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ABSTRACT 
The present analysis consists of boundary layer flow and heat transfer of a dusty fluid over a stretching sheet in the 
presence of radiation and non uniform heat source/sink. Similarity transformation is used to simplify the governing 
equations. Here two different types of boundary heating are considered, namely PST and PHF. These equations are 
solved numerically by using Runge Kutta Fehlberg fourth-fifth order method (RKF45 Method). The effects of flow 
parameters like radiation, fluid particle interaction, non-uniform heat source/sink and Prandtl number on temperature 
distribution are studied. Comparison of the numerical results is made with previously published results under special 
cases, and the results are found to be in good agreement. 
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1. INTRODUCTION 
 
Boundary-layer theory has been the working horse of modern fluid mechanics since its introduction to the engineering 
world which was given by Prandtl [19]. Over the past century, many engineering fluid mechanical problems have been 
solved using analytical and numerical methods. Specifically the flow of an incompressible boundary layer flow and 
heat transfer over a stretching sheet has important industrial applications, for example extrusion of plastic sheet, glass 
blowing, drawing plastic film, paper production, metal spinning and cooling of the metallic plate in a bath. Many 
authors investigated some mathematical results in the heat transfer problem. On this regard Sakiadis [17] has studied 
boundary layer problem generated by a continuous solid surface moving with a constant velocity. Crane [8] 
investigated the flow over a stretching sheet. Saffman [18] has discussed the stability of laminar flow of a dusty gas in 
which the dust particles are uniformly distributed. 
 
Chakrabarti [10] analyzed the boundary layer in a dusty gas. N. Datta and S. K. Mishra [12] have investigated boundary 
layer flow of a dusty fluid over a semi-infinite flat plate. Further XIE Ming-liang, LIN Jianzhong and XING Fu-tang 
[15] have extended work of [12] and studied the hydrodynamic stability of a particle-laden flow in growing flat plate 
boundary layer. G. Palani and P. Ganesan [16] have studied heat transfer effects on dusty gas flow past a semi-infinite 
inclined plate. Agranat[2] has studied dusty boundary layer flow and heat transfer, with the effect of pressure gradient. 
Chakrabarti and Gupta [9] have discussed the hydromagnetic flow and heat transfer over a stretching sheet. 
 
Vajravelu and Nayfeh [21] analyzed the hydromagnetic flow of dusty fluid over a stretching sheet with the effect of 
suction and further the authors [22] gave a solution for flow and heat transfer in a second grade fluid over a stretching 
sheet. Tsai et.al [20] extended the work of Vajravelu and studied an unsteady flow over a stretching surface with non-
uniform heat source. Abel et.al [3, 4] have studied the boundary layer flow and heat transfer in a viscoelastic fluid over 
a stretching sheet with prescribed surface temperature (PST case) and prescribed heat flux (PHF case). Further they 
studied radiation effect in a heat transfer analysis over a stretching sheet. Ishak et.al [14] have obtained the solution to 
unsteady laminar boundary layer over a continuously stretching permeable surface. Grubka and Bobba [13] have 
analyzed the stretching problem for a surface moving with a linear velocity and with variable surface temperature. 
Abdul Aziz [1] obtained the numerical solution for laminar thermal boundary over a flat plate with a convective surface 
boundary condition using the symbolic algebra software Maple and also found that similarity solution for the energy  
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equation exists if the heat transfer coefficient ℎ𝑓𝑓  is proportional to 𝑥𝑥−
1
2  , where 𝑥𝑥 is the distance from the leading edge 

of the plate. This problem was then extended by Bataller [6, 5] to include the effect of radiation, and also to the 
Sakiadis flow. Bataller considered two sets of boundary conditions separately, for Blasius and Sakiadis flows. Chen 
[11] analyzed mixed convection of a power law fluid past a stretching surface in the presence of thermal radiation and 
magnetic field. Recently Gireesha et al. [7] obtained the numerical solution for boundary layer flow and heat transfer of 
dusty fluid over a stretching sheet with non-uniform heat source/sink. 
 
Based on the above works, we intend to investigate the radiation effect on boundary layer flow and heat transfer of dust 
fluid over a stretching sheet taking into an account of non-uniform heat source/sink. Heat transfer analyses are 
examined for two types of boundary conditions, namely (i) wall is maintained with surface temperature and (ii) wall is 
maintained with heat flux. Numerical solutions for the flow and heat transfer are obtained using RKF45 method [1]. In 
the present paper we analyze the effect of radiation parameter, fluid-particle interaction parameter, Prandtl number, 
Eckert number and Non-uniform heat source/sink parameter. 
 
2. FLOW ANALYSIS OF THE PROBLEM 
 
Consider a steady two dimensional laminar boundary layer flow of a viscous dusty fluid over a stretching sheet. The 
sheet is coinciding with the plane 𝑦𝑦 = 0, with the flow being confined to 𝑦𝑦 > 0. Two equal and opposite forces are 
applied along the 𝑥𝑥-axis, so that the sheet is stretched, keeping the origin fixed. Both the fluid and the dust particle 
clouds are suppose to be static at the beginning. The dust particles are assumed to be spherical in shape and uniform in 
size.  
 
The momentum equations of the two dimensional boundary layer flow in usual notation are [21]: 
 
               𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 0                                    (2.1) 

 
               𝑢𝑢 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝑣𝑣 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 𝜈𝜈 𝜕𝜕

2𝑢𝑢
𝜕𝜕𝑦𝑦2 + 𝐾𝐾𝐾𝐾

𝜌𝜌
�𝑢𝑢𝑝𝑝 − 𝑢𝑢�                                                           (2.2) 

 
               𝑢𝑢𝑝𝑝

𝜕𝜕𝑢𝑢𝑝𝑝
𝜕𝜕𝜕𝜕

+ 𝑣𝑣𝑝𝑝
𝜕𝜕𝑢𝑢𝑝𝑝
𝜕𝜕𝜕𝜕

= 𝐾𝐾
𝑚𝑚
�𝑢𝑢 − 𝑢𝑢𝑝𝑝�                                  (2.3) 

 

               𝑢𝑢𝑝𝑝
𝜕𝜕𝑣𝑣𝑝𝑝
𝜕𝜕𝜕𝜕

+ 𝑣𝑣𝑝𝑝
𝜕𝜕𝑣𝑣𝑝𝑝
𝜕𝜕𝜕𝜕

= 𝑘𝑘
𝑚𝑚

(𝑣𝑣 − 𝑣𝑣𝑝𝑝)                   (2.4) 
 
                𝜕𝜕

𝜕𝜕𝜕𝜕
�𝜌𝜌𝑝𝑝 𝑢𝑢𝑝𝑝� + 𝜕𝜕

𝜕𝜕𝜕𝜕
�𝜌𝜌𝑝𝑝 𝑣𝑣𝑝𝑝� = 0                    (2.5) 

 
where (𝑢𝑢, 𝑣𝑣) and (𝑢𝑢𝑝𝑝 , 𝑣𝑣𝑝𝑝)  are the velocity components of the fluid and dust particle phases along 𝑥𝑥 and 𝑦𝑦 directions 
respectively.𝜇𝜇, 𝜌𝜌, 𝜌𝜌𝑝𝑝  and 𝑁𝑁   are the co-efficient of viscosity of the fluid, density of the fluid, density of the dust, 
number density of the particle phase, 𝐾𝐾 is the stokes’ resistance (drag co-efficient), 𝑚𝑚 is the mass of the dust particle 
respectively. In deriving these equations, the drag force is considered for the iteration between the fluid and particle 
phases. 
 
The boundary conditions for the flow problem is given by 
 
 𝑢𝑢 = 𝑈𝑈𝑤𝑤(𝑥𝑥), 𝑣𝑣 = 0 at 𝑦𝑦 = 0, 
 
 𝑢𝑢 → 0, 𝑢𝑢𝑝𝑝 → 0, 𝑣𝑣𝑝𝑝 → 𝑣𝑣, 𝜌𝜌𝑝𝑝 → 𝜔𝜔𝜔𝜔  as 𝑦𝑦 → ∞                  (2.6) 
 
where 𝑈𝑈𝑤𝑤  (𝑥𝑥) = 𝑐𝑐𝑐𝑐  is a stretching sheet velocity, 𝑐𝑐 > 0  is stretching rate, 𝜔𝜔  is the density ratio. To convert the 
governing equations into a set of similarity equations, we introduce the following transformation as mentioned below, 
 

 𝑢𝑢 = 𝑐𝑐𝑐𝑐 𝑓𝑓′ (𝜂𝜂), 𝑣𝑣 =  −√𝜈𝜈𝜈𝜈 𝑓𝑓(𝜂𝜂),   𝜂𝜂 = �𝑐𝑐
𝜈𝜈

 𝑦𝑦  

 
             𝑢𝑢𝑝𝑝 = 𝑐𝑐𝑐𝑐 𝐹𝐹(𝜂𝜂),  𝑣𝑣𝑝𝑝 = √𝜈𝜈𝜈𝜈𝐺𝐺(𝜂𝜂),   𝜌𝜌𝑟𝑟 = 𝐻𝐻(𝜂𝜂)                                  (2.7) 
 
which are identically satisfies (2.1), and substituting (2.7) into (2.2)-(2.5) we obtain the following non-linear ordinary 
differential equations. 
 
          𝑓𝑓‴ (𝜂𝜂) + 𝑓𝑓(𝜂𝜂)𝑓𝑓″ (𝜂𝜂) − [𝑓𝑓′(𝜂𝜂)]2 + 𝑙𝑙∗𝛽𝛽𝛽𝛽(𝜂𝜂)[𝐹𝐹(𝜂𝜂) − 𝑓𝑓′(𝜂𝜂)] = 0,                                (2.8) 
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         𝐺𝐺(𝜂𝜂)𝐹𝐹′(𝜂𝜂) + [𝐹𝐹(𝜂𝜂)]2 + 𝛽𝛽[𝐹𝐹(𝜂𝜂) − 𝑓𝑓′(𝜂𝜂)] = 0,                    (2.9) 
 
         𝐺𝐺(𝜂𝜂)𝐺𝐺′(𝜂𝜂) + 𝛽𝛽[𝑓𝑓(𝜂𝜂) + 𝐺𝐺(𝜂𝜂)] = 0,                                 (2.10) 
 
         𝐻𝐻(𝜂𝜂)𝐹𝐹(𝜂𝜂) + 𝐻𝐻(𝜂𝜂)𝐺𝐺′(𝜂𝜂) + 𝐺𝐺(𝜂𝜂)𝐻𝐻′(𝜂𝜂) = 0,                                 (2.11) 
 
where a prime denotes differentiation with respect to 𝜂𝜂 and 𝑙𝑙∗ = 𝑚𝑚𝑚𝑚

𝜌𝜌
, 𝜏𝜏 = 𝑚𝑚/𝑘𝑘  is the relaxation time of the particle 

phase, 𝛽𝛽 = 1
𝑐𝑐𝑐𝑐

 is the fluid particle interaction parameter and 𝜌𝜌𝑟𝑟 = 𝜌𝜌𝑝𝑝
𝜌𝜌

 is the relative density. 
 
The boundary conditions defined as in (2.6) will becomes 
 
 𝑓𝑓(𝜂𝜂) = 0, 𝑓𝑓′(𝜂𝜂) = 1 at 𝜂𝜂 = 0, 
 
            𝑓𝑓′ (𝜂𝜂) = 0, 𝐹𝐹(𝜂𝜂) = 0, 𝐺𝐺(𝜂𝜂) = −𝑓𝑓(𝜂𝜂), 𝐻𝐻(𝜂𝜂) = 𝜔𝜔 as 𝑦𝑦 → ∞.                              (2.12) 
 
If  𝛽𝛽 = 0 the analytical solution of (2.8) was given by Crane [8] as 
 
 𝑓𝑓(𝜂𝜂) = 1 − 𝑒𝑒−𝜂𝜂                                   (2.13) 
obviously. 
 
3. HEAT TRANSFER ANALYSIS 
 
The governing dusty boundary layer heat transport equations in the presence of non-uniform heat source and radiation 
for two dimensional flow is [19], 
 
 𝑢𝑢 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
+ 𝑣𝑣 𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
= 𝑘𝑘

𝜌𝜌𝑐𝑐𝑝𝑝

𝜕𝜕2𝑇𝑇
𝜕𝜕𝑦𝑦2 + 𝑁𝑁

𝜌𝜌𝜏𝜏𝑇𝑇
�𝑇𝑇𝑝𝑝 − 𝑇𝑇� + 𝑁𝑁

𝜌𝜌𝑐𝑐𝑝𝑝𝜏𝜏𝜈𝜈
�𝑢𝑢𝑝𝑝 − 𝑢𝑢�

2
+ 𝑞𝑞‴ − 𝜕𝜕𝑞𝑞𝑟𝑟

𝜕𝜕𝜕𝜕
,                               (3.1) 

 
             𝑢𝑢𝑝𝑝

𝜕𝜕𝑇𝑇𝑝𝑝
𝜕𝜕𝜕𝜕

+ 𝑣𝑣𝑝𝑝
𝜕𝜕𝑇𝑇𝑝𝑝
𝜕𝜕𝜕𝜕

= − 𝑐𝑐𝑝𝑝
𝑐𝑐𝑚𝑚 𝜏𝜏𝑇𝑇

(𝑇𝑇𝑝𝑝 − 𝑇𝑇)                                   (3.2) 
 
where 𝑇𝑇 and 𝑇𝑇𝑝𝑝  is the temperature of the fluid and temperature of the dust particle, 𝑐𝑐𝑝𝑝  and 𝑐𝑐𝑚𝑚  are the specific heat of 
fluid and dust particles, 𝜏𝜏𝑇𝑇  is the thermal equilibrium time and is time required by the dust cloud to adjust its 
temperature to the fluid, 𝜏𝜏𝑣𝑣  is the relaxation time of the of dust particle i.e., the time required by the a dust particle to 
adjust its velocity relative to the fluid, 𝑘𝑘 is the thermal conductivity, 𝑞𝑞‴ is the space and temperature dependent internal 
heat generation/absorption (non-uniform heat source/sink) which can be expressed as 
 
             𝑞𝑞‴ = �𝑘𝑘𝑈𝑈𝑤𝑤(𝑥𝑥)

𝑥𝑥𝑥𝑥
� [𝐴𝐴∗(𝑇𝑇𝑤𝑤 − 𝑇𝑇∞)𝑓𝑓′(𝜂𝜂) + 𝐵𝐵∗(𝑇𝑇 − 𝑇𝑇∞)]                                              (3.3) 

 
where 𝐴𝐴∗ and 𝐵𝐵∗ are the parameters of the space and temperature dependent internal heat generation/absorption. It is to 
be noted that 𝐴𝐴∗ and 𝐵𝐵∗  are positive to internal heat source and negative to internal heat sink, 𝜈𝜈 is the kinematic 
viscosity. 
Using the Rosseland approximation for radiation [11], radiation heat flux is simplified as 
 
              𝑞𝑞𝑟𝑟 = −4𝜎𝜎∗

3𝑘𝑘∗
𝜕𝜕𝑇𝑇4

𝜕𝜕𝜕𝜕
                                     (3.4) 

 
where 𝜎𝜎∗ and 𝑘𝑘∗ are the Stefan-Boltzman constant and the mean absorption co-efficient respectively. Assuming that the 
temperature differences within the flow such that the term 𝑇𝑇4 may be expressed as a linear function of the temperature, 
we expand 𝑇𝑇4 in a Taylor series about 𝑇𝑇∞  and neglecting the higher order terms beyond the first degree in (𝑇𝑇 − 𝑇𝑇∞) we 
get 
 
              𝑇𝑇4 ≅ 4𝑇𝑇∞3𝑇𝑇 − 3𝑇𝑇∞4                      (3.5) 
 
Substituting (3.4) and (3.5) in (3.1) reduces to 
 
 𝜌𝜌𝑐𝑐𝑝𝑝 �𝑢𝑢

𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

+ 𝑣𝑣 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
� = �𝑘𝑘 + 16𝜎𝜎∗𝑇𝑇∞3

3𝑘𝑘∗
� 𝜕𝜕

2𝑇𝑇
𝜕𝜕𝑦𝑦2 + 𝑁𝑁𝑐𝑐𝑝𝑝

𝜏𝜏𝑇𝑇
�𝑇𝑇𝑝𝑝 − 𝑇𝑇� + 𝑁𝑁

𝜏𝜏𝑣𝑣
�𝑢𝑢𝑝𝑝 − 𝑢𝑢�

2
+ 𝑞𝑞‴                                          (3.6) 

 
The solution of (3.6) and (3.2) depends on the nature of the prescribed boundary conditions. We employ two types of 
heating process as follows. 
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CASE-1: Prescribed Surface Temperature (PST-Case) 
 
The prescribed surface temperature are defined in a quadratic function of x and is written as 

𝑇𝑇 = 𝑇𝑇𝑤𝑤 = 𝑇𝑇∞ + 𝐴𝐴 �𝑥𝑥
𝑙𝑙
�

2
 at 𝑦𝑦 = 0, 

 
𝑇𝑇 → 𝑇𝑇∞, 𝑇𝑇𝑝𝑝 → 𝑇𝑇∞  as 𝑦𝑦 → ∞.                                     (3.7) 

 
where 𝑇𝑇𝑤𝑤  and 𝑇𝑇∞ denote the temperature at the wall and at large distance from the wall respectively. 𝐴𝐴 is a positive 

constant, 𝑙𝑙 = �𝜈𝜈
𝑐𝑐
 is a characteristic length. 

 
Defining the non-dimensional fluid phase temperature 𝜃𝜃(𝜂𝜂) and dust phase temperature 𝜃𝜃𝑝𝑝(𝜂𝜂) as 
 
 𝜃𝜃(𝜂𝜂) = 𝑇𝑇−𝑇𝑇∞

𝑇𝑇𝑤𝑤−𝑇𝑇∞
,    𝜃𝜃𝑝𝑝(𝜂𝜂) =

𝑇𝑇𝑝𝑝−𝑇𝑇∞
𝑇𝑇𝑤𝑤−𝑇𝑇∞

,                                   (3.8) 

where  𝑇𝑇 − 𝑇𝑇∞ = 𝐴𝐴 �𝑥𝑥
𝑙𝑙
�

2
𝜃𝜃(𝜂𝜂). 

 
Using (3.7) and (3.8) into (3.2)-(3.6), we get 
 

(1 + 𝑁𝑁𝑁𝑁)𝜃𝜃″ (𝜂𝜂) + Pr[𝑓𝑓(𝜂𝜂)𝜃𝜃′(𝜂𝜂) − 2𝑓𝑓′ (𝜂𝜂)𝜃𝜃(𝜂𝜂)] +
𝑁𝑁𝑁𝑁𝑁𝑁
𝜌𝜌𝜌𝜌𝜏𝜏𝑇𝑇

�𝜃𝜃𝑝𝑝(𝜂𝜂) −  𝜃𝜃(𝜂𝜂)� 

             +𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
𝜌𝜌𝜏𝜏𝜈𝜈

[𝐹𝐹(𝜂𝜂) − 𝑓𝑓′ (𝜂𝜂)]2 + 𝐴𝐴∗𝑓𝑓′(𝜂𝜂) + 𝐵𝐵∗𝜃𝜃(𝜂𝜂) = 0,                                                          (3.9) 
 
 2 𝐹𝐹(𝜂𝜂)𝜃𝜃𝑝𝑝(𝜂𝜂) + 𝐺𝐺(𝜂𝜂)𝜃𝜃𝑝𝑝′ (𝜂𝜂) +

𝑐𝑐𝑝𝑝
𝑐𝑐𝑐𝑐𝑚𝑚 𝜏𝜏𝑇𝑇

�𝜃𝜃𝑝𝑝(𝜂𝜂) − 𝜃𝜃(𝜂𝜂)� = 0                             (3.10) 
 
where  𝑃𝑃𝑃𝑃 = 𝜇𝜇𝑐𝑐𝑝𝑝

𝑘𝑘
 is the Prandtl number, 𝐸𝐸𝐸𝐸 = 𝑐𝑐𝑙𝑙2

𝐴𝐴𝑐𝑐𝑝𝑝
 is the Eckert number, 𝑁𝑁𝑁𝑁 = 16𝜎𝜎∗𝑇𝑇∞3

3𝑘𝑘𝑘𝑘∗
 is the Radiation parameter. 

 
The boundary conditions for 𝜃𝜃(𝜂𝜂), 𝜃𝜃𝑝𝑝(𝜂𝜂) follows from (3.6) to (3.7) as 
 
 𝜃𝜃(𝜂𝜂) = 1 as 𝜂𝜂 = 0, 
 
            𝜃𝜃(𝜂𝜂) → 0, 𝜃𝜃𝑝𝑝(𝜂𝜂) → 0 as 𝜂𝜂 → ∞                                (3.11) 
 
CASE-2: Prescribed Heat Flux (PHF-Case) 
 
In this case, the power law heat flux on the wall is considered in the form 
 

−𝑘𝑘 𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕

= 𝑞𝑞𝑤𝑤 = 𝐷𝐷 �𝑥𝑥
𝑙𝑙
�

2
 at 𝑦𝑦 = 0, 

 
𝑇𝑇 → 𝑇𝑇∞, 𝑇𝑇𝑝𝑝 → 𝑇𝑇∞  as 𝑦𝑦 → ∞                                 (3.12) 

 
where 𝐷𝐷 is the constant. On the other hand we define a non-dimensional fluid phase temperature 𝑔𝑔(𝜂𝜂) and dust phase 
temperature 𝑔𝑔𝑝𝑝(𝜂𝜂) as. 
 
 𝑔𝑔(𝜂𝜂) = 𝑇𝑇−𝑇𝑇∞

𝑇𝑇𝑤𝑤−𝑇𝑇∞
,    𝑔𝑔𝑝𝑝(𝜂𝜂) =

𝑇𝑇𝑝𝑝−𝑇𝑇∞
𝑇𝑇𝑤𝑤−𝑇𝑇∞

                                 (3.13) 
 

where 𝑇𝑇𝑤𝑤 − 𝑇𝑇∞ = 𝐷𝐷
𝑘𝑘
�𝑥𝑥
𝑙𝑙
�

2
�𝜈𝜈
𝑐𝑐
. 

 
Equations. (3.2)-(3.6) on using (3.12) and (3.13) can be transformed in terms of 𝑔𝑔(𝜂𝜂) and 𝑔𝑔𝑝𝑝(𝜂𝜂) as 

 
 (1 + 𝑁𝑁𝑁𝑁)𝑔𝑔″ (𝜂𝜂) + Pr[𝑓𝑓(𝜂𝜂)𝑔𝑔′(𝜂𝜂) − 2𝑓𝑓′ (𝜂𝜂)𝑔𝑔(𝜂𝜂)] + 𝑁𝑁𝑁𝑁𝑁𝑁

𝜌𝜌𝜌𝜌 𝜏𝜏𝑇𝑇
�𝑔𝑔𝑝𝑝(𝜂𝜂) −  𝑔𝑔(𝜂𝜂)� 

             +𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁
𝜌𝜌𝜏𝜏𝜈𝜈

[𝐹𝐹(𝜂𝜂) − 𝑓𝑓′ (𝜂𝜂)]2 + 𝐴𝐴∗𝑓𝑓′(𝜂𝜂) + 𝐵𝐵∗𝑔𝑔(𝜂𝜂) = 0,                                                        (3.14) 
  
2 𝐹𝐹(𝜂𝜂)𝑔𝑔𝑝𝑝(𝜂𝜂) + 𝐺𝐺(𝜂𝜂)𝑔𝑔𝑔𝑔𝑝𝑝′ (𝜂𝜂) +

𝑐𝑐𝑝𝑝
𝑐𝑐𝑐𝑐𝑚𝑚 𝜏𝜏𝑇𝑇

�𝑔𝑔𝑝𝑝(𝜂𝜂) − 𝑔𝑔(𝜂𝜂)� = 0                                           (3.15) 
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where 𝐸𝐸𝐸𝐸 = 𝑘𝑘𝑙𝑙2𝑐𝑐
3
2 

𝐷𝐷𝑐𝑐𝑝𝑝𝜈𝜈
1
2
 is the Eckert number, and the boundary conditions becomes 

 
 𝑔𝑔(𝜂𝜂) = −1 as 𝜂𝜂 = 0, 
 
            𝑔𝑔(𝜂𝜂) → 0,𝑔𝑔𝑝𝑝(𝜂𝜂) → 0 as 𝜂𝜂 → ∞                                (3.16) 
 
4. NUMERICAL SOLUTION 
 
In the present work (2.8) to (2.11) are highly non-linear ordinary differential equations. To solve these equations we 
adopted symbolic algebra software Maple which was given by Aziz [1], and it is very efficient in using the well known 
Runge Kutta Fehlberg fourth-fifth order method (RKF45 Method) to obtain the numerical solutions of a boundary 
value problem. The system of boundary value problems of equations (2.8)-(2.12) and either (3.9)-(3.11) or (3.14)-
(3.16) were solved by RKF45 method using the above mentioned software Maple. The RKF45 algorithm in Maple has 
been well tested for its accuracy and robustness. 
 
5. RESULTS AND DISCUSSION 
 
In the section we analyze boundary-layer flow and heat transfer of a dusty fluid over a stretching sheet in the presence 
of non-uniform source/sink, and the Rosseland approximation for the radiative heat flux is used. The temperature 
profile 𝜃𝜃(𝜂𝜂) and 𝜃𝜃𝑝𝑝(𝜂𝜂) in the PST case and 𝑔𝑔(𝜂𝜂) and 𝑔𝑔𝑝𝑝(𝜂𝜂) in the PHF case are depicted graphically in the presence of 
radiation and internal heat source/sink. A parameter of interest for the present study is the fluid particle interaction 
parameter 𝛽𝛽, Prandtl number 𝑃𝑃𝑃𝑃, Eckert number 𝐸𝐸𝐸𝐸, radiation 𝑁𝑁𝑁𝑁, space dependent heat source/sink 𝐴𝐴∗, temperature 
dependent heat source/sink 𝐵𝐵∗, Number density 𝑁𝑁. 

 
In order to verify the accuracy of our present method, a comparison of wall temperature gradient 𝜃𝜃′(0) with those 
reported by Abel and Mahesha [4] and Grubka and Bobba [13] for various values of Prandtl number. Either with the 
results of Vajravelu and Roper [22] and Tsai [20] for each value of 𝐵𝐵∗  and Prandtl number. The result of this 
comparison is given in Table 1 and Table 2. The comparisons in all the above cases are found to be in excellent 
agreement. Sets of representative numerical results are illustrated graphically. 
 
In Figure 1, is a graphical representation for the temperature distribution for PST and PHF case, for different values of 
𝛽𝛽  versus 𝜂𝜂. We infer from these figures that temperature of the fluid and dust phase decrease with increases in 𝛽𝛽 
respectively. Also it reveals that for the large values of 𝛽𝛽 i.e., the relaxation time of the dust particle decreases then the 
velocities of both fluid and dust particle will be the same. We have used throughout our thermal analysis the values of 
𝜏𝜏𝑇𝑇 = 𝜏𝜏𝑣𝑣 = 0.5 and 𝑐𝑐𝑝𝑝 = 𝑐𝑐𝑚𝑚 = 0.2, 𝜌𝜌 = 0.5, 𝑐𝑐 = 1. 
 
Figure 2, illustrate variations of different values of 𝑃𝑃𝑃𝑃. By analyzing the graphs it reveals that the effect of increasing 
the 𝑃𝑃𝑃𝑃 is to decreases the temperature distribution in the flow region in both PST and PHF cases, which implies that 
momentum boundary layer is thicker than the thermal boundary layer. 
 
Figure 3, is plotted for the temperature distribution for PST and PHF case respectively, for different values of 𝐸𝐸𝐸𝐸. We 
observe that the effect of increasing values of Eckert number is to increase temperature of the fluid as well as 
temperature of dust phase. This is due to fact that the heat energy is stored in the considered liquid due to frictional 
heating. 
 
Temperature profiles of the fluid and dust particle across the thermal boundary layer in the PST/PHF case are shown in 
Figure 4 for several values of 𝐴𝐴∗, it can be seen that the thermal boundary layer generates the energy, and this causes 
the temperature profiles increases with increases of 𝐴𝐴∗(> 0) and decreases with increases of 𝐴𝐴∗(< 0) Figure 5, depict 
the temperature profiles of the fluid and dust particle versus 𝜂𝜂 for different values of 𝐵𝐵∗. The effect of 𝐵𝐵∗ is similar to 
that given for 𝐴𝐴∗. 
 
Figure 6, depict the temperature profiles for PST/PHF cases respectively. These figures shows the thermal radiation on 
temperature distributions in both cases, it observed that the increase in the thermal radiation parameter 𝑁𝑁𝑁𝑁 produces a 
significant increases in the thickness of the thermal boundary layer fluid so the temperature distribution increases with 
increasing the value of 𝑁𝑁𝑁𝑁. Thus the radiation should be at its minimum in order to facilitate the cooling process. 
 
Figure. 7 is plotted for the temperature profiles for different values of Number density of the dust particle 𝑁𝑁. It can be 
seen that the temperature profiles of fluid and dust particle decreases with increase of N. In all the figures, it is noticed 
that fluid phase temperature is higher than the dust phase temperature, which indicates that the fluid particle 
temperature is parallel to the dust particle temperature of both PST and PHF cases. 
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6. CONCLUSIONS 
 
The present analysis includes the study of boundary layer flow and heat transfer of a dusty fluid over a stretching sheet 
in the presence of radiation and non uniform heat source/sink. Similarity transformations are used to transform the 
governing equations in to coupled nonlinear ordinary differential equations. Numerical solutions are obtained for the 
effect of thermal radiation and heat transfer of a dusty fluid over a stretching sheet in the presence of heat source or 
sink. The influence of several parameters like 𝛽𝛽, 𝑃𝑃𝑃𝑃, 𝐸𝐸𝐸𝐸, 𝐴𝐴∗, 𝐵𝐵∗ and 𝑁𝑁𝑁𝑁 on temperature profiles were examined. From 
our numerical results the following conclusions may be drawn 
 

• Effect of thermal radiation parameter is to increases the temperature profile of both phases for both the cases 
of PST and PHF. Also the temperature increases in the presence of non-uniform heat source/sink. 

• The rate of heat transfer 𝜃𝜃′(0) is negative and 𝑔𝑔(0) is positive. 
• 𝜃𝜃′(0) and 𝑔𝑔(0) decreases with increasing the fluid-particle interaction parameter and Prandtl number. 
• 𝜃𝜃′(0) and 𝑔𝑔(0) increases with increase in the radiation parameter, heat source or sink parameter and Eckert 

number. 
• The effect of Prandtl number is to decrease the thermal boundary layer thickness. 
• If  𝐴𝐴∗ → 0, 𝛽𝛽 → 0,𝑁𝑁𝑁𝑁 → 0 and 𝑁𝑁 → 0 then our results coincides with the results of Vajravelu et.al., [21] and 

Tsai et.al., [20] when both Prandtl number and Heat source/sink varies. 
• If  𝐴𝐴∗ → 0,𝐵𝐵∗ → 0, 𝛽𝛽 → 0,𝑁𝑁𝑁𝑁 → 0 and 𝑁𝑁 → 0 then our results with the results of Abel et.al., [4] and Grubka 

et.al., [13] only when Prandtl number varies. 
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Figure-1: Effect of fluid-particle interaction parameter (𝛽𝛽) on temperature distribution. 
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Figure-2: Effect of Prandtl number (𝑃𝑃𝑃𝑃) on temperature distribution. 
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Figure-3: Effect of Eckert number (𝐸𝐸𝐸𝐸) on temperature distribution. 
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Figure-4: Effect of non-uniform heat source/sink (𝐴𝐴∗) on temperature distribution. 

0 2 4 6 8
0.0

0.2

0.4

0.6

0.8

1.0

B* = -0.5, 0.0, 0.5

                                         PST - Case
β=0.4, Ec=0.5, Pr=0.72, Nr=0.8, A*=0.05, N=0.5, ω=0.2

θ(
η

),
 θ

p(
η

)

η

 fluid phase temperature
 dust  phase temperature

0 2 4 6 8
0.0

0.5

1.0

1.5

2.0

B* = -0.5, 0.0, 0.5

                                       PHF - Case
β=0.4, Ec=0.5, Pr=0.72, Nr=0.8, A*=0.05, N=0.5, ω=0.2

g(
η

),
 g

p(
η

)

η

 fluid phase temperature
 dust  phase temperature

 
Figure-5: Effect of non-uniform heat source/sink (𝐵𝐵∗) on temperature distribution. 
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Figure-6: Effect of radiation parameter (𝑁𝑁𝑁𝑁) on temperature distribution. 
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Figure-7: Effect of number density of the dust particle (𝑁𝑁) on temperature distribution. 

 
Table 1: Comparison results for the wall temperature gradient – 𝜃𝜃′(0) in the case of 𝛽𝛽 = 0, 𝐴𝐴∗ = 0,𝐵𝐵∗ = 0, 𝐸𝐸𝐸𝐸 =
0, 𝑁𝑁𝑁𝑁 = 0 and 𝑁𝑁 = 0. 

 
𝑃𝑃𝑃𝑃 Abel and Mahesha Grubka and Bobba Present Study 
0.72 1.0885 1.0885 1.0889 
1.0 1.3333 1.3333 1.3333 
10.0 4.7969 4.7969 4.7969 

 
 
Table 2: Comparison results for the wall temperature gradient 𝜃𝜃′(0) in the case of 𝛽𝛽 = 0, 𝐴𝐴∗ = 0, 𝐸𝐸𝐸𝐸 = 0, 𝑁𝑁𝑁𝑁 = 0 and 
𝑁𝑁 = 0. 
 

𝐵𝐵∗ 𝑃𝑃𝑃𝑃 Vajravelu and Roper Tsai et al. Present Study 
-2 2 -2.4860 -2.4859 -2.4859 
-3 3 -3.0281 -3.0281 -3.0281 
-4 4 -3.5851 -3.5851 -3.5851 
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Table 3: Wall temperature gradient 𝜃𝜃′(0)  and temperature function 𝑔𝑔(0)  for different values of the parameters  
𝛽𝛽,𝐴𝐴∗, 𝐵𝐵∗, 𝐸𝐸𝐸𝐸, 𝑃𝑃𝑃𝑃,𝑁𝑁𝑁𝑁 = 0 and 𝑁𝑁. 

 
 

𝛽𝛽 𝐸𝐸𝐸𝐸 𝐴𝐴∗ 𝑃𝑃𝑃𝑃 𝐵𝐵∗ 𝑁𝑁𝑁𝑁 𝑁𝑁 PST case 
−𝜃𝜃′(0) 

PHF case 
𝑔𝑔(0) 

0 2 0.05 0.72 0.05 3.0 0.5 0.205578 2.523035 
0.2       0.312214 2.298003 
0.4       0.376216 2.164802 
0.4 0.0 0.05 0.72 0.05 3.0 0.5 0.526234 1.884670 

 0.5      0.488730 1.954703 
 2.0      0.376216 2.164802 

0.4 2.0 -0.5 0.72 0.05 3.0 0.5 4.78432 1.973933 
  0.0     0.385508 2.147451 
  0.5     0.292584 2.320969 

0.4 2.0 0.05 0.72 0.05 3.0 0.5 0.376216 2.164802 
   1.0    0.463367 1.797290 
   10.0    0.708026 1.271018 

0.4 2.0 0.05 0.72 -0.5 3.0 0.5 0.539236 1.670068 
    0.0   0.394228 2.096900 
    0.5   0.142976 3.674200 

0.4 2.0 0.05 0.72 0.05 1 0.5 0.561521 1.511346 
     2  0.443269 1.857271 
     3  0.376216 2.164802 

0.4 2.0 0.05 0.72 0.05 3.0 0.5 0.376216 2.164802 
      1 0.341371 2.023862 
      2 0.273031 1.863659 

 
************************* 


