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ABSTRACT 
A set of vertices D in a graph G = (V, E) is a dominating set if every vertex of  V – D is adjacent to some vertex of  D. 
If D has the smallest possible cardinality of any dominating set of G, then D is called a minimum dominating set -
abbreviated MDS. The cardinality of any MDS for G is called the domination number of G and it is denoted by             
γ (G). A graph G is said to be domination subdivision stable (DSS), if the γ - value of G does not change by subdividing 
any edge of G. In this paper, we have obtained necessary and sufficient condition for a graph G to be a DSS graph. We 
have discussed conditions under which a graph is DSS and not DSS. We have generated new DSS graphs from existing 
ones and proved that every graph G is an induced sub graph of DSS graph. 
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1. INTRODUCTION  
  
A set of vertices D in a graph G = ( V, E ) is a dominating set if every vertex of  V – D is adjacent to some vertex of  D. 
If D has the smallest possible cardinality of any dominating set of G, then D is called a minimum dominating set — 
abbreviated MDS. The cardinality of any MDS for G is called the domination number of G and it is denoted by  γ ( G ). 
A γ - Set denotes a dominating set for G with minimum cardinality.  
 
The subgraph of G induced by the vertices in D is denoted by < D>. The open neighborhood of vertex v ∈ V ( G ) is 
denoted by N ( v ) = { u ∈ V ( G ) | uv ∈ E ( G ) } while its closed neighborhood  is the set N [ v ] = N ( v ) ∪ { v }. A 
vertex v is said to be a, down vertex if γ ( G – u  ) <  γ ( G ), level vertex if  γ ( G – u  ) =  γ ( G ), up vertex if                 
γ ( G – u  ) > γ ( G ). A vertex v is said to be selfish in the γ- set D, if v is needed only to dominate itself. A vertex v is 
said to be good if there is a  γ – set of G containing v. If there is no γ – set of G containing v, then v is said to be a bad 
vertex. A vertex in V – D is k – dominated if it is dominated by at least k – vertices in D ie., |N (v) ∩ D| ≥  k. If every 
vertex in V – D is k – dominated then D is called k  – dominating set. 
 
For a pair of adjacent vertices u, v of G, we denote by G• uv the graph obtained by identifying u and v. Let uv denote 
the identified vertex. In [1], Tamara Burton and David. P. Sumner defined a graph to be domination dot critical (DDC) 
if  γ (G•uv) <  γ (G), ∀ u, v ∈ V (G). In [3], M. Yamuna and K. Karthika have introduced the concepts of domination 
dot stable graphs. A graph G is said to be to domination dot stable (DDS) if γ (G•uv) = γ (G) ∀ u, v ∈ V (G), such that 
u ⊥ v. They have obtained necessary and sufficient conditions for a graph G to be DDS and have discussed properties 
of DDS graphs. 
 
A subdivision of a graph G is a graph resulting from the subdivision of edges in G. The subdivision of some edge e 
with endpoints {u, v} yields a graph containing one new vertex w, and with an edge set replacing e by two new edges, 
{u, w} and {w, v}.   
   
In this paper we define domination subdivision stable graphs and initiate a study on them. 
 
2. DOMINATION SUBDIVISION STABLE GRAPHS 
 
A graph G is said to be domination subdivision stable (DSS) if the γ - value of G does not change by subdividing any 
edge of G.  
________________________________________________________________________________________________ 
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We shall denote the graph obtained by subdividing any edge uv of a graph G, by G sd uv. Let w be a vertex introduced 
by subdividing uv. We shall denote this by G sd uv = w. 

 
Examples of DSS graphs 
1. Pn is DSS if and only if  γ (Pn) = γ (Pn+1). 
2. Cn is DSS if and only if  γ (Cn) = γ (Cn+1). 
3. Petersen’s graph. 
4. A Complete Bipartite graph Km, n.  
 
The graph G given in Fig. 1 is DSS. 
 

 
Fig.  1 

 
In Fig. 1,  γ (G) = γ (G sd uv) = 2. This is true∀ e = (a b)∈ E (G). Here G is a DSS graph. 
 
Theorem 2.1: A graph G is DSS if and only if for every u, v ∈ V (G), either ∃ a γ - set containing u and v or ∃ a γ - set 
D such that 

1. PN [u, D]  = {v}  
2. v is 2 – dominated. 

 
Proof: Let G be a DSS graph and let D be a γ - set for G. Let u, v ∈ V (G) and D′ be a γ - set for Gsd uv. 
 
Case 1: w ∈ D′ 
In this case u, v ∉ D′. If u ∈ D′, then D = D′ - {w} is a γ - set for G such that | D | <  | D′ | [v is dominated by u] which 
is a contradiction for G is a DSS graph.  
 
When w ∈ D′, u, v ∉ D. D = D′ - {w}∪{u} is a γ set for G. v is 2 – dominated in G, if v ∉ PN [w, D′] else v ∈ PN [u, 
D] if  v ∈ PN [ w, D′ ]. 
 
Case 2: w ∉ D′ 
 
Subcase 1:  u ∈ D′, v ∉ D′ 
D′ is a γ  - set for G such that v is 2- dominated. 
 
Subcase 2: u, v ∈ D′ 
D′ is a  γ - set for G containing u and v. 
 
Subcase 3: u ∉ D′, v ∈ D′ 
D′ is a γ  - set for G such that u is 2- dominated. 
 
Conversely if ∃ a γ  - set D′ containing u and v or D′ is a γ  - set such that u ∈ D′ , v is 2 – dominated, then D′ itself is a 
γ  - set for G sd uv. If D′ is a γ  - set for G such that PN [u, D′] = {v}, then D = D′ – {u} – {w} is a γ  - set for G sd uv. 
 
Hence G is DSS. 
  
Theorem 2.2: For any graph G, γ (G sd uv) ≥ γ (G) ∀  e = (u v) ∈ E (G). 
 
Proof: Let G be a graph and D be its dominating set. Consider G sd uv, where e = (u v) ∈ E (G). Let D′  be a γ - set for 
G sd uv. If possible let | D′ | < | D |. 
 
Case 1:   w ∈ D′  
In this case either u or v may belong to D′, but both u and v cannot be in D′.  
 
If u, v ∉ D′, w ∈ D′, then D′′ = D′ – {w} ∪ {u} is a γ - set for G such that | D′′ | < | D |.  
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If either u or v ∈ D′, then D′′′ = D′ – {w} is a γ - set for G such that such that | D′′′ | < | D |.  
 
Case 2:   w ∉ D′ 
In this case D′ itself is a γ - set for G such that | D′ | < | D |. 
 
In both cases, we get a contradiction. Hence γ (G sd uv) ≥ γ (G) ∀  e = (u v) ∈ E (G).                                         
 
Theorem 2.3: If G is a graph such that every vertex is a down vertex, then G is DSS. 
 
Proof: Let G be a graph and let e = (u v)∈ E (G). Let G sd uv = w. Since every vertex is a down vertex, u is down 
vertex, ie., γ (G – u) = γ (G) – 1. Also D′ = γ (G – {u}) ∪ {u} is a γ - set for G, where any x ∈ N (u) is 2 – dominated, if 
x ∉ D′. 
 
If v ∈ D′, then D′ is a γ - set for G sd uv also.  
 
If v ∉ D′, then by theorem [2.1], G sd uv is DSS. This is true ∀  e = (u v) ∈ E (G)  ie., G is DSS.                                                                                                                   
 
Corollary 1: If G is a graph such that ∀ e = (u v) ∈ E (G), either u or v is critical, then G is DSS. 
 
Proof: Let G be graph and e = (u v) ∈ E (G). Either u or v is critical. Let us assume that u is critical γ (G – u) = γ (G) – 
1. Also γ (G – {u}) ∪ {u} is a γ - set for G. By  theorem [2.3] γ  (G sd u v) = γ (G) ∀  e = (u v) ∈ E (G). Hence G is 
DSS.        
 
Corollary 2: If G is a graph that has at least one down vertex u, then G has a γ - set that contains at least one selfish 
vertex u. Also    γ (G sd uv) = D = γ (G),∀ v ∈ N (u). 
 
Proof: Let G be a graph that has a down vertex u. Then by theorem [2.3] ∃ a γ - set for G such that N (u) is 2 – 
dominated ie., u is a selfish vertex, since N (u) is 2 – dominated. By theorem [2.1], γ (G sd u v) = γ (G), ∀ v ∈ N (u) ie., 
if u is a selfish vertex, then γ (G sd u v) = γ (G), ∀ v ∈ N (u).                                                                                                                   
 
Corollary 3: Let G be a graph ∀  u ∈ V (G), ∃  a γ – set for G such that u is selfish. Then G is DSS. 
 
Proof: Let e = (u v) ∈ E (G). By the given conditions ∃  a γ – set for G such that u is selfish. By corollary [2] of 
theorem [2.3], γ (G sd uv) = γ (G). This is true ∀ e ∈ E (G). Hence G is DSS.                                                                                          
 
Corollary 4: Every DDC graph is DSS. 
 
Proof: Let G be DDC graph. Let u, v ∈ V (G) and D be a γ - set for G. In [1], it has been proved that, “Let a, b ∈V (G) 
for a graph G. Then γ(G• ab) < γ (G) if and only if either there exists an MDS S of G such that a, b ∈ S or atleast one of 
a or b is critical in G”.  
 
If u, v ∈ D, then D is γ - set for G sd uv also ie., G is DSS. 
 
If either u or v is critical, G is DSS [By corollary 1 of theorem 2.3]. 
 
Hence every DDC graph is DSS.                                                                                    
 
Theorem 2.4: Let G be a DSS graph, then 
1. Every support vertex has exactly one pendant vertex adjacent to it.  
2. If v is a pendant vertex then ∃  at least one γ - set of G including v. 
3. If the pendant vertex v is selfish then v is a down vertex. 
4. If the pendant vertex v is not selfish then v is a level vertex.  
 
Proof: 
1. Let u be support vertex. Let x, y ∈ V (G) where x, y are pendant vertices such that x, y ⊥ u. Then u is included in 

every γ - set. γ (G sd  ux) = γ (G sd  uy) = γ (G) + 1, which is contradiction as G is DSS. 
2. Let G be DSS and let v ∈ V (G) be a pendant vertex and u be the support vertex. Let Gsd  uv = w. Let D be a γ - set 

for G sd  uv. In G sd  uv either v ∈  D or v ∉  D.  
 
If v ∈ D then D is a γ - set for G also such that v ∈ D.  
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If v ∉  D then w ∈ γ (Gsd  uv) since v is pendant. D – {w} ∪ {v} is a γ - set for G ie., γ (G) contains v. Hence v belongs 
to some γ - set of G. 
3. If v is a pendant vertex then ∃  a γ – set containing v. If v is selfish, then γ (G – v) = γ (G) – 1 ie., v is a down 

vertex. 
4. Let PN [v, D] = u and ∃  no w∈ N (u), w ≠ v such that w∈ D [Since if such a vertex exist then v becomes selfish]. 

γ (G – v) ≤  γ (G). If γ (G – v) <  γ (G), then by corollary [2] of theorem   [2.3], v is selfish which is not possible. 
Hence γ (G – v) = γ (G) ie., v is a level vertex.                                                                                                                                                                                                      

 
Theorem 2.5: Let G be a graph such that 

1. G is DDS, 
2. N (u) ≥ 2,∀ u ∈ V (G), 
3. v ∈ PN [ u, D ], for some u ∈ D, ∀ v ∈ V – D, ∀ γ - set D of G, 

then G is not DSS. 
 
Proof: Let G be a graph satisfying assumptions 1, 2, and 3. Let us assume that G is DSS. Let G sd uv = w. Let D′ be γ - 
set for G sd uv. 
 
Case 1:  u ∈ D′, v, w ∉ D′ 
Since u does not dominate v, ∃ one x such that x ∈ D′ and x ⊥ v. D′ is a γ -set for G where u, x ∈ D′  such that u ⊥ v ⊥ x  
ie., v is 2 – dominated which is a contradiction. 
 
Case 2:   w ∈ D′, u, v ∉ D′ 
 
Subcase 1: If w is selfish, then u and v are 2 – dominated vertices in Gsd uv.  D′′  = D′ - {w} ∪ {u} is a γ - set for G 
where u is selfish which is contradiction as G is DDS. 
 
Subcase 2: If either u ∈ PN [w, D′] or v ∈ PN [w, D′]. Let us assume that u ∈ PN [w, D′]. Then ∃ one x such that  
x ∈ D,  x ⊥ y ⊥ u where y ∈ N (u). D′′  is a γ - set for G such that u ⊥ y ⊥ x, where u, x ∈ D′′  which is contradiction as 
y is 2 – dominated. 
 
Subcase 3: If u, v ∈ PN [w, D′] then as in subcase 2, D′′  is a γ - set for G such that u ⊥ y ⊥ x ,  which is a contradiction 
as y is 2 – dominated. 
 
Subcase 4: If u, v ∉ PN [w, D′]. Let v be 2 – dominated, then ∃ one x ∈ D′ such that v ⊥ x. D′′  is a γ - set for G such 
that u ⊥ v ⊥ x, where u, x∈ D′ which is contradiction as v is 2 – dominated. Also D′′′  = D′ - {w} ∪ {v} is a γ - set for G 
such that v ⊥ x, where v, x ∈ D′′′  which is contradiction as G is DDS.      
 
Case 3:  v ∈ D′, u, w ∉ D′ 
Since v does not dominates u, this case is similar to case 1, where u will be a  2 – dominated vertex for G with respect 
to D′.            
 
Case 4:  u, w ∈  D′, v ∉ D′  
 
Subcase 1: If v ∈ PN [w, D′], then ∃ one x such that x ∈ D′ and x ⊥ y ⊥ v, where y ∈ N (v). D′′′  = D′ - {w}∪ {v} is a γ 
- set for G such that v ⊥ y ⊥ x, where v, x ∈ D′ which is contradiction as y is 2 – dominated. Also u, v∈ D′′′

 such that u 
⊥ v which is contradiction as G is DDS.  
 
Subcase 2: If v ∉ PN [w, D′] ie., v is 2 – dominated say v is dominated by x, w, then G – {w} ∪ {v} is a γ - set for G 
such that u ⊥ v ⊥ x, where u, v, x ∈ D′  ie., D′  - {v} is a  γ - set for G which is contradiction as we assume that G is 
DSS. 
 
Case 5: w, v ∈ D′ , u ∉ D′  
We get contradiction, similar to case 4.  
 
Case 6:  u, v ∈ D′, w ∉ D′ 

D′  is a γ - set for G such that u ⊥ v, which is contradiction as G is DDS. 
 
In all cases we get a contradiction and hence G is not DSS.                                           
 
Remark: If G is a DDS graph such that, 
1. N (u) < 2, for some u ∈ V (G), 
2. v ∈ PN [ u, D ], for some u ∈ D and, ∀ v ∈ V – D, ∀ γ - set D of G, then G may or may not be DSS. 
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Example: 

 
Fig.  2 

 
In Fig. 2, G is DDS, N (u) = N (v) = 1. v ∈ PN [u, D] where v ∈ V – D. G is also DSS.  
 
3 CONSTRUCTIONS 
 
Theorem 3.1: Every graph is an induced subgraph of DSS. 
 
Proof: Let G be DSS graph with n – vertices say ui, i = 1, 2, …, n. Let H = G o K1. Label the pendant vertices as v1, v2, 
…, vn . {u1, u2, …, un} or {v1, v2, …, vn} are the possible γ – sets for H. Let {u1, u2, …, un} be the γ – set under 
consideration.  
 
Consider H sd uivi. γ (H sd uivi) = γ (H) – {ui}∪ {wi}, where i = 1, 2, …, n  ie., γ (H sd uivi) = γ (H). 
   
Consider H sd uiuj. γ (H sd uiuj) = γ (H) – {ui} – {uj}∪ { uiuj }, where i ≠ j, i, j = 1, 2, …, n.  
 
Hence every graph is an induced subgraph of DSS graph.                                                                                                                                                                                                                                                                                                                                                                     
 
Theorem 3.2: Let G1 and G2 be DSS graphs. Let D1 and D2 be γ – sets for G1 and G2 respectively. Let u ∈ V (G1) such 
that u is both level and bad vertex in G1 and v ∈ V ( G2 ) such that v is selfish. Obtain a graph H by adding an edge 
between u and v then H is DSS.  
 
Proof: Let G1 and G2 be DSS graphs. Let D1 and D2 be γ – sets for G1 and G2 respectively. Let u ∈ V (G1) such that u is 
both level and bad vertex in G1 and v ∈ V (G2) such that v is selfish. Obtain a graph H by adding an edge between u 
and v. γ (H) = γ (G1) + γ (G2). [Since u is both level and bad vertex in G1 and v is selfish, then γ – value does not 
change when we add an edge between u and v]. Consider H sd uv. Let H sd uv = w. γ (H sd uv) = γ (H), since u is 2 – 
dominated. Also γ (H sd uv) = γ (H),∀ u, v ∈ V (G1) and ∀ u, v ∈ V (G2). Hence H is DSS.    
 
Theorem 3.3: Let G1 and G2 be DSS graphs. Let D1 and D2 be γ – sets for G1 and G2 respectively. Let u ∈ D1 and  
v ∈  D2 be selfish vertices in G1 and G2, then the graph H obtained by merging two vertices u and v is DSS.  
 
Proof: Let G1 and G2 be DSS graphs. Let D1 and D2 be γ – sets for G1 and G2 respectively. Let u ∈ D1 and v ∈  D2 be 
selfish vertices in G1 and G2. H is obtained by merging vertices u and v. γ (H) = γ (G1) + γ (G2) – {u} – {v} ∪ {uv}  
ie., γ (H) = γ (G1) + γ (G2) – 1. Since G1 and G2 are DSS.  Also γ (H sd uv) =  γ (H),∀ u, v ∈ V (G1) and ∀ u, v ∈V (G2).  
 
Hence H is DSS.  
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