b-coloring in the context of some graph operations
Mrs. D.Vijayalakshmi ${ }^{1 *}$ \& Dr. K. Thilagavathi ${ }^{2}$
${ }^{1}$ Assistant Professor \& Head Department of Maths CA, Kongunadu Arts and Science College, Coimbatore - 641 029, India
${ }^{2}$ Associate Professor, Department of Mathematics, Kongunadu Arts and Science College, Coimbatore - 641 029, India
E-mail: vijikasc@gmail.com, ktmaths@yahoo.com

(Received on: 24-03-12; Accepted on: 09-04-12)

Abstract

In this paper, we discuss about some graph operations like Corona product, Strong product and Cartesian product. We find the b-chromatic number of Corona product of Path, Cycle and Star graph with complete graph, the Strong product of Path with Cycle and Cartesian product of cycles.

Keywords: Cycle, Path, Star graph, Complete graph, Corona product, Strong product, Cartesian Product.
Subject classification: 05C15.

1. INTRODUCTION

Let G be a graph without loops [1] and multiple edges with vertex set $V(G)$ and edge set $E(G)$. A proper k-coloring of graph G is a function c defined on the $V(G)$, onto a set of colors $C=\{1,2 \ldots \mathrm{k}\}$ such that any two adjacent vertices have different colors. In fact for every $\mathrm{i}, 1 \leq \mathrm{i} \leq \mathrm{k}$, the set $\mathrm{c}^{-1}\{\mathrm{i}\}$ is an independent set of vertices which is called a color class. The minimum cardinality k for which G has a proper k -coloring is the chromatic number $\chi(\mathrm{G})$ of G . A b-coloring of a graph $G[2]$ is a proper vertex coloring of G such that each color class contains a vertex that has at least one neighbor in every other color class and b-chromatic number of a graph G is the largest integer $\varphi(G)$ for which G has a b-coloring with $\varphi(\mathrm{G})$ colors. A vertex of color i that has all other colors in its neighborhood is called color i dominating vertex. The invariant $\varphi(\mathrm{G})$ has the chromatic number $\chi(\mathrm{G})$ as a trivial lower bound, however the difference between both of them can be arbitrary large [3]. A trivial upper bound for $\varphi(G)$ is $\Delta(G)+1$. Let $d\left(v_{1}\right) \geq d\left(v_{2}\right) \geq \ldots \geq d\left(v_{n}\right)$ be the degree sequence of G. Then $m(G)=\max \left\{i \mid d\left(v_{i}\right) \geq i-1\right\}$ is an improved upper bound for $\varphi(G)$. The concept of bchromatic number was introduced by R. W. Irwing and D. F. Manlove in 1999.

2. PRELIMINARIES

In this section, we give the definition of Path, Cycle, Star graph, Corona product, Strong product and Cartesian product.
2.1Definition: Let P_{n} be a path graph with n vertices and $n-1$ edges.
2.2 Definition: Let Cn be a cycle with n vertices and n edges.
2.3 Definition: A star S_{n} is the complete bipartite graph $K_{1, n}$ is a tree with one internal node and n leaves.
2.4 Definition: Corona product or simply corona of graph G_{1} and G_{2} is a graph which is the disjoint union of one copy of G_{1} and $\left|v_{1}\right|$ copies of $G_{2}\left(\left|v_{1}\right|\right.$ is number of vertices of $\left.G_{1}\right)$ in which each vertex copy of G_{1} is connected to all vertices of separate copy of G_{2}.
2.5 Definition: The strong product of two graphs G_{1} and G_{2} has the vertex set $v\left(G_{1}\right) \times v\left(G_{2}\right)$ and two distinct vertices (u, u^{\prime}) and (v, v ') are connected if and only if they are adjacent or equal in each coordinates.
2.6 Definition: The cartesian product of two graphs G_{1} and G_{2} has the vertex set of $G_{1} \times G_{2}$ is the Cartesian product $\mathrm{v}\left(\mathrm{G}_{1}\right) \times \mathrm{v}\left(\mathrm{G}_{2}\right)$ and two distinct vertices ($\mathrm{u}, \mathrm{u}^{\prime}$) and $\left(\mathrm{v}, \mathrm{v}^{\prime}\right)$ are adjacent in $\mathrm{G}_{1} \times \mathrm{G}_{2}$ if and only if either $\mathrm{u}=\mathrm{v}$ and u^{\prime} is adjacent with v^{\prime} or $u^{\prime}=v$ ' and u is adjacent with v.

* Corresponding author: Mrs. D.Vijayalakshmi ${ }^{1^{*}}$, * E-mail: vijikasc@gmail.com

3. b-CHROMATIC NUMBEROF CORONA PRODUCT OF PATH GRAPH AND K 1

3.1 Theorem: For any $n \geq 3, \varphi\left[P_{n} \circ(n-1) K_{1}\right]=n$

Proof: Let P_{n} be a path graph of length $n-1$ ie $V\left(P_{n}\right)=\left\{v_{1}, v_{2}, v_{3} . . v_{n}\right\}$ and $E\left(P_{n}\right)=\left\{e_{1}, e_{2}, e_{3} . . e_{n-1}\right\}$.By the definition of corona product, attach ($n-1$) copies of K_{1} to each vertex of P_{n}.
i.e $V\left[P_{n} \circ(n-1) K_{1}\right]=\left\{v_{i} / 1 \leq i \leq n\right\} \cup\left\{v_{i j} / 1 \leq i \leq n, 1 \leq j \leq n-1\right\}$.
$E\left[P_{n} \circ(n-1) K_{1}\right]=\left\{e_{i} / 1 \leq i \leq n-1\right\} \cup\left\{e_{i j} / 1 \leq i \leq n, 1 \leq j \leq n-1\right\}$.
Consider the colour class $C=\left\{\mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{C}_{3} . . \mathrm{c}_{\mathrm{n}}\right\}$. Assign a proper coloring to the vertices as follows. Give the colour c_{i} to vertex v_{i} for $i=1,2,3 \ldots n$ and assign the colour c_{n+1} to $v_{i j}$ for $i=1,2 \ldots n$ and $j=1,2,3 . n-1$. We see that each v_{i} is adjacent with v_{i-1} and v_{i+1} for $i=2,3, . . n-1, v_{1}$ is adjacent with v_{2} and v_{n} is adjacent with v_{n-1}, due to this non-adjacency condition v_{i} for $\mathrm{i}=1,2,3$..n does not realizes its own colour, which does not produce a b-chromatic colouring. Hence to make the coloring as b-chromatic, assign the coloring to v_{ij} 's as follows.
For $1 \leq i \leq n$, assign the color c_{i} to v_{i}.
For $\mathrm{i}=1,2,3 . . n, \mathrm{j}=1,2,3 \ldots \mathrm{n}-1$, assign the colour c_{i+j} to v_{ij} when $\mathrm{i}+\mathrm{j} \leq \mathrm{n}$ and assign the colour $c_{i+j n}$ when $\mathrm{i}+\mathrm{j}>\mathrm{n}$. Now the vertices v_{i} for $i=1,2,3$..n realizes its own colour which produces a b-chromatic coloring. Hence by coloring procedure the above said coloring is maximal and b-chromatic.

Hence the proof.

3.2 Properties:

- Number of vertices in $\left[\mathrm{Pn} \circ(\mathrm{n}-1) \mathrm{K}_{1}\right]=\mathrm{n}^{2}$
- Number of edges in $\left[P n \circ(n-1) K_{1}\right]=n^{2}-1$
- \quad Maximum degree $=\mathrm{n}+1$
- \quad Minimum degree $=1$

4. b-CHROMATIC NUMBER OF CORONA PRODUCT OF CYCLE AND K ${ }_{1}$

4.1 Theorem: For any $n \geq 3, \varphi\left[C_{n} .(n-3) K_{1}\right]=n$

Proof: Let C_{n} be a cycle of length n ie $V\left(C_{n}\right)=\left\{v_{1}, v_{2}, v_{3} . . v_{n}\right\}$ and $E\left(C_{n}\right)=\left\{e_{1}, e_{2}, e_{3} . . e_{n}\right\}$. By the definition of Corona product, attach a ($n-3$) copies of K_{1} to each vertex of C_{n}.
i.e $V\left[C_{n} .(n-3) K_{1}\right]=\left\{v_{i} / 1 \leq i \leq n\right\} \mathcal{U}_{\left\{v_{i j} / 1 \leq i \leq n, 1 \leq j \leq n-3\right\}}$.

Consider the colour class $\mathrm{C}=\left\{\mathrm{c}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3} . . \mathrm{c}_{\mathrm{n}}\right\}$. Assign a proper coloring to the vertices as follows. Give the colour c_{i} to vertex v_{i} for $i=1,2,3 \ldots n$ and assign the colour c_{n+1} to $v_{i j}$ for $i=1,2 \ldots n$ and $j=1,2,3 . n-3$. Here v_{i} for $i=1,2,3 . n$ does not realize its own colour because each v_{i} is adjacent with v_{i-1} and v_{i+1} for $i=2,3, \ldots n-1, v_{1}$ is adjacent with v_{2}, v_{n} and v_{n} is adjacent with $\mathrm{v}_{\mathrm{n}-1}$ and v_{1}. Hence to make the coloring as b-chromatic, assign the coloring to v_{ij} 's as follows.
For $1 \leq \mathrm{i} \leq \mathrm{n}$, assign the color c_{i} to v_{i}.
For $1 \leq \mathrm{i} \leq \mathrm{n}$ and $1 \leq \mathrm{j} \leq \mathrm{n}-3$ assign the colour $\mathrm{c}_{\mathrm{i}+\mathrm{j}+1}$ to $\mathrm{v}_{\mathrm{ij}}{ }^{\prime}$ s when $\mathrm{i}+\mathrm{j}<\mathrm{n}$ and assign $\mathrm{c}_{\mathrm{i}+\mathrm{j}+1-\mathrm{n}}$ to remaining $\mathrm{v}_{\mathrm{ij}}{ }^{\prime}$ s when $\mathrm{i}+\mathrm{j} \geq \mathrm{n}$. Now here all the vertices v_{i} for $i=1,2,3 . . . n$ realizes its own colour which produces a b-coloring. Hence by coloring procedure the above said coloring is maximal and b-chromatic.

Hence the proof.

4.2 Properties:

- Number of vertices and edges in $\left[C n \circ(n-3) K_{1}\right]=n(n-2)$
- Maximum degree $=\mathrm{n}-1$
- Minimum degree $=1$

5. b-CHROMATIC NUMBER OF CORONA PRODUCT OF STAR GRAPH WITH K1

5.1Theorem: For any $n \geq 2, \varphi\left[K_{1, n}\right.$. $\left.\left.n-1\right) K_{1}\right]=n+1$ where $n \geq 2$

Proof: Let $\mathrm{v}_{1}, \mathrm{v}_{2}, \mathrm{v}_{3} \ldots . \mathrm{v}_{\mathrm{n}}$ be the pendant vertices of the graph $\mathrm{K}_{1, \mathrm{n}}$ with v as the root vertex. Here v is adjacent with v_{i} for $i=1,2,3 . n$. ie $V\left[K_{1, n}\right]=\{v\} U\left\{v_{i} / 1 \leq i \leq n\right\}$.

Now consider $\left[K_{1, n} \circ(n-1) K_{1}\right] . i e V\left[K_{1, n} \circ(n-1) K_{1}\right]=\{v\} U\left\{v_{i} / 1 \leq i \leq n\right\} U\left\{v_{i j} ; 1 \leq i \leq n, 1 \leq j \leq n-1\right\} U\left\{v_{i}^{\prime} / 1 \leq i \leq n-1\right\}$
Consider the colour class $C=\left\{c_{1}, c_{2}, c_{3} . . c_{n}, c_{n+1}\right\}$. Assign a proper coloring to these vertices as follows. Give the colour c_{i} to vertex v_{i} for $i=1,2,3 \ldots n$ and assign the colour c_{n+1} to v. Here the root vertex realizes its own colour but the vertices v_{i} for $\mathrm{i}=1,2,3 . . \mathrm{n}$ does not realize its own colour, which does not produce a b-chromatic colouring. Hence to make the coloring as b-chromatic, assign the coloring as follows.

For $1 \leq i \leq n$, assign the color c_{i} to v_{i}. Assign the color $\mathrm{c}_{\mathrm{n}+1}$ to root vertex v . Next assign proper colouring to the v_{ij} 's as follows. For $i=1,2,3 . . n, j=1,2,3 \ldots n-1$, assign the color c_{i+j} to $v_{i j}$ when $i+j \leq n$ and assign the colour c_{i+j-n} when $i+j>n$. For the remaining vertex v_{i} assign any color c_{i} for $1 \leq i \leq n-1$. Now all the vertices v_{i} for $i=1,2,3 \ldots n$ and the root vertex v realizes its own colour, which produces a b- chromatic coloring. Hence by coloring procedure the above said coloring is maximal and b-chromatic.

5.2 Properties:

- Number of vertices in [$\left.\mathrm{K}_{1, \mathrm{n}}{ }^{\circ}(\mathrm{n}-1) \mathrm{K}_{1}\right]=\mathrm{n}(\mathrm{n}+1)$
- Number of edges in $\left[\mathrm{K}_{1, \mathrm{n}} \circ \mathrm{K}_{1, \mathrm{~m}}\right]=\mathrm{n}^{2}+\mathrm{n}-1$
- Maximum degree $=2 n-1$
- Minimum degree $=1$

6. b-CHROMATIC NUMBER OF STRONG PRODUCT OF P_{2} WITH CYCLE C_{n}

6.1 Theorem: If P_{m} is a path graph on m vertices and C_{n} be a cycle on n vertices respectively. Then $\varphi\left[P_{m} \otimes C_{n}\right]=6$ where $n \geq 3$ and $m=2$

Proof: By observation, we say that the strong product of $P_{m} \otimes C_{n}$ is a 5-regular graph. Therefore the b-chromatic number of $\mathrm{P}_{2} \otimes \mathrm{Cn}$ will be more than 5 . Hence by coloring procedure we assign six colours to every $\mathrm{P}_{\mathrm{m}} \otimes \mathrm{C}_{\mathrm{n}}$ which produces b-chromatic coloring.Suppose if we assign more than sixcolors, it contradicts the definition of b-colouring. Hence the b-chromatic number of Strong product of $P_{m} \otimes C_{n}$ is six.

6.2 Properties:

1. Number of vertices in $P_{2} \otimes C_{n}$ is two times the number of vertices in cycle C_{n}
2. Number of edges in $P_{2} \otimes C_{n}$ is five times the number of edges in cycle C_{n}
3. Every $P_{2} \otimes C_{n}$ is a 5 regular graph.
6.3 Theorem: If P_{n} is a path graph on n vertices and k_{m} be a complete graph on 2 vertices respectively. Then
$\varphi\left(\operatorname{Pn} \otimes K_{2}\right)=\left\{\begin{array}{l}4 \text { for } n \leq 3, m=2 \\ 6 \text { for } n \geq 4\end{array}\right.$
6.4 Theorem: Let P_{n} and P_{m} be paths on n and m vertices respectively.
$\varphi\left(\mathrm{P}_{\mathrm{n}} \otimes \mathrm{P}_{\mathrm{m}}\right)=\left\{\begin{array}{l}\mathrm{n}+2 \text { for } 2 \leq \mathrm{n} \leq 4, \mathrm{~m}=3 \\ 9 \text { for } \mathrm{n} \geq 5\end{array}\right.$
Proof: The proof of the theorem 6.3 and 6.4 is similar to the theorem 6.1.

7. b-Chromatic Number Of Cartesian Product Of $\mathbf{C}_{3} \times \mathbf{C}_{\mathbf{n}}$

7.1 Theorem: Let C_{n} and C_{m} be cycles on n and m vertices respectively.
$\varphi\left[\mathrm{C}_{\mathrm{m}} \times \mathrm{C}_{\mathrm{n}}\right]=5$ for every $\mathrm{n} \geq 6, \mathrm{~m}=3$
Proof: By observation, we say that the cartesian product of $\mathrm{C}_{\mathrm{m}} \times \mathrm{C}_{\mathrm{n}}$ is a 4-regular graph. Therefore, the b-chromatic number of $C_{m} \times C_{n}$ will be more than 4 . Hence by coloring procedure we assign five colours to every $C_{m} \times C_{n}$, which produces b-chromatic coloring. Suppose if we assign more than five colors, it contradicts the definition of b-colouring. Hence the b-chromatic number of cartesian product of $C_{m} \times C_{n}$ is five.

7.2 Corollary:

$\varphi\left[\mathrm{C}_{\mathrm{m}} \times \mathrm{C}_{\mathrm{n}}\right]=\mathrm{n}$ for every $\mathrm{n} \leq 5$ and $\mathrm{m}=3$

ACKNOWLEDGEMENT

We are much grateful for referees for their valuable suggestions which lead to improve this paper.

REFERENCES

[1].Raminjavadi, Behnazomoomi, On b-coloring of the Kneser graphs, Discrete mathematics (2009) 4399-4408.
[2] Marko jakov, Faculty of Natural Sciences and Mathematics, University of Maribor and IztokPeterin, On the bchromatic number of some graph products, Mathematika 2011.
[3] R. W. Irving, D. F. Manlove. The b-chromatic number of a graph, Discrete Appl. Math.,91 (1999) 127-141.
[4] FlaviaBonomo et.al.,On the b-Coloring of Cographs and P4-Sparse Graphs, Graphs and Combinatorics (2009), 25:153-167
[5] Zhendong Shao, Sandi Klavzar, WaiCheeShiu, and David Zhang, Senior Member, IEEE Improved Bounds onthe L(2; 1)-Number of Direct and Strong Products of Graphs.
[6] M. Kouider, M. Mah'o, The b-chromatic number of the Cartesian product oftwo graphs, Studia Sci. Math. Hungar. 44 (2007) 49-55.
[7] W. Imrich, S. Klavar, Product Graphs: Structure and Recognition, John Wiley\& Sons, New York, 2000.
[8] F. Harary, Graph theory, Addison-Wesley, Reading, Massachusetts, 1972.

