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ABSTRACT

In this paper we consider an operator B which carries a polynomial P(z) of degree n into B/P(z)]= AP(z) +
Jnz/2)P @)/1] + Jy (n212)°P7(2)/2! Where Ao, A1 and 1, are such that all the zeros of Ufz)= 1o+ C(n, 1)Ayz + C(n, 2) )
2 lie in the half plane |zi|z-n/2| and investigate the dependence of |B[P(Rz)] — a B/P(rz)]| on the minimum and the

maximum modulus of P(z) on |Z| =1 for every real or complex number o with |a|< I ,R > r > I with restriction on the
zeros of the polynomial P(z) and establish some new operator preserving inequalities between polynomials.

Mathematics subject classification (2000): 30A06, 30C10.
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1. INTRODUCTION TO THE STATEMENT OF RESULTS.
n
Let P,(z) denote the space of all complex polynomials P(z) = Z:ajzJ of degree n. If P € P, , then according to a

j=1
famous result known as Bernstein’s inequality (for reference see[4, 7,10]),

(@ Max|P'(z)] <nMax|P(z)]
Z|=! Z|=!
where as concerning the maximum modulus of P(z) on a larger circle |z| = R >1, we have

) ‘I\ﬂgvgl P(2)] <R’ l\l/lngI P(2)|

(for reference see [8, p. 158 problem 269] or [11, p. 346]) Equality in (1) and (2) holds for P(z) = Az",4 #0.
For the class of polynomials P € P, having all their zero in |z| < 1, we have

@ Min| P/ (2)| 2nMin|P(2)]
and

@ Min|P()] >R"Min|P(2)].

|z]=R>1

Inequalities (3) and (4) are due to A. Aziz and Q. M. Dawood [2 ]. Both the results are sharp and equality in (3) and (4)
holds for P(z) = Az",A4 # 0. For the class of polynomials P € P, having no zero in|Z| <1, we have

n
5) Max|P’(z)] <—Max]|P(z
(5) |z|:1| (2)l 2|z|:1| (2) |
and

6)P(z)| <Rt

Max|P(z)|.

=1
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Equality in (5) and (6) holds for P(z) = Az" + u, | A |5 m|=1. Inequality (5) was conjectured by P. Erdos and
later verified by P. D. Lax [5]. Ankeny and Rivilin [1] used (5) to prove (6).

A. Aziz and Q.M. Dawood [2] improved inequalities (5) and (6) by showing that if P(z) = 0 in |z| < 1, then

) Max|P (2)] < (Max|P(z)| Mm|P(z)|)

and
R" +1 R"

ax| P(z) |-~ 1Mm|F>(z)|

@) Max|P(z)| <

As a compact generalization of inequalities (5) and (6), Aziz and Rather [3] have shown that if P € P, and

P(z)#0 for|z| <1, then for every real or complex number o with [o/<l and R >1
@ [P(RD)-aP(@)] < H{R" el +1-aljMaiP@] for 721

The result is sharp and equality in (7) holds for P(z) =az" +b, |a| = |b|=1

Rahman [9] (see also Rahman and Schmeisser[10, p.538]) introduced a class B, of operators B that carries a

polynomial P € P_ into

n

s 2027

where Ao, A and A, are such that all the zeros of

1) u(z) = 4, + 4,C(nY)z+ A,C(n,2)z*, C(n,r)=nl/ri(n—r)!, 0<r<n,

lie in the half plane

(12) |z|<]z—-n/2).

As a generalization of the inequalities (1) and (2), Q.I. Rahman [9] proved that if P € P, , then

(13) [B[P(2)] <|B[z"]

for |z|>1
(see [9],inequality (5.1)) andif P € P, P(z) =0 for |Z| <1, then

(14) |B[P(z)]|s%{8[z P |}|v|ax|P(z)| for =1

where B € B, (see [8], inequality (5.2) and (5.3)).

In this paper we investigate the dependence of |B[P(RZ)]—aB[P(I’Z)]| on the minimum and the maximum of

modulus of P(z) on |Z| =1 for every real or complex number o. with |o/< 1,R >r >1 and obtain certain compact

generalizations of some well-known polynomial inequalities. In this direction we first present the following interesting
result which is a compact generalization of inequalities (1), (2) and (13).

Theorem 1: If F € P, has all its zeros in |z| <1 and P(z) is a polynomial of degree at most n such that
IP(2)| <|F(z)]  for fz=1,

then for every real or complex number a with |a| <land R>r>1

© 2012, IIMA. All Rights Reserved 1545



N. A. Rather, S. H. Ahanger and M. A. Shah*/ Inequalities Concerning The B-operators/ IIMA- 3(4), April-2012, Page: 1544-1553
(15) |B[P(Rz)]-aB[P(rz)] <|B[F(Rz)]-aB[F(rz)] for |z|>1,
where Be B, .

The following result immediately follows from Theorem 1 by taking F(z) = Mz" where M = I\I/llaxl P(z)|.
z|=1

Corollary 1: If P € P,, then for every real or complex number o. with |a| <1LR>r2>1,

(16) [BIP(R2)] - aB[P(r2)] <|R" - ar”

|B[z"]

MaX|P(Z)| for |Z|Zl

|z]=1
where B € B, .The result is best possible and equality in (16) holds for P(z) =az", a#0.
Remark 1: For o = 0, Corollary 1 reduces to the inequality (13). Next if we choose ;= A,= 0 in (16) and note that in

this case all the zeros of u(z) defined by (11) lie in region defined by (12), we obtain for every real or complex number
awith [ SLR > 1 >1,

(17) |P(Rz) —aP(rz)| < ‘R” —ar"

l2|" I\‘/I‘glx|P(z)| for |z >1.

For a = 0, inequality (17) includes inequality (2) as a special case. Further, if we divide both sides of the inequality (17)
by R - r with a = 1 and make R —r, we get

P'(rz)] < nr"?g ™ I\‘/I‘a1x|P(z)| for [z|>1,
z|=
which, in particular, yields inequality (1) as a special case.
Next we present the following result, which is a compact generalization of the inequalities (3) and (4) .

Theorem 2:. If P € P, and P(z) has all its zeros in |z|< I, then for every real or complex number a with |a| <land
R>r>1

(18) [B[P(Rz)]- aB[P(r2)] 2|R" - ar"|B[2"]

Min|P(z)] for |z|>1,
|z|=1
where B € B, . The result is best possible and equality in (18) holds for P(z) =az", a # 0.

Remark 2: For a = 0, from inequality (18), we have for |Z| >landR >1,

(19) [B[P(Rz)] = R"

B[z"]

Mip|P(z)|=\B[R“z”]

MiplP(z)|,

where B € B, .The result is sharp.
Next, taking Ao = A, =0 in (18) and noting that all the zeros of w(z) defined by (11) lie in the half plane (12), we get
Corollary 2: If P € P, has all its zeros in |z| <7, then for every real or complex number « with |a| <1LR>r2>1,

(20) |RP'(Rz) — arP'(rz)| > n‘Rn —ar"|z|" Min|P(z)] for |z|>1.

2=

The result is sharp and the extremal polynomial is P(z) = Az", 4 # 0
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If we divide the two sides of (20) by R - r with o = 1 and let R — r, we get for |z| >1,

P(rz) +rzP"(z)| 2 n?r" 7" M1P|P(Z)| .

The result is sharp.
For the choice 2,=2,= 0 in (18), we obtain for every real or complex number a with |a| <1LR>r2>1,

(21) |P(Rz)-aP(rz)|> ‘R” —ar"

z|" MLP|P(Z)| for |z]>1.

For a = 0, inequality (21) includes inequality (4) as a special case. If we divide both sides of the inequality (21) by R - r
with o =1 and make R —r, we get

22) [P'(rz)| = nr"*z"™ M|n|P(z)| for |z]>1,

which, in particular, yields inequality (3) as a special case.

Corollary 1 can be sharpened if we restrict ourselves to the class of polynomials P € P, , having no zero in |z| < 1. In
this direction, we next present the following compact generalization of the inequalities (7), (8) and (9), which also

include refinements of the inequalities (13) and (14) as special cases.

Theorem 3: If P e P, and P(z) #0 for|Z| <1, then for every real or complex number a with |a| <LR>r2>1
and |Z| >1,

(23)

|B[P(Rz)]—aB[P(rz>]|s%[ﬂ +1-a ||} Max|P(2) - - in|P(2)

I Ofll%l "

where B € B, .The result is sharp and equality in (23) holds for P(z) =az" +b, |a|= b|=1.

Remark 3: For a = 0, inequality (23) yields refinement of Inequality (14). If we choose 2= A, =0 in (23) and note that
all the zeros of u (z) defined by (11) lie in the half plane defined by (12), we get for |Z| >1,R>r>1and|o<l,

(24) |RP'(Rz)—arP'(rz)|sg\R”— r“|z|”‘(1|P(z)| M|n|P(z)|)

Setting o = 0 in (24), we obtain for |z[>1 and R>1,

PR < 7 R4 MaxP(@) - MirlP()

which ,in particular, gives inequality (7).

Next choosing A;=A,=0 in (23), we immediately get the following result, which is a refinement of inequality (9).

Corollary 3: If Pe P, and P(2) =0 for|Z| <1, then for every real or complex number o with |Ot| <LR>r2>1
and |Z| >1,

o el max|P @] R~

2 ﬂP(Rz)—aP(rz)|s%[{ R -ar" - a|}M|n|P(z)|}

The result is sharp and equality in (25) holds for P(z) = az" +b,|a| :|b| =1. Inequality (25) is a compact
generalization of the inequalities (7) and (8).
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2. LEMMAS

For the proofs of these theorems, we need the following lemmas.

Lemmal: If P € P, and P(z) hasall its zeros in |z|£ k wherek <1, then forevery R>r >1 and |z| =1,

26) |P(Rz )| > (R”‘
r+k

j |P(rz)].

Proof of Lemma 1: Since all the zeros of P(z) lie in |z| <k wherek <1, we write
_ 0 i0,
P(z) = CosH(z—rje ) ,
j=1

where <k,j=12,---,n.Nowfor 0<#<27, R>r>1,wehave

‘Re‘g—rjemj ‘ _ {R2+rj2 —2Rr;,Cos(0 -6, }1/2 >(R+rj]>(R+kj-

; i0; 2 2
‘re'g—rje i ‘ r*+r; —2rr,Co (8-6, r+r, r+k
Hence
. . i0.
P(Re)| Re“g—rje”‘> R+kY
P(re”)| re‘g—rjewj ‘_ r+k

for 0 <@ < 27, which implies for |z=1and R>r >1,

IP(Rz )| [R“‘
r+k

) |P(rz)].

This completes the proof of Lemma 1.

The next lemma follows from Corollary 18.3 of [6 , p. 65].

Lemma 2: If P e P, and P(z) hasallits zeros in |z| <1, then all the zeros of B[P(z)] also liein | z |<1.

n

Lemma 3:If P e P, and P(z) does not vanish in |z| <1, then for every real or complex number & with | & |[<1,

R>r>1,and |z|=1,

(27) |B[P(Rz)]-aB[P(rz)] < |B[Q(Rz)] - #B[Q(r2)]

where Q(z) = z"P(1/ z) .The result is sharp and equality in (27) holds for P(z) = az" +b, aj=|b|=1.

Proof of Lemma 3: Let Q(z) = z"P(1/z). Since all the zeros of nth degree polynomial P(z) liein |z |>1,
therefore, Q(z) is a polynomial of degree n having all its zeros in | z |<1. Applying Theorem 1 with F(z) replaced by
Q(z), we obtain for every R >r>1 and |z|> 1,

(28) | B[P(Rz)]-aB[P(r2)]| < | B[Q(Rz)]-aB[Q(rz)]|.
This proves Lemma 3.

Lemma 4: If P € P, then for every real or complex number o. with |a| <1LR>r>1and |Z| >1,

© 2012, IIMA. All Rights Reserved 1548
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+[1- a4, |[Max|P(2)|

|z]=1

(29) |B[P(Rz)]-aB[P(rz)] +|B[Q(Rz)] - eB[Q(rz)] < ﬂR“ —ar"

B[z"]

where Q(z) =z"P(1/Z) . The result is sharp and equality in (29) holds for P(z) = Az", a£0.

Proof of Lemma 4: Let M = '\I/Ilaxl P(z) |, then |P(z)| < M for [z|=1. If 4 is any real or complex number
z|=1

with |u/>1, then by Rouche’s theorem , the polynomial F(z) = P(z)-u M does not vanish in |z| < 1. Applying Lemma 3
to the polynomial F(z) and using the fact that B is a linear operator, it follows that for every real or complex number o
with |a|< 1, R>r>1,

| BIF (R2)]- aB[F (r2)]| < | B[H(R2)]-eB[H (r2)]|  for |z21,

where

H(z)=z"F@Q/2)=2"PQ/Z) - uMz" = Q(z) — uMz".
Again using the linearity of B and the fact B[1] = A, , we obtain

(30) |(BIP(R2)] - aBIP(12)]) - (1 )2, M | <|(BIQ(R2)] - aBIQ(12)]) - (R — " JB[2"IM|

for every real or complex number o with [0/< 1, R>r>1 and |z| > 1. Now choosing the argument of £ on the right
hand side of (30) such that

(BIQ(R2)I - aBIQ(r2)]) - 1(R" ~arr” ) B[2" M| = ||R" ~ ar”

which is possible by Corollary 1, we get, from (30),

B[z"]

M —[B[Q(Rz)] - &B[Q(r2)],

(31) |BIP(R2)] - aB[P(r2)] - |ufl— o] 25| M <[u|R" —

B[z"]

M —[BIQ(Rz)] - aB[Q(r2)]
for jaj<1, R>r>1and|z| > I. Letting |u|— 1 in (31), we obtain

IB[P(Rz)] - B[P(rz)] + |B[Q(Rz)] - aB[Q(rz)] < {R” —ar" +| AL — |/10|}|\/I .

B[z"]

This proves Lemma 4.

2. PROOFS OF THE THEOREM

Proof of Theorem 1: By hypothesis F(z) is a polynomial of degree n having all its zeros in |z] < 1 and P(z) isa
polynomial of degree at most n such that

(32) |P(2)| <|F(z)]  for fzl=1,

Therefore, if F(z) has a zero of multiplicity m at z = e'® , then P(z) must have a zero of

multiplicity at least m at z = e'® If P(z)/ F(z) is a constant, then the inequality (15) is obvious. We assume that
P(z)/F(z) is not a constant, so that by maximum modulus principle , it follows that

P(2)| <|F(z)]  for [zp1.

Suppose F(z) has m zeros on [z| = 1 where 0 <m<n so that we write F(z) = F,(z)F,(z) where F (2)is a

polynomial of degree m whose all zeros lie on |z] = 1 and F, () is a polynomial of degree exactly n — m having all its
zeros in |z| < 1. This gives with the help of inequality (32) that

P(2) =P (2)R(2)

where Pl(z) is a polynomial of degree at most n —m. Now, from inequality (32), we get

© 2012, IIMA. All Rights Reserved 1549
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P.(2)| <|F,(2) for || =

where FZ(Z) # 0 for |z| = 1. Therefore, for every real or complex number A with | Aj> 1, a direct application of

Rouche’s theorem shows that all the zeros of the polynomial P, (z) — AF, () of degree n —m > 1 lie in |7| < 1. Hence
the polynomial

G(2) = R(2)(P,(2) - 4F,(2)) = P(2) - 4F (2)
has all its zeros in |z| <1 with at least one zero in |z| < 1, so that we can write
G(z) = (z-te”)H(2)

where t <1 and H(z) is a polynomial of degree n -1 having all its zeros in |z|< 1. Hence with the help of Lemma 1
with k = 1, we obtain forevery R>r>1and 0<6<2r,

‘G(R e‘g)‘ :‘ Re' —te‘ﬂ‘ ‘H (Re‘g)‘

>[Re" —te' \(R+1J H(re”)

"
R+1)"'[Re” —te” | ., -

= ——|(re'” —te”)H(re"
(r+1] re' —te” “( I )‘

n-1
Z(R+1j R+tJ‘G(I’em)‘.
r+1 r+t

This impliesforR>r>1and 0<8<2r,
@ (174 Jore)> (f*lj Gere®)|

1+r  r+t . _ .
> ——, from inequality (33 ), we obtain

SinceR>r>1>tsothat G(Re')# 0 for 0<9 <27 and 1>
1+R R+t

G(Re")| > [M) 1G(re”)|
r+1

for R>r>1and 0<8 < 27, which leads to
r+1

|G(re”)| < (R—j |G(Re") < |G(Re")|
_l_
for 0<@< 27 and R >r >1. Equalivalently, we have

(34) |G(rz)| < |G(Rz)| for |z]=1and R>r >1.

Since all the zeros of G(R z) lie in |z] < (1/R) < 1, a direct application of Rouche’s theorem shows that the polynomial

G(Rz) —a G(rz) hasall its zeros in |z| < 1 for every real or complex number o with |a| < 1. Applying Lemma 2 and
using the linearity of B, it follows that all the zeros of the polynomial

T(z) = B[G(Rz) — aG(rz)] =B[G(Rz) — aB[G(rz)]
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lie in |z] < 1 for every real or complex number o with |o/< 1 and R >r >1. Replacing G(z) by P(z) — AF(z), we
conclude that all the zeros of the polynomial

@) T(2) = (BIP(R2)] - aB[P(12)]) - A(B[F (Rz) - aB[F (r2)])
lie in |z] < 1 for all real or complex numbers a, A with ja| <1, [A|>1and R >r >1. Thisimplies
(36) |B[P(Rz)]— aB[P(rz)] < |B[F(Rz) —aB[F(rz)] for |z>1andR>r >1.
If inequality (36) is not true , then there a point z = w with |w| > 1 such that
(BIP(Rz)]- eB[P(r2)]),.,,| > |(B[F (R2) —aB[F (r2)]),.,| . R>r=>1.

Since all the zeros of F(z) lie in |z] < 1, it follows (as in the case of G(z)) that all the zeros of B[F (Rz) —aB[F (rz)]
lie in |z| < 1. Hence

(B[F(Rz) - aB[F(rz)]),., #0, R>r=>1.

We choose
(B[P(R2)] - aB[P(12)]),.,,

~ (BIF(R2)]- aBIF (12)]),_.,

so that A is well defined real or complex number with [A| > 1, and with choice of A, from (35), we get, T(w) = 0 with |w|
> 1. This is clearly a contradiction to the fact that all the zeros of T(z) lie in |z| < 1. Thusfor every real or comp lex
number o with o] <landR>r>1,

IB[P(Rz)] - eB[P(rz)] < |B[F (Rz) — aB[F (r2)]
This completes the proof of Theorem 1.

Proof of Theorem 2: The result is clear if P(z) has a zero on |z| = 1, for then m = I}/!in | P(z) |= 0. We now assume
7|=1

that P(z) has all its zeros in |z] < 1 so that m > 0 and

m < [P(z)] for [z=L.
This gives for every A with A< 1,

‘/Iz“m < |P@@)| for z=1

By Rouche’s theorem , it follows that all the zeros of polynomial F(z) = P(z) — Amz" lieiin |z|< 1 for every real or

complex number A with | A |< 1. Therefore, (as before) we conclude that all the zeros of polynomial
G(z) = F(Rz) —aF(rz) liein |z| < 1 for every real or complex o with number |o/< 1 and R > r> 1 . Hence by
Lemma 2, all the zeros of the polynomial

(37) S(z) = B[G(2)] = B[F (Rz)] - aB[F (rz)]
= B[P(Rz)] - aB[P(rz)]- A(R" —ar™)B[z"]m
lie in |z| < 1 for all real or complex numbers a, A with |a| <1, | A|< 1and R>r > 1.This implies

(38) |B[P(Rz)]-aB[P(r2)] > |R”—ar” m for |z>1andR>r>I.

B[2"]
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If inequality (38) is not true, then there is a point z = w with |w| > 1 such that

|{B[P(Rz)]—aB[P(rz)]}Z:W| < |R”—ar”

‘{B[z“]} ‘m .

=W

Since {B[Zn]}ZquﬁO, we take
A={B[P(RD)]-aB[P(r2)]},_, /m(R"~ar"){B[z"]}

=W

so that A is a well defined real or complex number with | A |< 1 and with choice of A, from (37 ), we get S(w) =0
with |wp 1. This contradicts the fact that all the zeros of S(z) lie in |z| < 1. Thus for every real or complex number o
with |oj<l and R>r >1,

BIP(R2)]-&B[P(r2)] = |R"-ar" m for [z>1.

B[2"]

This completes the proof of Theorem 2.
Proof of Theorem 3: By hypothesis , the polynomial P(z) does not vanish in |z|< 1, therefore, if M = Min |P(2)],
z|=1

then m< | P(z)| for|z]< 1. We first show that for every real or complex number § with [3|< 1, the polynomial

F(z) =P(z) + mdz" does not vanish in |z| < 1. This is obvious if m = 0 and for m > 0, we prove it by a
contradiction. Assume that F(z) has a zero in |z| < 1 say at z = w with |w| < 1,

then we have P(w) + m& w" = F(w) = 0. This gives

[PW)| =|ms w"| <m|w]|"<m,

which is clearly a contradiction( to the minimum modulus principle). Hence F(z) has no zero in |z| < 1 for every 6 with |
8| < 1. Applying Lemma 3 to the polynomial F(z), we obtain for every real or complex number o with number |0/< 1
andR>r>1,

| BIF (R2)]-aB[F(r2)]| < | B[G(R2)]-aB[G(r2)]]. [z =1,

where G(z)=2"F(1/z ) =z"P(1/Z)—md = Q(z) — mJ . Equivalently,

(39) [BIP(R2)] - aB[P(r2)] - m&(R" — ar" )B[2"]

< [BIQ(R2)]-aBQ(r2)] - m5 (1- )4, |

for all real or complex numbers a, 6 with number |of 1, [§)< 1 and R > r > 1. Now choosing the argument of § such
that

|B[P(Rz)]—aB[P(rz)]— ms(R" ~ar")B[z"]

= |BIP(R2)] - aB[P(r2)] +m| 5| [1-et| | B[2"]] |,
We obtain from (39), for |oj<1,|5|<1andR>r>1,

| BIP(R2)] - «B[P(r2)]| +m| | R" —ar" | B[z"]|< [BIQ(R2)]-aBIQ(r)]|+m |5 [[1-al 4, |,
for |z| > 1, or equivalently,

IBIP(R2)] - aB[P(r2)]|+| 5| (| R" —ar” | B[z"]| - [1-a | 2, [ < [BIQ(R2)] - aB[Q(r2)],
for Joj< 1, [8|< 1 and R >r > 1. Letting |3] — 1, we get

IBIP(R2)] - aB[P(r2)]| + | R" —ar" || B[z"]| - [1-a || 4 I < [BIQ(R2)]-aB[Q(r2)],
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for |o/< 1 and R >r > 1. Combining this inequality with Lemma 4, we get , for every real or complex number o with |o]
<I,R>r>1land|z]>1,

2|B[P(Rz)]—aB[P(rz)]|+(| R"—ar" || B[z"]]|-|1- || 4, |)m
<|B[P(Rz)] - aB[P(rz)] + |B[Q(Rz)] - aB[Q(rz)]|
SOR” —ar"| |B[z"] +[1-¢] |/10|)M ,

which is equivalent to (23) and this completes the proof of Theorem 3.
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