_1 + \mu_2) (x,$$

 $\leq \max \{(M \oplus N) (x, q), M \oplus N (y, q)\}$

Proposition: 3.7 Let M be a G-modular distributive lattices over a sub lattice L and $M = \sum_{i=1}^{n} M_i$, where M_i 's are G sub modular distributive lattice of M. If V_i are anti Q-fuzzy G-modular distributive lattice of M_i then $V: M \to [0, 1]$ is anti Q-fuzzy G-modular distributive lattice in L.

Proof: Since V_i is anti Q-fuzzy G-modular distributive lattice on M_i for every $x, y \in M$; $g \in L$ and $\alpha, \beta \in L$. We have

$$\begin{split} (1) \qquad & V\left(\alpha\,x + \beta y, \,q\right) = V\left(\Sigma\left(\alpha M_{i} + \beta M_{i}', q\right)\right) \\ & = \Lambda\left(V_{i}\left(\alpha M_{i} + \beta M_{i}', \,q\right)\right), \quad \text{where } i = 1, 2 \dots n. \\ & = V_{j}\left(\alpha M_{j} + \beta M_{j}', \,q\right)\right), \quad \text{for some } j \\ & \leq \max\left(V_{j}(M_{j}, \,q), \,\,V_{j}(M_{j}', \,q)\right) \\ & \leq \max\left(V(x, \,q), \,\,V(y, \,q)\right) \\ (2) \qquad & V\left(gx, \,q\right) = V\left(\Sigma g M_{i}, \,q\right) \\ & = \Lambda\left(V_{i}(g M_{i}, \,q), \quad \text{where } i = 1, \, 2 \dots n. \right) \\ & = V_{j}\left(g M_{j}, \,q\right), \quad \text{for some } j \\ & \leq V_{j}(M_{j}, \,q) \\ & \leq V(x, \,q) \\ (3) \ & V\left(x \ V \ y\right) q \ \Lambda \ & V\left(x \ \Lambda \ y\right) q = \max\left\{V\left((x \ V \ y, \,q\right) M_{i}, \,\,V \ \Sigma\left(x \ \Lambda \ y, \,q\right) M_{i}'\right\} \text{for } i = 1, \, 2, \, \dots \, n \\ & = \max\left\{V\left(x \ V \ y, \,q\right) M_{i}, \,\,V \ (x \ \Lambda \ y, \,q\right) M_{i}'\right\} \\ & \leq \max\left\{W(x, \,q), \,\,V(y, \,q)\right\} M_{i}, \left\{\max\left\{V(x, \,q), \,\,V(y, \,q)\right\} M_{i}'\right\} \text{max } \left\{V(x, \,q) M_{i}, \,\,V(x, \,q), \,\,V(y, \,q)\right\} \\ & \leq \max\left\{V_{i}(M_{j}, \,\,V_{j} \,\,M_{j}'\right\}, \,\,\text{for some } j. \\ & \leq \max\left\{V(X_{i}, \,q), \,\,V(y, \,q)\right\} \end{split}$$

Therefore V is anti Q- fuzzy G-modular distributive lattice on anti Q- fuzzy G-modular distributive lattice in L.

Proposition 3.8: Let λ and μ be anti Q-fuzzy G-modular distributive lattices of L, then $\lambda + \mu$ is the smallest anti Q-fuzzy G-modular distributive lattice of L.

Proof: For any x, y, h, $f \in L$, we have

(1)
$$\max\{(\lambda + \mu)q \ x, (\lambda + \mu)q \ y\} = \max\{\inf \max\{(\lambda(a, q), \mu(b, q)\}, \inf \max\{(\lambda(c, q), \mu(d, q)\}\}\}$$

$$x = a + b \qquad y = c + d$$

$$= \max\{\inf (\max\{(\lambda(a, q), \mu(b, q)\}, \max\{(\lambda(c, q), \mu(d, q))\}\}$$

$$x = a + b \qquad y = c + d$$

$$= \max\{\inf \max\{(\lambda(a, q), \mu(b, q), \lambda(c, q), \mu(d, q)\}\}$$

$$x = a + b \qquad y = c + d$$

$$\geq \max\{\inf \max\{(\lambda(a + (b - c - b), q), \mu(b + (c - d - c), q)\}\}$$

$$x = a + b \qquad y = c + d$$

$$\begin{split} \geq max \{ &\inf max \{ (\ \lambda(h,\,q),\,\lambda(f,\,q) \} \} \\ & x+y=h+f \end{split}$$

$$\geq (\lambda+\mu)q(x+y) \end{split}$$
 Therefore $(\lambda+\mu)\,(x+y) \leq S \, \{ (\lambda+\mu)q(x),\,(\lambda+\mu)q(y) \}$

(2)
$$(\lambda + \mu)$$
 $(gx, q) = \inf \max \{ (\lambda(a, q), \mu(b, q) \}$

$$x = a + b$$

$$= \inf \max \{ (\lambda(a, q), \mu(b, q) \}$$

$$g_x = g_a + g_b$$

$$\leq \inf \max \{ (\lambda(a, q), \mu(b, q) \}$$

$$x = G_a + G_b$$

$$\leq (\lambda + \mu) (x, q)$$

$$(3) (\lambda + \mu) (x \ V \ y) q \ \Lambda \ (\lambda + \mu) (x \ \Lambda \ y) q) = \max \left\{ (\lambda + \mu) (x \ V \ y) q, (\lambda + \mu) (x \ \Lambda \ y) q \right\}$$

$$= S \left\{ \max \left\{ (\lambda + \mu) (x, q), (\lambda + \mu) (y, q) \right\}, \max \left\{ (\lambda + \mu) (x, q), (\lambda + \mu) (y, q) \right\} \right\}$$

$$= S \left\{ \max \left\{ \inf \max \left\{ \lambda (x, q), \mu (x, q) \ x = a + b \inf \max \left\{ \lambda (y, q), \mu (y, q) \right\} \right\} \right\}$$

$$= \max \left\{ \inf \max \left\{ \lambda (x, q), \mu (x, q) \right\} \inf \max \left\{ \lambda (y, q), \mu (y, q) \right\} \right\}$$

$$= x = a + b$$

$$\leq S \left\{ \inf \max \left\{ \lambda (y, q), \mu (y, q) \right\}, \inf \max \left\{ \lambda (x, q), \mu (x, q) \right\} \right\}$$

$$= x = a + b$$

$$\leq S \left\{ \inf \max \left\{ \lambda (x, q), \mu (x, q) \right\}, \inf \max \left\{ \lambda (y, q), \mu (y, q) \right\} \right\}$$

$$= x = a + b$$

$$= x = a + b$$

$$\leq S \{(\lambda + \mu) (x, q), (\lambda + \mu) (y, q)\}$$

Therefore $(\lambda + \mu) (x \ V \ y) q \ \Lambda (\lambda + \mu) (x \ \Lambda \ y) q \le S \{(\lambda + \mu) (x, q), (\lambda + \mu) (y, q)\}$

Hence $\lambda + \mu$ is anti Q- fuzzy G-modular distributive lattice on L.

CONCLUSIONS:

I. Jahan introduce the concept of modularity of Ajmal for the lattices of fuzzy ideals of a ring. In this paper we study the characterization of anti Q-fuzzy G-modular distributive lattices. One can obtain the similar results in soft modules and soft lattices by using a suitable mathematical tool.

REFERENCES:

- 1. N. Ajmal, The "Lattice of fuzzy normal sub groups is modular", Inform. Sci. 83 (1995), pp. 199-209.
- 2. N. Ajmal, K.V. Thomas, "A complete study of the lattices of fuzzy congruences and fuzzy normal sub groups, Inform. Sci. 82 (1995), pp. 198-218.
- 3. S-Z. Bai, "Pre-semi compact L-sub sets in fuzzy lattices". International Journal of fuzzy systems, Vol.12, No.1, pp.59-65, 2010.
- 4. Y. Bo and Wu. Wangning, "Fuzzy ideals on a distributive lattice", Fuzzy sets and systems. Vol. 81 (1996), pp.383 393.
- 5. S.K. Bhambri, Pratibha Kumar, "Lattice of fuzzy sub modules", International mathematical forum, 4 (2009) No.13, pp.653-659.
- 6. P. Das, "Fuzzy groups and level sub groups", J. Math. Anal. Appl., Vol.85 (1981), pp.264-269.
- 7. Golan. J.S., "Making Modules fuzzy", Fuzzy sets and systems, 32 (1989), pp.91-94.
- 8. I. Jahan, "Modularity of Ajmal for the lattices of fuzzy ideals of a ring", Iranian Journal of fuzzy systems, Vol.5, No.2 (2008), pp. 71 78.

- 9. M. Marudai and V. Rajendran, "New structure of G- modular distributive lattice" IJFMS,1(2),181-196, 2011.
- 10. R. Kumar, "Non distributivity of the lattice of fuzzy ideals of a ring R", Fuzzy sets and systems, 97 (1998), pp.393-394.
- 11. W.J. Liu, "Fuzzy invariant sub groups and fuzzy ideals, "Fuzzy sets and systems, Vo.8 (1982), pp.133-139.
- 12. Majumdar, Sultana, "The lattice of fuzzy ideals of a ring R", Fuzzy sets and systems, 81 (1996), pp.271-273.
- 13. Pan, Fu-zheng, "Fuzzy finitely generated modules", Fuzzy sets and systems, 21 (1987), pp. 105-113.
- 14. A. Rosenfeld, "Fuzzy groups", J. Maths. Anal. Appl. Vol.35 (1971), pp.512-517.
- 15. A.Solairaju and R.Nagarajan, "A New structure and constructions of Q-fuzzy group" Advances in Fuzzy mathematics, Vol.4., No.1 (2009), PP 23-29.
- 16. L.A. Zadeh, "Fuzzy sets", Inform. Control. Vo.8 (1965), pp.338-353.
- 17. Q. Zhang, Meng, "On the lattice of fuzzy ideals of a ring", Fuzzy sets and systems, 112 (2000) pp. 349-353.
