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ABSTRACT 
In this paper the focus is on the vector space and signaling geometrical dimension of wavelets. There exists a strong 
analogy between what we do in vector algebra and signal processing which helps us to visualize and interpret the 
process and output of the process that we do on signals. Developing a mental geometrical paradigm of this analogy is 
the main aim of this paper. 
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1. INTRODUCTION:   
 
Wavelet based analysis of signals is an interesting and relatively recent new tool. In this paper we won’t try to be 
mathematically precise in our statements regarding wavelets and vector space. Instead our aim is to relate geometry and 
wavelet in an intuitive way. Fourier is not always the best device for analyzing the signals because we may come across 
a signal that is not periodic (speech). 
 
2. PRELIMINARIES:  
 
In this section, we present some concepts and definitions that are needed for our subsequent discussion. This is based 
on Leon, Steven [1] and Strang, Gilbert [2]. 
 

2.1 Vector space: Any vector in three dimension al space can be represented as 1 2 3
ˆˆ ˆa a i a j a k= + + , where ˆˆ ˆ, ,i j k

unit are vectors in three orthogonal directions so that ˆ ˆˆ ˆ ˆ ˆ. . . 0i j j k k i= = = . The orthogonality condition ensures that 

the representation of any vector using ˆˆ ˆ, ,i j k  is unique. 
 

2.2 Bases: we call ˆˆ ˆ, ,i j k  as bases of space 3ℜ . By this we mean ˆˆ ˆ, ,i j k  span the space 3ℜ . Let 

1 2 3
ˆˆ ˆa a i a j a k= + + be a vector in 3ℜ .Continuously changing 1 2 3, ,a a a ; we will go on get new vectors in 3ℜ . We 

imagine that, set of all such vectors constitute the vector space 3.ℜ We express this truth by

( )
1 2 3

3
1 2 3

, ,

ˆˆ ˆ
a a a
span a i a j a k+ + =ℜ . 

 

2.3 Projection: Given a vector a  we can find its normal component s 1 2 3, ,a a a  . We project a on to bases ˆˆ ˆ, ,i j k to 

get 1 2 3, ,a a a . This is the direct result of orthogonality of our basis vectors. Since 

( ) ( )1 2 3 1 1 2 3 2
ˆ ˆˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ. . , . .a i a i a j a k i a a j a i a j a k j a= + + = = + + = and ( )1 2 3 3

ˆ ˆ ˆˆ ˆ. .a k a i a j a k k a= + + = . 
 
So projecting a vector a on to a base of space 3ℜ gives the corresponding coefficient (components) of the base .There 
is a parallel for this in wavelet analysis. 
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3. FUNCTIONS AND FUNCTIONS SPACES:  
 
In this section we relate wavelets from geometrical view point. This is based on earlier work by K.P. Soman and K.I. 
Ramchandran [3]. 
 
In  vector  space  ,we  represent  a  vector   in  terms  of  orthogonal   unit  vectors   called  bases.  Wavelet is an 
extension   of this idea for functions. (Electronics engineers call them as signals). A   function is expressed in terms of a 
set of orthogonal functions. To correlate with ideas in geometry, we now need to introduce the concept of orthogonality 
and norm with respect to functions. Note that function is a quantity which varies with respect to one or more running 
parameters, usually time and space. Orthogonality of functions depends on multiplication and integration of functions. 
Multiplication and integration of function must be thought of as equivalent to projection of vector on to another.  
 

3.1 Orthogonal functions: Two real functions ( )f t and ( )g t are said to be orthogonal if and only if 

( ) ( ). 0f t g t dt
∞

−∞

=∫ .Here first we are doing point by point multiplication of two function then we are summing up 

the area under the resulting function (obtained after multiplication). If this area is zero, we say the two functions are 

orthogonal. We also interpret it as similarity of functions ( )f t  and ( )g t .If ( )f t  and ( )g t  vary synchronously, 

that is if ( )f t  goes up  ( )g t  also goes up and if ( )f t  goes down ( )g t also goes down then we say the two 

functions have high similarity. Otherwise, they are dissimilar. Magnitude or absolute value of ( ) ( ).f t g t dt
∞

−∞
∫ will 

be high if they vary synchronously and zero if they vary perfectly asynchronous way.   
 

The geometrical analog of  ( ) ( ). 0f t g t dt
∞

−∞

=∫  is the dot product ˆ ˆ. 0i j = . For the given interval when ( )f t  is 

projected on ( )g t (projection here means multiplying and integrating), if the result is zero, we say the two functions 
are orthogonal in the given interval. Clearly look at the analogy. Taking a dot product in vector space (multiplying 
corresponding terms and adding) is equivalent to multiplying and integrating in function space (point wise 
multiplication and integration). The dot product is maximum when two vectors are collinear and zero when they are at

090 . This analogy will help us to easily visualize and interpret various results in signal processing.   
 

3.2 Orthonormal functions: Two real functions ( )f t  and ( )g t are said to be orthonormal if and only  
 

If ( ) ( ). 0f t g t dt
∞

−∞

=∫ and ( ) ( ) ( ) ( ). . 1f t f t dt g t g t dt
∞ ∞

−∞ −∞

= =∫ ∫ .                             (2.1) 

 
3.3 Function spaces: Just like unit orthogonal set of vectors span vector spaces, orthogonal set of functions can span 

function spaces. In vector algebra, we know that the unit orthogonal vectors ˆˆ ˆ, ,i j k span the space 3ℜ . 
 

Consider the haar wavelets ( ) ( )/ 2
, 2 2j j

j k t t kψ ψ= − then ( ) ( )0,0

11 0
2

11 1
2

0

t

t t t

otherwise

ψ ψ

 ≤ ≤

= = − ≤ ≤




                    (2.2) 

 
is haar mother wavelet other wavelets are produced by translation and dilation of  the mother wavelet, which are 
infinite number of functions. These set of functions are mutually orthonormal. Let us verify the truth through some 
representative examples. 
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( ) ( )0,0

11 0
2

11 1
2

0

t

t t t

otherwise

ψ ψ

 ≤ ≤

= = − ≤ ≤




, ( ) ( )0,1

31 1
2

31 1 2
2

0

t

t t t

otherwise

ψ ψ

 ≤ ≤

= − = − ≤ ≤




 and  ( ) ( )2,1

1 32
4 8

3 12 4 1 2
8 2

0

t

t t t

otherwise

ψ ψ

 ≤ ≤

= − = − ≤ ≤




 

 

Let us take function ( )0,0 tψ in (0, 1).This function and its product with itself is shown in figure 2.1. The resulting 
curve is after point wise multiplication. 
 
  
 
 

 
 
 
 

Figure: 2.1    ( ) ( )0,0 0,0. 1t t dtψ ψ
∞

−∞

=∫  

Area under resulting curve (0, 1) is obviously one square unit. Mathematically ( ) ( )0,0 0,0. 1t t dtψ ψ
∞

−∞

=∫  

We say ( )0,0 tψ has unit norm. Similarly ( )0,1 tψ  and ( )2,1 tψ has unit norm as shown in figure 2.2 and 2.3 below 
 
 
 
 
 
 
 

Figure: 2.2 ( ) ( )0,1 0,1. 1t t dtψ ψ
∞

−∞

=∫  

 
 
 
 
 
 
 
 
 

Figure: 2.3 ( ) ( )2,1 2,1. 1t t dtψ ψ
∞

−∞

=∫  

Consider ( )0,0 tψ and ( )2,1 tψ in (0, 1) . Figure 2.4 shows the two functions and corresponding function obtained after 
point wise multiplication.  
 
 
 
 
 
 
 

Figure: 2.4 ( ) ( )0,0 2,1. 0t t dtψ ψ
∞

−∞

=∫  
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Area above and below of the resulting curve is same implying that the net area is zero. Mathematically 

( ) ( )0,0 2,1. 0t t dtψ ψ
∞

−∞

=∫  

 

This in turn imply that ( )0,0 tψ and ( )2,1 tψ are orthogonal in (0, 1). Similarly Figure 2.5 shows ( )0,0 tψ and 

( )0,1 tψ  are orthogonal in (0, 1) 
 
 
 
 
 
 
 
 
 

Figure: 2.5 ( ) ( )0,0 0,1. 0t t dtψ ψ
∞

−∞

=∫
 

 

Generalizing ( ) ( ), ,

1 ,
.

0j k l m

j k l m
t t dt

otherwise
ψ ψ

∞

−∞

= =
= 


∫  . Thus, we have set of functions ( ),j k tψ defined over (0, 

1) such that they are mutually orthonormal similar to ˆˆ ˆ, ,i j k  in the space 3ℜ . This seems quite obvious with respect to 
Haar wavelet system, when we go on other wavelet systems this geometrical part may not be that obvious since most of 
other wavelet systems are fractal in nature. We cannot draw directly the functions for visualization. 
 
4. CONCLUSION:  
 
The theory of wavelet has a strong connection with geometry or at least we can understand the wavelet theory from a 
geometrical view point. 
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