International Journal of Mathematical Archive-3(4), 2012, Page: 1517-1523 MA Available online through <u>www.ijma.info</u> ISSN 2229 - 5046

A NEW TYPE OF GENERALIZED CLOSED SETS

¹J. Antony Rex Rodrigo & ²K. Dass*

¹Department of Mathematics, V. O. Chidambaram College, Thoothukudi, Tamil Nadu, India E-mail: antonyrexrodrigo@yahoo.co.in

²Department of Mathematics, The M. D. T. Hindu College, Tirunelveli, Tamil Nadu, India E-mail: dassmdt@gmail.com

(Received on: 10-04-12; Accepted on: 25-04-12)

ABSTRACT

In this paper, we introduce a new classes of sets called D-closed sets, D-open sets in topological spaces and study some basic properties of D-closed sets.

2000 Mathematics Subject Classification: 54C10, 54C08, 54C05.

Key words and phrases: D-closed, D-closure, D-open.

1. INTRODUCTION

The study of generalized closed sets in a topological space was initiated by Levine [6] and the concept of $T_{1/2}$ space was introduced. In 1996, H. Maki, J. Umehara and T. Noiri [8] introduced the class of pregeneralized closed sets and used them to obtain properties of pre- $T_{1/2}$ spaces. In 2008, S.Jafari, T.Noiri, N.Rajesh and M. L. Thivagar [4] introduced the concept of \tilde{g} closed sets and their properties. In this paper we introduce new classes of sets called D-closed sets in topological spaces.

2. PRELIMINARIES

Throughout this paper (X,τ) , (Y, σ) and (Z, η) will always denoted topological spaces on which no separation axioms are assumed, unless otherwise mentioned. When A is a subset of (X,τ) , cl(A), Int(A) and D(A) denote the closure, the interior and the derived set of A respectively.

We recall some known definitions are needed in this paper.

Definition 2.1: Let (X,τ) be a topological space. A subset A of the space X is said to be

- 1. pre-open [7] if $A \subseteq$ Int (cl(A)) and pre-closed if cl(Int(A)) $\subseteq A$
- 2. semi-open [5] if $A \subseteq cl(Int(A))$ and semi-closed if $Int(cl(A)) \subseteq A$
- 3. α -open[9] if A \subseteq Int(cl(Int(A))) and α -closed if cl(Int(cl(A))) \subseteq A.
- 4. semi-preopen[1] if $A \subseteq cl(Int(cl(A)))$ and semi-preclosed if $Int(cl(Int(A))) \subseteq A$.
- 5. regular open if A = Int(cl(A)) and regular closed if A = cl(Int(A))

Definition 2.2[8]: Let (X,τ) be a topological space and $A \subseteq X$

- 1. pre-interior of A denoted by pInt(A) is the union of all pre-open subsets of A.
- 2. pre-closure of A denoted by pcl(A) is the intersection of all pre-closed sets containing A.

Lemma 2.3[3]: If A is regular open and gpr-closed then A is pre-closed

Lemma 2.4[4]: Every g -closed set is ω -closed

Lemma 2.5[1]: For any subset A of X, the following relations hold. 1. $scl(A) = A \cup Int(cl(A))$ 2. α -cl(A) = A \cup cl(Int(cl(A)))

Corresponding author:²K. Dass, *E-mail: dassmdt@gmail.com

3. $pcl(A) = A \cup cl(Int(A))$

4. $spcl(A) = A \cup Int(cl(Int(A)))$

Definition 2.6: Let (X,τ) be a topological space. A subset $A \subseteq X$ is said to be

- 1. generalized closed (g-closed)[6] if cl(A) ⊆ U whenever A⊆ U and U is open. The complement of a g-closed set is said to be g-open.
- 2. generalized pre-closed(gp-closed)[8] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open
- 3. generalized preregular-closed(gpr-closed)[3] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is regular open
- 4. pregeneralized closed (pg-closed)[8] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is pre-open
- 5. g*-preclosed (g*p-closed) [14] if $pcl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open
- 6. $g\alpha^*$ -closed[14] if α -cl(A) Int(U) whenever A \subseteq U and U is α -open. The complement of $g\alpha^*$ -closed is said to be $g\alpha^*$ -open
- 7. μ -preclosed(μ p-closed)[14] if pcl(A) \subseteq U whenever A \subseteq U and U is g α^* -open
- 8. generalized semi-preclosed (gsp-closed) [2] if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is open
- 9. pre semi-closed [14] if $spcl(A) \subseteq U$ whenever $A \subseteq U$ and U is g-open
- 10. ω -closed [12] if cl(A) \subseteq Uwhenever A \subseteq U and U is semi-open. The complement of a ω -closed set is ω -open.
- 11. $\eta^{\wedge *}$ -closed[10] if spcl(A) \subseteq U whenever A \subseteq U and U is ω -open
- 12. *g-closed[15] if $cl(A) \subseteq U$ whenever $A \subseteq U$ and U is ω -open
- 13. #g-semiclosed(#gs-closed)[13] if scl(A) \subseteq U whenever A \subseteq U and U is *g-open. The complement of #gs-closed set is said to be #gs-open.
- 14. g̃ -closed set [4] if cl(A) ⊆ U whenever A ⊆ U and U is #gs-open. The complement of g̃ -closed set is said to be g̃ open
- 15. ρ -closed [11] if pcl(A) \subseteq Int(U) whenever A \subseteq U and U is \tilde{g} -open

3. BASIC PROPERTIES OF D-CLOSED SETS

We introduce the following definition

Definition 3.1: A subset A of a space (X, τ) is said to be D-closed in (X, τ) if $pcl(A) \subseteq Int(U)$, whenever $A \subseteq U$ and U is ω – open.

Theorem 3.2: Every open and pre-closed subset of (X, τ) is D-closed.

Proof: Let A be open and preclosed subset of (X, τ) . Let A \subseteq U and U is ω – open in X.

Then $pcl(A)=A=Int(A)\subseteq Int(U)$. Hence A is D-closed.

Remark 3.3: The converse of the above theorem is not true.

Example 3.4: Let $X = \{a, b, c, d, e\}$ and $\tau = \{\phi, \{a, b\}, \{a, b, d\}, \{a, b, c, d\}, \{a, b, d, e\}, X\}$.

Then the set $A = \{a, b, c, e\}$ is D-closed but neither open nor pre-closed.

Theorem 3.5: Every D-closed set is gp- closed

Proof: Let A be any D-closed set in X. Let $A \subseteq U$ and U is open in X. Since every open set is ω -open,

we get $pcl(A) \subseteq Int(U) = U$. Hence A is gp-closed

Remark 3.6: The Converse of the above theorem is not true.

Example 3.7: Let $X = \{a, b, c, d, e\}$ and $\tau = \{\phi, \{b, c, d\}, \{a, b, c, d\}, \{b, c, d, e\}, X\}$. Then the set $A = \{c, d\}$ is gp-closed but not D-closed in X.

Theorem 3.8: Every D-closed set is gpr-closed.

Proof: Let A be any D-closed set. Let $A \subseteq U$ and U is regular open. Since every regular open is open and every open is ω -open, we get $pcl(A) \subseteq Int(U) = U$. Hence A is gpr-closed.

Remark 3.9: The converse of the above theorem is not true

¹J. Antony Rex Rodrigo & ²K. Dass*/ A NEW TYPE OF GENERALIZED CLOSED SETS/ JJMA- 3(4), April-2012, Page: 1517-1523 **Example 3.10:** Let $X = \{a, b, c, d, e\}$ and $\tau = \{\phi, \{e\}, \{a, b\}, \{c, e\}, \{a, b, e\}, \{a, b, c, e\}, X\}$. Then the set $A = \{a, b, c, e\}$ is gpr-closed but not D-closed in X

Theorem 3.11: Every D-closed set is gsp-closed.

Proof: Let A be any D-closed set. Let $A \subseteq U$ and U be open. Since every open set is ω -open, we get $pcl(A) \subseteq Int(U)=U$. Since $spcl(A) \subseteq pcl(A) \subseteq U$, We get A is gsp closed.

Remark 3.12: The converse of the above theorem is not true.

Example 3.13: Let X={a, b, c, d, e} and $\tau = \{\phi, \{a, b\}, \{c, d\}, \{a, b, c, d\}, X\}$. Then the set A = {a, b} is gsp-closed but not D-closed in X.

Remark 3.14: D-closedness and pre-closedness are independent. It is shown by the following examples

Example 3.15: Let $X = \{a, b, c, d, e\}$ and $\tau = \{\phi, \{a, b\}, \{a, b, d\}, \{a, b, c, d\}, \{a, b, d, e\}, X\}$. Then the set $A = \{a, b, c, e\}$ is D-closed but not pre-closed.

Example 3.16: Let $X = \{a, b, c, d, e\}$ and $\tau = \{\phi, \{a, b\}, \{a, b, c\}, \{a, b, d\}, \{a, b, c, d\}, X\}$. Then the set $A = \{a\}$ is preclosed but not D-closed.

Remark 3.17: D-closedness and α -closedness are independent. It is shown by the following examples.

Example 3.18: Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{b\}, \{c\}, \{b, c\}, \{b, c, d\}, X\}$. Then the set $A = \{d\}$ is α - closed but not D-closed.

Example 3.19: Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{c\}, \{b, c\}, X\}$. Then the set $A = \{a, c\}$ is D-closed but not α -closed.

Remark 3.20: D-closed sets are independent of semi-closed sets and semi-preclosed sets. It is shown by the following example.

Example 3.21: Let X={a, b, c, d} and $\tau = \{\phi, \{b\}, \{c\}, \{b, c\}, \{b, c, d\}, X\}$. Then the set A={a, b, c} is D-closed but neither semi-closed nor semi-preclosed and the set B={c, d} is both semi-closed and semi-preclosed but not D-closed.

Remark 3.22: D-closedness and presemi-closedness are independent. It is shown by the following examples.

Example 3.23: Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{c\}, \{a, c\}, X\}$. Then the set $A = \{a\}$ is presemi-closed but not D-closed

Example 3.24: Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, X\}$. Then the set $A = \{b, c\}$ is D-closed but not presemi-closed

Remark 3.25: D-closedness and g-closedness are independent. It is shown by the following example

Example 3.26: Let $X = \{a, b, c, d, e\}$ and $\tau = \{\phi, \{a, b\}\{a, b, d\}, \{a, b, c, d\} \{a, b, d, e\}, X\}$. Then the set $A = \{a, c, d\}$ is D-closed but not g-closed and the set $B = \{e\}$ is g-closed but not D-closed.

Remark 3.27: D-closedness and pg-closedness are independent. It is shown by the following examples.

Example 3.28: Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, X\}$. Then the set $A = \{a, b\}$ is D- closed but not pg-closed.

Example 3.29: Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a, b\}, X\}$. Then the set $A = \{a\}$ is pg- closed but not D-closed.

Remark 3.30: D-closedness and g*p-closedness are independent. It is shown by the following examples.

Example 3.31: Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{b, c\}, X\}$. Then the set $A = \{b\}$ is g*p-closed but not D-closed

Example 3.32: Let X = {a, b, c} and $\tau = \{\phi, \{a\}, X\}$. Then the set A = {a, b} is D-closed but not g*p-closed

Remark 3.33: D-closedness and µp-closedness are independent. It is shown by the following example.

Example 3.34: Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{b\}, \{b, c\}, X\}$. Then the set $A = \{a, b\}$ is D-closed but not μ p-closed and the set $B = \{b, c\}$ is μ p-closed but not D-closed

Remark 3.35: D-closedness and η^{*} - closedness are independent. It is shown by the following examples.

¹J. Antony Rex Rodrigo & ²K. Dass*/ A NEW TYPE OF GENERALIZED CLOSED SETS/ JJMA- 3(4), April-2012, Page: 1517-1523 **Example 3.36:** Let $X = \{a, b, c, d, e\}$ and $\tau = \{\phi, \{a, b\}, \{a, b, d\}, \{a, b, c, d\}, \{a, b, d, e\}, X\}$. Then the set $A = \{a, b, d\}$ is D-closed but not $\eta^{^*}$ - closed.

Example 3.37: Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}, X\}$. Then the set $A = \{a, b\}$ is $\eta^{\wedge *}$ -closed but not D-closed.

Theorem 3.38: Every D-closed set is ρ-closed.

Proof: Let A be any D-closed set. Let $A \subseteq U$ and U be g -open in X. By Lemma 2.4, we get $pcl(A) \subseteq Int(U)$. Hence A is ρ -closed.

Remark 3.39: The converse of the above theorem is not true. It is shown by the following example.

Example 3.40: Let $X = \{a, b, c, d, e\}$ and $\tau = \{\phi, \{a, b\}, \{a, b, d\}, \{a, b, c, d\}, \{a, b, d, e\}, X\}$. Then the set $A = \{a, b, c\}$ is ρ -closed but not D-closed.

Remark 3.41: From the above discussion and known results we have the following implication $A \rightarrow B(A \leftrightarrow B)$ represents A implies B but not conversely (A and B are independent of each other).

4. PROPERTIES OF D-CLOSED SETS

Definition 4.1: The intersection of all ω -open subsets of (X, τ) containing A is called ω -kernel of A and is denoted by ω -Ker(A).

Theorem 4.2: If a subset A of (X,τ) is D-closed then $pcl(A) \subseteq \omega$ -ker(A).

Proof: Suppose that A is D-closed. Then $pcl(A) \subseteq Int(U)$ whenever $A \subseteq U$ and U is ω -open. Let $x \in pcl(A)$. Suppose $x \notin \omega$ -ker(A). Then there is a ω -open set U containing A such that $x \notin U$. Since U is a ω -open set containing A, $x \notin pcl(A)$. Which is a contradiction.

Remark 4.3: The converse of the above theorem need not be true as seen from the following example.

Example 4.4: Let X={a, b, c, d, e} and $\tau=\{\phi, \{e\}, \{a, b\}, \{c, e\}, \{a, b, e\}, \{a, b, c, e\}, X\}$. Then the set A= {a} satisfies $pcl(A) \subseteq \omega$ -ker(A). But A is not D-closed.

Remark 4.5: The union of two D-closed sets need not be D-closed.

¹J. Antony Rex Rodrigo & ²K. Dass*/ A NEW TYPE OF GENERALIZED CLOSED SETS/ JJMA- 3(4), April-2012, Page: 1517-1523 **Example 4.6:** Let X={a, b, c, d, e} and $\tau=\{\phi,\{a, b\},\{a, b, d\},\{a, b, c, d\},\{a, b, d, e\},X\}$. Let A={a, d} and B={b, d}. Here A and B are D-closed sets. But A \cup B= {a, b, d} is not D-closed.

Remark 4.7: The intersection of two D-closed sets need not be D-closed.

Example 4.8: Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{c\}, \{b, c\}, X\}$. Let $A = \{a, c\}$ and $B = \{c, d\}$. Here A and B are D-closed sets. But $A \cap B = \{c\}$ is not D-closed.

Theorem 4.9: A set A is D-closed then pcl(A) - A contains no non-empty closed set.

Proof: Suppose $F \subseteq pcl(A)$ -A be a non-empty closed set. Then $F \subseteq pcl(A)$ and $A \subseteq X$. Since X-F is ω -open, we get $pcl(A)\subseteq Int(X-F)=X-cl(F)$. Hence $cl(F)\subseteq X-pcl(A)$. Thus $F \subseteq X-pcl(A)$. Hence $F\subseteq pcl(A)\cap (X-pcl(A))=\phi$. Which is a contradiction.

Remark 4.10: The converse of the above theorem need not be true as seen from the following example.

Example 4.11: Let $X = \{a, b, c, d, e\}$ and $\tau = \{\phi, \{a, b\}, \{a, b, d\}, \{a, b, c, d\}, \{a, b, d, e\}, X\}$. Let $A = \{a, c\}$. Then pcl(A)-A={d} contains no non-empty closed set. But A is not D-closed.

Theorem 4.12: A set A is D-closed then pcl(A)-A contains no non empty ω-closed set

Proof: It follows from theorem 4.9.

Theorem 4.13: If A is D-closed and $A \subseteq B \subseteq pcl(A)$ then B is D-closed.

Proof: Let U be ω -open set of X and B \subseteq U. Then A \subseteq U.

Since A is D-closed, we get $pcl(A) \subseteq Int(U)$.

Now $pcl(B) \subseteq pcl(pcl(A)) = pcl(A) \subseteq Int(U)$. Hence B is D-closed

Theorem 4.14: If a subset A of (X, τ) is ω -open and D-closed then A is pre-closed in (X, τ)

Proof: Since a subset A of (X, τ) is ω -open, we get, $pcl(A) \subseteq Int(A) \subseteq A$. But $A \subseteq pcl(A)$. Hence A is pre-closed in (X, τ) .

Theorem 4.15: A regular open set of (X, τ) is gpr-closed iff A is D-closed in (X, τ)

Proof: Let $A \subseteq U$ and U be ω -open in (X, τ) . Since A is regular open and gpr-closed, by lemma 2.3 A is pre-closed. Since every regular open is open, we get A is open and preclosed. Hence by theorem 3.2, A is D-closed.

Conversely, let $A \subseteq U$ and U be regular open in (X, τ) . Since every regular open is ω -open,

we get $pcl(A) \subseteq Int(U) \subseteq U$. Hence A is gpr-closed.

Theorem 4.16: Let A be D-closed in (X, τ) . Then A is pre-closed iff pcl(A)-A is ω -closed.

Proof: Let A be pre-closed. Then pcl(A)=A. Hence $pcl(A)-A = \phi$, which is ω -closed.

Conversely, suppose pcl(A)-A is ω -closed. Since A is D-closed and by theorem 4.12, pcl(A)-A= ϕ . Then pcl(A)=A.

Hence A is preclosed.

Theorem 4.17: An open set A of (X, τ) is gp-closed iff A is D-closed.

Proof: Let A be open and gp-closed set.Let $A \subseteq U$ and U be ω -open in X. Since A is open, we get $A=Int(A) \subseteq Int(U)$. Since Int(U) is open, we get $pcl(A) \subseteq Int(U)$. Hence A is D-closed. Converse is true by theorem 3.5

Theorem 4.18: If a subset A of (X, τ) is open and regular closed then A is D-closed.

Proof: Let A be open and regular closed set. Since every regular closed set is pre-closed, we get A is open and preclosed. By theorem 3.2, A is D-closed

¹J. Antony Rex Rodrigo & ²K. Dass*/ A NEW TYPE OF GENERALIZED CLOSED SETS/ IJMA- 3(4), April-2012, Page: 1517-1523 Theorem 4.19: In a topological space X, for each $x \in X$, $\{x\}$ is ω -closed or its complement X- $\{x\}$ is D-closed in (X, τ)

Proof: Suppose that $\{x\}$ is not ω -closed in (X, τ) . Then X- $\{x\}$ is not ω -open. Hence the only ω -open set containing X- $\{x\}$ is X. Thus pcl(X- $\{x\}) \subseteq X$. Hence X- $\{x\}$ is D-closed in (X, τ) .

Definition 4.20: Let A be a subset of a topological space X. The D-closure of A is defined as the intersection of all D-closed sets that are containing A and is denoted by D-cl(A).

Lemma 4.21: If a subset A of (X, τ) is D-closed then A=D-cl(A)

Remark 4.22: The converse of the above lemma need not be true as seen from the following example

Example 4.23: Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{c\}, X\}$. Let $A = \{c\}$. Then A = D-cl(A). But A is not D-closed.

Definition 4.24: Let (X, τ) be a topological space, $A \subseteq X$ and $x \in X$. Then x is said to be a pre-limit point of A if every pre-open set containing x contains a point of A different from x.

Definition 4.25: Let (X, τ) be a topological space and $A \subseteq X$. The set of all pre-limit points of A is said to be prederived set of A and is denoted by $D_p[A]$.

Theorem 4.26: If $D[A] \subseteq D_p[A]$ for each subset A of a space (X,τ) then the union of two D-closed sets is D-closed

Proof: Let A and B be D-closed sets of X and U be a ω -open set such that $A \cup B \subseteq U$. Then $pcl(A) \subseteq Int(U)$ and $pcl(B) \subseteq Int(U)$. Since for each subset A of X, $D_p[A] \subseteq D[A]$.

Then cl(A) = pcl(A) and cl(B) = pcl(B). Hence $cl(A \cup B) = cl(A) \cup cl(B) = pcl(A) \cup pcl(B) \subseteq Int(U)$

But $pcl(A \cup B) \subseteq cl(A \cup B)$. Hence $pcl(A \cup B) \subseteq Int(U)$. Hence $A \cup B$ is D-closed

Theorem 4.27: A subset A of (X,τ) is regular open iff A is open and D-closed

Proof: Suppose A is open and D-closed. Then A is ω -open and D-closed. By theorem 4.14, A is pre-closed. Hence $cl(Int(A)) \subseteq A$. Since A is open and A=Int(A), we get cl(A)=A.

Hence Int(A) = Int(cl(A)). Since A is open, we get A = Int(cl(A)). Hence A is regular open.

Conversely, let A be regular open. Then A is open. Let U be a ω -open and A \subseteq U.

Suppose $pcl(A) \not\subset Int(U)$. Then $A \cup cl(Int(A)) \not\subset Int(U), cl(Int(A)) \not\subset Int(U)$. Since A is open and A=Int(A), we get $cl(A) \not\subset Int(A)$. Which is a contradiction.

5. D-OPENSETS

Definition 5.1: A subset A of (X, τ) is said to be D-open if its complement X-A is D-closed in (X, τ) .

Example 5.2: Let $X = \{a, b, c, d, e\}$ and $\tau = \{\phi, \{e\}, \{a, b\} \{c, e\}, \{a, b, e\}, \{a, b, c, e\}, X\}$. Then the set A={a, b, c, e} is D-open.

Theorem 5.3: Every clopen subset of (X, τ) is D-open

Proof: Let A be any clopen subset of (X, τ) .Let X-A \subseteq U and U is ω -open set in X.

Since every closed set is pre-closed, we get $pcl(X-A) = X-A = Int(X-A) \subseteq Int(U)$. Hence X-A is D-closed and hence A is D-open

Theorem 5.4: Let (X,τ) be a topological space and $A \subseteq X$. Then A is D-open if and only if $cl(S) \subseteq pInt(A)$ whenever $S \subseteq A$ and S is ω -closed.

Proof: Let A be the D-open set in (X, τ) . Let $S \subseteq A$ and S be ω -closed.

Then X-A is D-closed and it is cantained in the ω -open set X-S

¹J. Antony Rex Rodrigo & ²K. Dass*/ A NEW TYPE OF GENERALIZED CLOSED SETS/ IJMA- 3(4), April-2012, Page: 1517-1523 Hence $pcl(X-A) \subseteq Int(X-S)$, X-pint(A) $\subseteq X$ -cl(S).

Hence $cl(S) \subseteq pint(A)$.

Conversely, If S is ω -closed set such that $cl(S) \subseteq pInt(A)$ whenever $S \subseteq A$, it follows that $X-A \subseteq X-S$ and $X-pInt(A) \subseteq X-cl(S)$. Thus $pcl(X-A) \subseteq Int(X-S)$. Hence X-A is D-closed and A is D-open set.

Theorem 5.5: If pInt (A) \subseteq B \subseteq A and A is D-open then B is D-open.

Proof: If $pInt(A) \subseteq B \subseteq A$ then $X - A \subseteq X - B \subseteq X$ - pInt (A). That is $X - A \subseteq X - B \subseteq pcl(X - A)$.

Since X-A is D-closed and by theorem 4.13, X - B is D-closed and hence B is D-open.

Theorem 5.6: If $A \subseteq S$ is D-closed then pcl(A) - A is D-open.

Proof: Let A be D-closed. Then by theorem 4.12, pcl (A) – A contains no nonempty ω-closed set.

Hence $\varphi = S \subseteq pcl(A) - A$ and $\varphi = S$ be ω -closed. Clearly $cl(S) \subseteq pInt(pcl(A) - A)$.

Hence by theorem 5.4, pcl(A) - A is D-open.

REFERENCES

[1] D. Andrijevic, semi-preopen sets, Mat. Vesnik, 38 (1) (1986), 24-32

[2] J. Dontcher, on generalizing semi-preopen sets, mem.Fac.sci. Kochi Univ ser. A. Maths 16(1995), 35-48.

[3] Y. Gnanambal, Generalized pre-regular closed sets in topological spaces, indian j.pure ppl. Maths., 28(3) (1997), 351-360.

[4] S. Jafari, T.Noiri, N. Rajesh and M.L. Thivagar, Another generalization of closed sets, kochi J. Math, 3(2008) 25-38.

[5] N. Levine, semi-open sets, semi-continuity in topological spaces, Amer Math, Monthly 70(1963), 36-41.

[6] N. Levine, Generalized closed sets in topology, Rend circ. Math Palermo, 19(2) (1960) 89-96.

[7] A.S.Mashour, M.E.Abd.El-Monsef and S.N.El-Deep, On precontinuous and weak Precontinuous mappings, Proc, Math, Phys, Soc, Egypt., 53(1982), 47-53.

[8] H. Maki, J.Umehera and T.Noiri, Every topological space in pre-T_{1/2}, Mem.Fac.Sci.Kochi. Iv.ser. A. Maths., 19(1998), 13-20.

[9] O. Njastad, On some classes of nearly open sets, Pacific J.Math.15(1965), 961-970.

[10] J. H.Park, On *ngp*-closed sets in topological spaces, Indian J.Pure Appl.Math (to appear).

[11] S.Pious Missier, C.Devamanoharan, M. Caldas, S. Jafari, On contra ρ-continuous functions and strongly ρ-closed spaces, demonstration Mathematica Volume XLV, No.1 ,(2012),188-202

[12] M.K.R.S. Veerakumar, g^ -closed sets in topological spaces BullAllahabad. Soc.18(2003), 99-112.

[13] M.K.R.S. Veerakumar, #g-semiclosed sets in topological spaces, Antarctica J. Math 2(2)(2005) 201-102.

[14] M.K.R.S. Veerakumar, µp-closed sets in topological spaces Antarctica J. Math 2(1) (2005) 31-52

[15] M.K.R.S.Veerakumar, Beetween *g-closed and g-closed sets Antarctica J. Math(to appear)
