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ABSTRACT

This investigation deals with a mathematical model of a four species (S;, S; Sz and S4) Syn-Ecological system. S;is a
predator surviving on the prey S;. The predator S, is a commensal to the host S;. The pairs S, and S4, S; and S; are
neutral. The mathematical model equations characterizing the syn-ecosystem constitute a set of four first order non-
linear coupled differential equations. There are in all sixteen equilibrium points. Criteria for the asymptotic stability of
the sixteen equilibrium points are established. The linearised equations for the perturbations over the equilibrium point
are analyzed to establish the criteria for stability. Trajectories of the perturbations have been illustrated. Also global
stability is discussed by Lyapunov’s function. Further analytical stability criteria are supported by numerical
simulations using Mat lab.

Key words: Equilibrium state, stability, Mutualism, Co-Existent State.

1. INTRODUCTION:

Mathematical modeling is an important interdisciplinary activity which involves the study of some aspects of diverse
disciplines. Biology, Epidemiodology, Physiology, Ecology, Immunology, Bio-economics, Genetics, Pharmocokinetics
are some of those disciplines. This mathematical modeling has raised to the zenith in recent years and spread to all
branches of life and drew the attention of every one. Mathematical modeling of ecosystems was initiated by Lotka [6]
and by Volterra [12] followed by several mathematicians and ecologists. They contributed their might to the growth of
this area of knowledge as reported in the treatises of Meyer [7], Paul Colinvaux [8], Freedman [2], Kapur [3, 4]. The
ecological interactions can be broadly classified as prey-predation, competition, mutualism and so on. N.C. Srinivas
[11] studied the competitive eco-systems of two species and three species with regard to limited and unlimited
resources. Later, Lakshmi Narayan [5] has investigated the two species prey-predator models and stability analysis of
competitive species was investigated by Archana [1]. Further Local stability analysis for a two-species ecological
mutualism model has been investigated by B. Ravindra Reddy et al. [9, 10]. In this connection here we constructed a
four species (S;. S, S; and S,) mathematical model based on the system of non-linear equations. S, is a predator
surviving on the prey S;. The predator S; is a commensal to the host S;. The pairs S, and Sy, S; and S; are neutral.
Equilibrium points of the system are identified and the stability analysis is carried out. Example for Sy, S,, S; and S,
are Insects, Insectivorous Plants (nephantis, drosera etc.), VAM associated with the plant roots, Soil bacteria
respectively.

2. BASIC EQUATIONS:

The model equations for a four species multi-system are given by a set of four non-linear ordinary differential
equations as

(i) For S;: The Prey of S; and Neutral to S;
dN
d_t1:a1N1_a11N12_a12N1N2 (2.1)
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(if) For Sp: The Predator surviving on S; and Commensal to S;

%:aZNZ—a22N22+a21N2N1+a23N2N3 (2.2)
(iii) For S;: The Host of S, and Mutual to S,

%:%Ns_a33N32+a34N3N4 (2.3)
(iv) For S4: Mutual to S; and Neutral to S,

%:a4N4—a44N42+a43N4N3 (2.4)

with the following notation.

N; (t): Population strengths of the species S;at time t, i=1, 2, 3, 4.
a; . Thenatural growth rates of S;, i =1,2,3,4

aip,ay . Interaction (Prey-Predator) coefficients of S; dueto S; and S, due to S;
A3 Coefficient for commensal for S; due to the Host S5

a4, a43 . Mutually interaction between Sz and Sy

a
Ki: —- : Carrying capacities of S; i=1, 2, 3, 4.
a

Further the variables Ny, N,, N3, N4 are non-negative and the model parameters a;, ay, as, a4; 811, 822, 833, a44; 812, 821, 813,
a,4 are assumed to be non-negative constants.

1. EQUILIBRIUM STATES:

The system under investigation has sixteen equilibrium states defined by
d—'\t'izo, i-12,3,4 (3.1)

are given in the following table.

I. Fully washed out state:

Ex N, =0,N,=0,N,=0,N, =0

11. States in which three of the four species are washed out and fourth is surviving

E: N, =0N,=0,N, =0,N, =%
ay,
N SON 0N =S N
E3- =O' =0, =—, =0
1 2 3 ay, 4
Ex  N.=ON, =22 N.=0N,=0
4 1~ YN = N3 T M IV
a22

B N,=2N,=0,N,=0,N, =0
I11. States in which two of the four species are washed out while the other two are surviving

Es: Wl=0,_=0,_= 8,83 + 838y ,N_4= 8383 + 8,85,
B338yy — 8348y3 8338, — 83483
This state exists only when  a,,a,, —a,,3,; >0

E;: leovN_zzaa_ziN_g:O,N_4::—4
22 44
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PR VY VL SR N
Ay 833 8y A3
E9: lei'N_zzo’N_Szo’_‘l:&
8y ”
Exo 1=%,N2:0, 3:%,N4:0
Eip Wl: 8,8y, — a8y, 1N_2: 8,8, +aa, ,N_3=O,N_4=0
18y, + 3,8, 18y, + 3,8,

This state exists only when  a,a,, —a,a,, >0

IV. States in which one of the four species is washed out while the other three are surviving

0 N_ — Ays (a4a34 + a3a44) n

N, = B N o BB T,
N1 — YN , N3 - J
E..: Ay (assa44 - a34a43) ay, Q338 — 83483
12-
N = 8,853 + 838y,
4
Qg3 — 83483
This state exists only when a,,a,, —a,,a,; >0
— — — a +a,8,, ——  Q,d,,+a,a
Eis lei,sza s = 4a34 a344 N, = 433 a343

1 INg
a, Q338 — 85,35 A8y, — 85,83
This state exists only when (a,,a,, —a,,a,,) >0

—  Aa,-aa, T d,+ad; o a4
v N, = 8,8 — 88, N, = 8,8y, + 8,8y, N, =0,N, =%
83,85, + 85,85, 83,89, + 85,8, 8y

This state exists only when a,a,, —a,a,, >0

E15: W:|_=&1N_2=&|N_3=&II\I_4=O
ﬂl ﬂl 3
Where

131 =a; (anazz + a12a21)
By =2y (a1a22 - a2a12) — 838,39,
ﬂs =a; (a1a21 + a2a11) + 838,39,

This state exists only when 3, >0

V. The co-existent state (or) Normal steady state
) N - Vit andy), N - Vatandyy,
E16- 1= ] N2 - 1
73(83384 — 8348y3) 73(83384 — 8348y3)
N = 8,85 + 838y N = 8,853 + 838y,
11Ny
Q338 — 85483 Q338 — 83483

=z

3
Where
71 = (248, + 8,85, (Ag58,, — 854843), ¥, = A58y, 3,3,
V3 =858y + 858, 7y = (a1a21 - aZall)(a33a44 - a34a43)

This state exists only when (a,a,, —a,a,,) > 0 and (a,,a,, —a,,a,;) >0.
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4. STABILITY OF THE EQUILIBRIUM STATES:

Let N =(N,,N,,N;,N,)=N+U 4.2)

where U = (U, U,,U;,U, ) isa perturbation over the equilibrium state g ~(N,, N, N,,,)-

The basic equations (2.1), (2.2), (2.3), (2.4) are linearized to obtain the equations for the perturbed state as

du
& _au @.2)
dt
where
22N A, AN 0 0
Al 81Ny 8y~ 28Ny FapyNy FaggNg ey ° (4.3)
0 0 a372a33N§+a34N4 a34N3 )
0 0 a43N4 1314—2a44N4+a43N3
The characteristic equation for the system is det[ A—A1]=0 (4.4)

The equilibrium state is stable if both the roots of the equation (4.4) are negative in case they are real or have negative
real parts in case they are complex. The equilibrium states E,,E,, E;, E,, Ec,E5, E;, Eq, Eq, E o, B E 5 E Ly B
are noticed to be unstable (The detailed investigation of these states is not included here for treatment). The stability
criteria of states E,,, E, are discussed below.

4.1 Stability of Prey (S;) Washed out Equilibrium State: (E;y)

N =0.N. = 2y (8,8, +2,3y,) " & N. = 8,85, + 85d,, N = 8,853 + 838y, 4.1.1)
1 12 y N3 y Ny 1.
Ay (assa44 - as4a43) Ay, Ay38,, — 83,3,5 A8y, — 85,83

Substituting (4.1.1) in (2.1), (2.2), (2.3), (2.4) and neglecting products and higher powers of U,, U,, Uy, U,, we get

du

d_tl = WU, (4.1.2)

u, _ a,, N,U, — WU, +a,, N, U, (4.1.3)
du — —

d_t3 =—a,;N,u, +a5,N,u, (4.1.4)
du — -

—=a,N,u,—-a,N,u, (4.1.5)
dt

Herew, =a, —a,N, , W, =a, +a,,N, (4.1.6)

The characteristic equation of which is
(A =W) (A +W5)| 27 + (g Ny + 834 N ) A + (g8 — B, 2,5)N; N, | =0 (4.1.7)

The characteristic roots of (4.1.7) are

- (ass N3 +a, N4) * \/(ass Ns_ Ay Iq4)2 + 4a34a43 N3 Nél
2

A=W, A=-W,, A=
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Case (A): If w; <0 [iea <a,N,]

Here W,,—W, are negative and the other two roots are also negative.

Hence the equilibrium state is stable.

The solutions of the equations (4.1.2), (4.1.3), (4.1.4), (4.1.5) are

Ul:uloeWlt
i N N . IND et At
u. =l u _a21N2u10 _azsNz(P1+P2) ety ay N,u, ew1t+azsN2(Ple +Pe™)
2 20
i (W, + W) (A5 +W,) (W, +ws) (A5 +W,)
U. = u30(7\'3+a44N4)+u4Oa34N3 e)\gt+ u30(7\'4+a44N4)+u40a34N3 ekAt
3
L }”3_7‘4 7‘4_7‘3
u. = u40<7\‘3+a33N3)+u30a43N4 ex3t+ U40(7\,4+833N3)+U30a43N4 e;%t
.=
L }‘3_7‘4 7"4_7"3
U (r+a,N,)+u,a.,N U.(r,+a,N,)+u,a.,N
Where P, = 30( 3t dy 4) 40%34 3,P2: 30( 4T Ay 4) 4094341\
Ay — A, A=Ay

where Uy, Uy, Usg, Ugg are the initial values of uy, uy, us, uy respectively.

(4.1.8)

(4.1.9)

(4.1.10)

(4.1.11)

There would arise in all 576 cases depending upon the ordering of the magnitudes of the growth rates a;, a,, as, a, and
the initial values of the perturbations uyo(t), Uxo(t), Uso(t),Us(t) OF the species Sy, S;, Ss, S4. Of these 576 situations some
typical variations are illustrated through respective solution curves that would facilitate to make some reasonable

observations.
The solutions are illustrated in figures.
Case (l) Ifugp<up<up<ugandaz<a; <A;<a T+

In this case initially S, dominates the Prey (S;) and
the Predator (S;) till the time instant t 4t ,, respectively and

thereafter the dominance is reversed. And Uu;,U,,U;,U, are o

converging asymptotically to the equilibrium point. Hence the
equilibrium point is stable.

a0

20

Usg

Case (ll) Ifup<up<ugpg<upgand A;<az<a;<as

In this case initially the Predator (S;) dominates the Prey (S;) till
the time instant t 1, and thereafter the dominance is reversed. Also

=0

the host (S;) of S, dominates the Prey (S;) and S, till the time  wso

instant t*13, 43 respectively and the dominance gets reversed N

thereafter. "
ap

© 2012, IIMA. All Rights Reserved

1506



R. Srilatha®, B. Ravindra Reddyz* and N. Ch. Pattabhiramacharyulus/ A Mathematical Syn-Ecological Model Comprising of Prey-
Predator, Host-Commensal,... / IMA- 3(4), April-2012, Page: 1502-1512

Case (B): If w, >0 [ie.q > a12N_2]

Here the root W, is positive and the other three roots are negative.

Hence the equilibrium state is unstable and the solutions in this case are same as in Case (A).

4.2  Stability of Co-Existing State : (Ey)

N = V1t 8,857, N_z_ Vot 385,357,

1= ]
v 3(a33a44 - a34a43)

Y 3(a33a44 - a34a43)

_ 9,85 ta5d,

Ag48,, — A3,3y3

4.2.1)
N = 8,853 + 838,
4
Agyd,, — 5,8y,
Where
71 = (@8y, +8,8,,) (83,8, —83,8,3), 7, = 848y, + 3,85
Vs = (@8, +85,8,), 74 = (8,8, — 3,8, ) (8538, — 83,8y3)
This can exist only when (8,8, —a,a,,) >0 and (a,a,, —a,a,,) >0 (4.2.2)
Let us consider small deviations U, (t), U, (t), us(t), u,(t) from the steady state
ie. N (t)=N;+u,(t),i=1234 (4.2.3)

Substituting (4.2.1) in (2.1), (2.2), (2.3), (2.4) and neglecting products and higher powers of u,, U,, U, U,, we get

% = _a11N1u1 - a12N1u2 (4.2.4)
du, _ _ _
F:—azzNzuz+a21N2u1+a23N2u3 (4.2.5)
%:—a33ﬂ3u3+a34ﬁ3u4 (4.2.6)
%:—a44N4u4 +a,N,u, 4.2.7)
The characteristic equation of which is
[}VZ + (2N + 2, N, A+ (8,8, + a12a21)N1N2] X .28
|:}\'2 + (a33N3 + a44N4)}\’ + (a33a44_ a34a43)N3N4} = 0
The characteristic roots of (4.2.8) are
l — - (ailﬁl + a22 NZ) x \/(ailﬁl_ a22 N2)2 - 4a123'21N1N2
2
1= - (a33 N3 +a, N_4) i\/(ass N3_ Ay N4)2 + 4a34a43 Ns N4
— (4.2.9)
2
P G azzzﬁz) A, = (aaNo+a,Ny) +A, 4210)
Where
A= (ailﬁl_ Ay l\_lz)2 —4a,,a, N1 N_z A= (3, I\_ls_ Ay |\_l4)2 +4ay,8,, l\_13 I\_l4
© 2012, IIMA. All Rights Reserved 1507
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Case (i): When A, >0and A, >0

In this case the roots are real and negative.

Hence the equilibrium state is stable.
Case (ii): When A, <0and A, <0

In this case the roots are complex with negative real parts.

Hence the equilibrium state is stable.
Case (iii): When A, =0and A, =0
In this case the roots are repeated, which are negative.

Hence the equilibrium state is stable.

The trajectories are given by

a;, N, (ulo_ U ) +ph, + MZaISNl —Hs

0= ol
i A =L, (4.2.12)
(1, = Uy YAy + U A, +(a,,U, —a,U, + 1,3, )N, — -
+ (M —Ugg) Ay +Uh, (}52_11 12U + M) Ny — I e +o.e" +o,eM
L 2 1
u _{alZl\ll(ulo_UZO)—I_Ml}LZ+H2alle_}/lg}Sek1t
2 = 1
A=A,
(4.2.12)
—U. A + U A+ (a,Uy —a,U, + 1,3, N, —
+{(H1 10) 1+ Ugohy + (8550 —3Up + Hp855) N, }’lB}SZeMM_GseM+(54€x“I
Ay =N,
U u30(7\,3+a44N4)+U40334N3 eht 4 u30(7\‘4+a44N4)+u40a34N3 ght (4.2.13)
8 l3—7\,4 }"4_}"3
u4: U40<7\‘3+a33N3)+U30a43N4 e”3t+ U40(}\,4+8.33N3)+U303.43N4 ek4t (4_2_14)
A=A, A=y
Here

W =0, +C, iy =P, + Py Ky =C1A; +G,A,;

O, O

— — ; O, = — —
Ay +(apN +a,Ny A, +ay° A7 +(ayN, +a,N, )4, +o,

(51:

0y = (838, +2,,8,)N,N,; @, = p1313N1(7‘3 +a22N2); 0y = P,ayN, (7"4 +a22N2) ,

P, =

P = » Oy N~

uso(k3+a44N4)+u4oa34N3 u30(k4+a44N4)+u40a34N3_ 5 :&_ 7», )
7‘3_7‘4 7‘4_7‘3 a, alZNl
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a A a A, | O a A, |O
§,=—R-——2 5, = 13p1+(a11—_—3j—1 1O, = 13p2+(aﬂ—_—4 —Z
a‘12 a12 Nl a12 1 12 alZ 1 a12

and Uy, Uy, Uy, U,, are the initial values of U, U,, U,, U, respectively.

There would arise in all 576 cases depending upon the ordering of the magnitudes of the growth rates a,,a,,d,,a,

and the initial values of the perturbations Uy, (), Uy, (t),Ug (1), Uy, (t) of the speciesS,,S,,S;,S, . Of these 576

situations some typical variations are illustrated through respective solution curves that would facilitate to make some
reasonable observations.

The solutions are illustrated in figures.

Case (l) Ifup<ugp<ug<upgandaz<as<a;<a

U .
In this case initially S, dominates the Prey (S,) till the time instant t',and
the dominance gets reversed thereafter. And u,,U,,U;,U, are e
converging asymptotically to the equilibrium point. 10

Hence the equilibrium point is stable.

4

Case (ll) Ifugp<ugpg<upg<uganda,<az<a;<a o

In this case initially S, dominates the Prey (S;) and the Predator 4o
(S,) till the time instant t'y, t 4 respectively and thereafter the
dominance is reversed. Also the host (S;) of S, dominates the
Predator (S,) and the Prey (S,) till the time instant t3 t13 1o
respectively and the dominance gets reversed thereafter. And
the Predator (S;) dominates the Prey (S,;) till the time instant T — b

t"1,and thereafter the dominance is reversed. \H'i:“: o

Uszp

. g . .
thazest12 £, £,

Fig. 4
5. LIAPUNOV’S FUNCTION FOR GLOBAL STABILITY

We discussed the local stability of the state of co-existence. We now examine the global stability of the dynamical
system (2.1), (2.2), (2.3) and (2.3). We have already noted that this system has a unique, stable non-trivial co-existent
V1t 3857, N. = Vot 387, N. = 8,8y, + 3,8, N = 8,833 + 858,
' 2 = ' 3 1 4 —
73 V3 A338,, — 838y3 Q384 — 8343

equilibrium state at Wl =

We define a Liapunov function

V(N N, N, N,) = Nl—Nl—Nllog[%jJrll{Nz—Nz—ﬁz Iog%}

1 2

R |2{N3 _Na-Nalog [E_j}+ I3{N4 _N.—Nulog (E_j} 61)
N3 N 4

where I; 1, and |5 are suitable constants to be determined in the subsequent steps.

© 2012, IIMA. All Rights Reserved 1509
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Now, the time derivative of V along the solution of (2.1), (2.2), (2.3) and (2.4) is

dav _(N—N; dn, | N, - N dN, | N, — N dn; | N, —Ns |dN, 62)
dt N, Jdt *[ N, d L N, Jdt N, dt
v (N,—-N N, - N
- {ai a11N a12 } 2 - Nz{az_a22N2+a21N1+a23N3}
dat [N, N,
+IZ[N3N NS] a33N3+a34N4} +I3[N4I\IN4J N4{a4_a44N4+a43N3}
3 4
(5.3)
(Nl 1) a - auN a12 } (N NZ){a a22N2+a21N1+a23N3}
+ IZ(N —Ns) 8, — 2N, +a,N, | + (N4—W4){a4—a44N4+a43N3} (5.4)
av

== (N, = NoJ{a N+ 2, No—aNy - N, b+ 1 (N, N2 ){a, No -2, Ni -2, Na -, N, +2,N; + N, |

+ I2 ( N, _N3){a33N3 - a34N4 —aN; + a34N4} +I3 ( N, —N4){&A4N4 - a43N3 -a,N, + a43N3} (5.5)

:(Nl—ﬁl){—aﬂ(N1 ~N:)-a,(N, —Wz)} +h(N, —Nz){—aﬂ(N2 —W2)+a21(N1—N1)+a23(N3—W3)}
+ I2(Ng—ﬁg){—ag3(N3—W3)+a34(N4—W4)} " |3(N4—W4){—a44(N4—W4)+a43(N3—W3)} (5.6)

N, - Ns)(N, -N4)} (67)

Choosing |1 = % Iand |3 are any positive constants, (5.7) becomes,
21

O o B2, T
21 21

dat (58)
(N, =N ) (N, =N )~ (N, ~Na) L (N, ~Ns (N, N
<—611(N1—W1)2—a1;—2122( “N2) a;;gjs{(Nz_Nz)ZWL(NS_m)z} (5.9
~aly (N, = N5 )~y (N~ N ) {2 B0l () (N, - N )
L ] e L e ] (R D

+[(ae4|2 ;'a43|3) —a44l3}(N4 ~N. )2

(a34 2 + a43|3) 23 4 a3 (a34|2 + a43|3) <a
2 2a21 - 2
Hence the co-existent is globally asymptotically stable.

. a
<0, Provided f< a,,, sl
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6. NUMERICAL EXAMPLES:

(1) Let a;=1,a;,=0.1,a;,=0.1,a,5=0.1,a,=1,a,,=0.2,a,1=0.2,a3=1,a33=0.3, a3,=0.2,a,=1,244=0.3,243=0.3,N; =20, N, =30, N5
=40, N4 =50

50 T
speciesl
45 species2 [
species3
40 species4 []
35
‘\
c 30
s ||
& |l
S 25[T
Q \
S pof
15 \
10
5
0
0 10 20 30 40 50

time

Fig.1
Fig.1: Graph Represents Variations in the growth rate of the populations against time.

(2) Let a;=2,a;;=0.1,2;,=0.02,a,3=0.1,a,=2,a,,=0.4,a,;=0.3,a3=1,a33=0.3, a3,=0.001,a,=2,a44=0.2,a,3=0.001,N; =40, N,
=30, N3 =20, N4 =50
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Fig. 2: Graph Represents Variations in the growth rate of the populations against time.
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