DOMINATION SUBDIVISION STABLE GRAPHS

M. Yamuna^{1*}& K. Karthika²

School of Advanced Sciences, VIT University, Vellore, 632 014, India E-mail: ¹myamuna@vit.ac.in, ²karthikakumarasamy@gmail.com

(Received on: 02-04-12; Accepted on: 22-04-12)

ABSTRACT

A set of vertices D in a graph G = (V, E) is a dominating set if every vertex of V - D is adjacent to some vertex of D. If D has the smallest possible cardinality of any dominating set of G, then D is called a minimum dominating set abbreviated MDS. The cardinality of any MDS for G is called the domination number of G and it is denoted by $\gamma(G)$. A graph G is said to be domination subdivision stable (DSS), if the γ -value of G does not change by subdividing any edge of G. In this paper, we have obtained necessary and sufficient condition for a graph G to be a DSS graph. We have discussed conditions under which a graph is DSS and not DSS. We have generated new DSS graphs from existing ones and proved that every graph G is an induced sub graph of DSS graph.

AMS Subject Classification (2010): 05C.

Keywords: Domination, Subdivision Stable.

1. INTRODUCTION

A set of vertices D in a graph G = (V, E) is a dominating set if every vertex of V - D is adjacent to some vertex of D. If D has the smallest possible cardinality of any dominating set of G, then D is called a minimum dominating set — abbreviated MDS. The cardinality of any MDS for G is called the domination number of G and it is denoted by γ (G). A γ - Set denotes a dominating set for G with minimum cardinality.

The subgraph of G induced by the vertices in D is denoted by < D>. The open neighborhood of vertex $v \in V$ (G) is denoted by N (v) = { $u \in V$ (G) | $uv \in E$ (G) } while its closed neighborhood is the set N [v] = N (v) \cup { v }. A vertex v is said to be a, down vertex if γ (G - u) < γ (G), level vertex if γ (G - u) = γ (G), up vertex if γ (G - u) > γ (G). A vertex v is said to be selfish in the γ - set D, if v is needed only to dominate itself. A vertex v is said to be good if there is a γ - set of G containing v. If there is no γ - set of G containing v, then v is said to be a bad vertex. A vertex in V - D is v - dominated if it is dominated by at least v - vertices in v in v in v - v is called v - dominated then v is called v - dominating set.

For a pair of adjacent vertices u, v of G, we denote by G_{\bullet} uv the graph obtained by identifying u and v. Let uv denote the identified vertex. In [1], Tamara Burton and David. P. Sumner defined a graph to be domination dot critical (DDC) if γ ($G_{\bullet}uv$) $< \gamma$ (G), \forall $u, v \in V$ (G). In [3], M. Yamuna and K. Karthika have introduced the concepts of domination dot stable graphs. A graph G is said to be to domination dot stable (DDS) if γ ($G_{\bullet}uv$) $= \gamma$ (G) \forall $u, v \in V$ (G), such that $u \perp v$. They have obtained necessary and sufficient conditions for a graph G to be DDS and have discussed properties of DDS graphs.

A subdivision of a graph G is a graph resulting from the subdivision of edges in G. The subdivision of some edge e with endpoints $\{u, v\}$ yields a graph containing one new vertex w, and with an edge set replacing e by two new edges, $\{u, w\}$ and $\{w, v\}$.

In this paper we define domination subdivision stable graphs and initiate a study on them.

2. DOMINATION SUBDIVISION STABLE GRAPHS

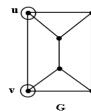
A graph G is said to be domination subdivision stable (DSS) if the γ - value of G does not change by subdividing any edge of G.

We shall denote the graph obtained by subdividing any edge uv of a graph G, by G $_{sd}$ uv. Let w be a vertex introduced by subdividing uv. We shall denote this by G $_{sd}$ uv = w.

Examples of DSS graphs

- 1. P_n is DSS if and only if $\gamma(P_n) = \gamma(P_{n+1})$.
- 2. C_n is DSS if and only if $\gamma(C_n) = \gamma(C_{n+1})$.
- 3. Petersen's graph.
- 4. A Complete Bipartite graph $K_{m, n}$.

The graph G given in Fig. 1 is DSS.



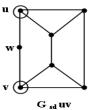


Fig. 1

In Fig. 1, $\gamma(G) = \gamma(G_{sd} uv) = 2$. This is true $\forall e = (a b) \in E(G)$. Here G is a DSS graph.

Theorem 2.1: A graph G is DSS if and only if for every $u, v \in V$ (G), either \exists a γ - set containing u and v or \exists a γ - set D such that

- 1. $PN[u, D] = \{v\}$
- 2. v is 2 dominated.

Proof: Let G be a DSS graph and let D be a γ - set for G. Let u, $v \in V(G)$ and D' be a γ - set for G_{sd} uv.

Case 1: $w \in D'$

In this case $u, v \notin D'$. If $u \in D'$, then $D = D' - \{w\}$ is a γ - set for G such that |D| < |D'| [v is dominated by u] which is a contradiction for G is a DSS graph.

When $w \in D'$, $u, v \notin D$. $D = D' - \{w\} \cup \{u\}$ is a γ set for G. v is 2 – dominated in G, if $v \notin PN$ [w, D'] else $v \in PN$ [u, D] if $v \in PN$ [w, D'].

Case 2: $w \notin D'$

Subcase 1: $u \in D'$, $v \notin D'$

D' is a γ - set for G such that v is 2- dominated.

Subcase 2: $u, v \in D'$

D' is a γ - set for G containing u and v.

Subcase 3: $u \notin D'$, $v \in D'$

 D^\prime is a $\gamma\,$ - set for G such that u is 2- dominated.

Conversely if \exists a γ - set D' containing u and v or D' is a γ - set such that $u \in D'$, v is 2 - dominated, then D' itself is a γ - set for G such that PN $[u, D'] = \{v\}$, then $D = D' - \{u\} - \{w\}$ is a γ - set for G such that PN $[u, D'] = \{v\}$, then $D = D' - \{u\} - \{w\}$ is a γ - set for G such that PN $[u, D'] = \{v\}$, then $D = D' - \{u\} - \{w\}$ is a γ - set for G such that PN $[u, D'] = \{v\}$, then $D = D' - \{u\} - \{w\}$ is a γ - set for γ -

Hence G is DSS.

Theorem 2.2: For any graph G, γ (G _{sd} uv) $\geq \gamma$ (G) \forall e = (u v) \in E (G).

Proof: Let G be a graph and D be its dominating set. Consider G_{sd} uv, where $e = (u \ v) \in E(G)$. Let $D^{'}$ be a γ - set for G_{sd} uv. If possible let $|D^{'}| < |D|$.

Case 1: $w \in D'$

In this case either u or v may belong to D', but both u and v cannot be in D'.

If $u, v \notin D'$, $w \in D'$, then $D'' = D' - \{w\} \cup \{u\}$ is a γ - set for G such that |D''| < |D|.

© 2012, IJMA. All Rights Reserved

M. Yamuna^{1*} & K. Karthika² / DOMINATION SUBDIVISION STABLE GRAPHS / IJMA- 3(4), April-2012, Page: 1467-1471

If either u or $v \in D'$, then $D''' = D' - \{w\}$ is a γ - set for G such that such that |D'''| < |D|.

Case 2: $w \notin D'$

In this case D itself is a γ - set for G such that |D'| < |D|.

In both cases, we get a contradiction. Hence γ (G _{sd} uv) $\geq \gamma$ (G) \forall e = (u v) \in E (G).

Theorem 2.3: If G is a graph such that every vertex is a down vertex, then G is DSS.

Proof: Let G be a graph and let $e = (u \ v) \in E(G)$. Let $G_{sd} \ uv = w$. Since every vertex is a down vertex, u is down vertex, ie., $\gamma(G - u) = \gamma(G) - 1$. Also $D' = \gamma(G - \{u\}) \cup \{u\}$ is a γ - set for G, where any $x \in N(u)$ is 2 - dominated, if $x \notin D'$.

If $v \in D'$, then D' is a γ - set for G_{sd} uv also.

If $v \notin D'$, then by theorem [2.1], G_{sd} uv is DSS. This is true $\forall e = (u \ v) \in E(G)$ ie., G is DSS.

Corollary 1: If G is a graph such that \forall e = (u v) \in E (G), either u or v is critical, then G is DSS.

Proof: Let G be graph and $e = (u \ v) \in E(G)$. Either u or v is critical. Let us assume that u is critical $\gamma(G - u) = \gamma(G) - 1$. Also $\gamma(G - \{u\}) \cup \{u\}$ is a γ - set for G. By theorem [2.3] $\gamma(G) = \gamma(G) \vee e = (u \ v) \in E(G)$. Hence G is DSS.

Corollary 2: If G is a graph that has at least one down vertex u, then G has a γ - set that contains at least one selfish vertex u. Also γ (G $_{sd}$ uv) = D = γ (G), \forall v \in N (u).

Proof: Let G be a graph that has a down vertex u. Then by theorem [2.3] \exists a γ - set for G such that N (u) is 2 – dominated ie., u is a selfish vertex, since N (u) is 2 – dominated. By theorem [2.1], γ (G $_{sd}$ u v) = γ (G), \forall v \in N (u) ie., if u is a selfish vertex, then γ (G $_{sd}$ u v) = γ (G), \forall v \in N (u).

Corollary 3: Let G be a graph $\forall u \in V(G), \exists a \gamma - \text{set for G such that } u \text{ is selfish. Then G is DSS.}$

Proof: Let $e = (u \ v) \in E$ (G). By the given conditions $\exists a \ \gamma - \text{set}$ for G such that u is selfish. By corollary [2] of theorem [2.3], γ (G _{sd} uv) = γ (G). This is true $\forall e \in E$ (G). Hence G is DSS.

Corollary 4: Every DDC graph is DSS.

Proof: Let G be DDC graph. Let u, $v \in V(G)$ and D be a γ - set for G. In [1], it has been proved that, "Let a, $b \in V(G)$ for a graph G. Then $\gamma(G_{\bullet} ab) < \gamma(G)$ if and only if either there exists an MDS S of G such that a, $b \in S$ or atleast one of a or b is critical in G".

If $u, v \in D$, then D is γ - set for G _{sd} uv also ie., G is DSS.

If either u or v is critical, G is DSS [By corollary 1 of theorem 2.3].

Hence every DDC graph is DSS.

Theorem 2.4: Let G be a DSS graph, then

- 1. Every support vertex has exactly one pendant vertex adjacent to it.
- 2. If v is a pendant vertex then \exists at least one γ set of G including v.
- 3. If the pendant vertex v is selfish then v is a down vertex.
- 4. If the pendant vertex v is not selfish then v is a level vertex.

Proof:

- 1. Let u be support vertex. Let $x, y \in V(G)$ where x, y are pendant vertices such that $x, y \perp u$. Then u is included in every γ set. $\gamma(G_{sd} ux) = \gamma(G_{sd} uy) = \gamma(G) + 1$, which is contradiction as G is DSS.
- 2. Let G be DSS and let $v \in V$ (G) be a pendant vertex and u be the support vertex. Let G_{sd} uv = w. Let D be a γ set for G_{sd} uv. In G_{sd} uv either $v \in D$ or $v \notin D$.

If $v \in D$ then D is a γ - set for G also such that $v \in D$.

If $v \notin D$ then $w \in \gamma$ (G_{sd} uv) since v is pendant. $D - \{w\} \cup \{v\}$ is a γ - set for G ie., γ (G) contains v. Hence v belongs to some γ - set of G.

- 3. If v is a pendant vertex then \exists a γ set containing v. If v is selfish, then γ (G v) = γ (G) 1 ie., v is a down vertex.
- 4. Let PN [v, D] = u and \exists no $w \in N$ (u), $w \ne v$ such that $w \in D$ [Since if such a vertex exist then v becomes selfish]. $\gamma(G v) \le \gamma(G)$. If $\gamma(G v) < \gamma(G)$, then by corollary [2] of theorem [2.3], v is selfish which is not possible. Hence $\gamma(G v) = \gamma(G)$ ie., v is a level vertex.

Theorem 2.5: Let G be a graph such that

- 1. G is DDS,
- 2. $N(u) \ge 2, \forall u \in V(G),$
- 3. $v \in PN$ [u, D], for some $u \in D, \ \forall \ v \in V D, \ \forall \ \gamma$ set D of G, then G is not DSS.

Proof: Let G be a graph satisfying assumptions 1, 2, and 3. Let us assume that G is DSS. Let G_{sd} uv = w. Let $D^{'}$ be γ - set for G_{sd} uv.

Case 1: $u \in D'$, $v, w \notin D'$

Since u does not dominate v, \exists one x such that $x \in D'$ and $x \perp v$. D' is a γ -set for G where u, $x \in D'$ such that $u \perp v \perp x$ i.e., v is 2 – dominated which is a contradiction.

Case 2: $w \in D'$, $u, v \notin D'$

Subcase 1: If w is selfish, then u and v are 2 – dominated vertices in G_{sd} uv. $D^{''} = D^{'} - \{w\} \cup \{u\}$ is a γ - set for G where u is selfish which is contradiction as G is DDS.

Subcase 2: If either $u \in PN[w, D']$ or $v \in PN[w, D']$. Let us assume that $u \in PN[w, D']$. Then \exists one x such that $x \in D$, $x \perp y \perp u$ where $y \in N(u)$. $D^{''}$ is a γ - set for G such that $u \perp y \perp x$, where $u, x \in D^{''}$ which is contradiction as y is 2 – dominated.

Subcase 3: If $u, v \in PN[w, D']$ then as in subcase 2, $D^{''}$ is a γ - set for G such that $u \perp y \perp x$, which is a contradiction as y is 2 – dominated.

Subcase 4: If $u, v \notin PN$ $[w, D^{'}]$. Let v be 2 – dominated, then \exists one $x \in D^{'}$ such that $v \perp x$. $D^{''}$ is a γ - set for G such that $u \perp v \perp x$, where $u, x \in D^{'}$ which is contradiction as v is 2 – dominated. Also $D^{'''} = D^{'} - \{w\} \cup \{v\}$ is a γ - set for G such that $v \perp x$, where $v, x \in D^{'''}$ which is contradiction as G is DDS.

Case 3: $v \in D'$, $u, w \notin D'$

Since v does not dominates u, this case is similar to case 1, where u will be a 2-dominated vertex for G with respect to D'

Case 4: $u, w \in D', v \notin D'$

Subcase 1: If $v \in PN[w, D']$, then \exists one x such that $x \in D'$ and $x \perp y \perp v$, where $y \in N(v)$. $D^{'''} = D' - \{w\} \cup \{v\}$ is a γ - set for G such that $v \perp y \perp x$, where $v, x \in D'$ which is contradiction as y is 2 – dominated. Also $u, v \in D'''$ such that $u \perp v$ which is contradiction as G is DDS.

Subcase 2: If $v \notin PN$ [w, D'] ie., v is 2 – dominated say v is dominated by x, w, then $G - \{w\} \cup \{v\}$ is a γ - set for G such that $u \perp v \perp x$, where u, $v, x \in D'$ ie., $D' - \{v\}$ is a γ - set for G which is contradiction as we assume that G is DSS.

Case 5: $w, v \in D', u \notin D'$

We get contradiction, similar to case 4.

Case 6: $u, v \in D', w \notin D'$

D' is a γ - set for G such that $u \perp v$, which is contradiction as G is DDS.

In all cases we get a contradiction and hence G is not DSS.

Remark: If G is a DDS graph such that,

- 1. N(u) < 2, for some $u \in V(G)$,
- 2. $v \in PN$ [u, D], for some $u \in D$ and, $\forall v \in V D$, $\forall \gamma$ set D of G, then G may or may not be DSS.

Example:

Fig. 2

In Fig. 2, G is DDS, N (u) = N (v) = 1. $v \in PN[u, D]$ where $v \in V - D$. G is also DSS.

3 CONSTRUCTIONS

Theorem 3.1: Every graph is an induced subgraph of DSS.

Proof: Let G be DSS graph with n – vertices say u_i , i=1,2,...,n. Let H=G o K_1 . Label the pendant vertices as $v_1,v_2,...,v_n$. $\{u_1,u_2,...,u_n\}$ or $\{v_1,v_2,...,v_n\}$ are the possible γ – sets for H. Let $\{u_1,u_2,...,u_n\}$ be the γ – set under consideration.

Consider H _{sd} $u_i v_i$. γ (H _{sd} $u_i v_i$) = γ (H) – { u_i } \cup { w_i }, where i = 1, 2, ..., n ie., γ (H _{sd} $u_i v_i$) = γ (H).

Consider $H_{sd} u_i u_i$. $\gamma (H_{sd} u_i u_i) = \gamma (H) - \{u_i\} - \{u_i\} \cup \{u_i u_i\}$, where $i \neq j, i, j = 1, 2, ..., n$.

Hence every graph is an induced subgraph of DSS graph.

Theorem 3.2: Let G_1 and G_2 be DSS graphs. Let D_1 and D_2 be γ – sets for G_1 and G_2 respectively. Let $u \in V(G_1)$ such that u is both level and bad vertex in G_1 and $v \in V(G_2)$ such that v is selfish. Obtain a graph H by adding an edge between u and v then H is DSS.

Proof: Let G_1 and G_2 be DSS graphs. Let D_1 and D_2 be γ – sets for G_1 and G_2 respectively. Let $u \in V(G_1)$ such that u is both level and bad vertex in G_1 and $v \in V(G_2)$ such that v is selfish. Obtain a graph H by adding an edge between u and v. $\gamma(H) = \gamma(G_1) + \gamma(G_2)$. [Since u is both level and bad vertex in G_1 and v is selfish, then γ – value does not change when we add an edge between u and v]. Consider H_{sd} uv. Let H_{sd} uv = w. $\gamma(H_{sd}) = \gamma(H)$, since u is u0 dominated. Also u0 and u1 and u2 and u3 and u3 and u4 and u5. Hence u4 is DSS.

Theorem 3.3: Let G_1 and G_2 be DSS graphs. Let D_1 and D_2 be γ – sets for G_1 and G_2 respectively. Let $u \in D_1$ and $v \in D_2$ be selfish vertices in G_1 and G_2 , then the graph H obtained by merging two vertices u and v is DSS.

Proof: Let G_1 and G_2 be DSS graphs. Let D_1 and D_2 be γ – sets for G_1 and G_2 respectively. Let $u \in D_1$ and $v \in D_2$ be selfish vertices in G_1 and G_2 . H is obtained by merging vertices u and v. $\gamma(H) = \gamma(G_1) + \gamma(G_2) - \{u\} - \{v\} \cup \{uv\}$ i.e., $\gamma(H) = \gamma(G_1) + \gamma(G_2) - 1$. Since G_1 and G_2 are DSS. Also $\gamma(H_{sd}, uv) = \gamma(H), \forall u, v \in V(G_1)$ and $\forall u, v \in V(G_2)$.

Hence H is DSS.

ACKNOWLEDGMENT

We thank Dr. N. Sridharan for his constructive suggestions which helped to improve the quality of the paper. We are very grateful to the referees for their careful reading.

4. REFERENCES

- [1]. Burton, T and Sumner, D. (2006). Domination dot critical graphs, *Discrete Math.* 306, pp. 11 18.
- [2]. Haynes, T. W., Hedetniemi, S. T., Slater, P. J. (1998). Fundamentals of Domination in Graphs, *Marcel Dekker*, New York.
- [3]. Karthika, K. (2011). Domination Dot Stable domatic dot stable domination Subdivision Stable graphs, *M. Phil thesis*, VIT University, Vellore, India.
- [4]. West, D.B. (2001). Introduction to Graph Theory, second ed., Prentice-Hall, Englewood Cliffs, NJ.
- [5]. Yamuna M, Karthika K (2011). Excellent Domination Dot Stable Graphs, *International Journal of Engineering Science, Advance Computing and Bio-Technology*, Vol 2, pp. 209 216.
