ON TOTAL DOMINATION SETS AND POLYNOMIALS OF CYCLES

A. Vijayan*

Assistant Professor, Department of Mathematics, Nesamony Memorial Christian College,
Marthandam, 629165, Tamil Nadu, India

E-mail: naacnmccm@gmail.com

&

S. Sanal Kumar

Department of Mathematics, St. Xaviers Catholic College of Engineering, Nagercoil, Tamil Nadu, India E-mail: anfigarden@yahoo.com

(Received on: 20-03-12; Accepted on: 05-04-12)

ABSTRACT

Let G = (V, E) be a graph without isolated vertices. A set $S \subseteq V$ is a total dominating set of G, if every vertex $u \in V$ is adjacent to an element of S. Let $\mathcal{D}_t(C_n, i)$ be the family of total dominating sets of a cycle C_n with cardinality i. Let $d_t(C_n, i)$ be the number of total dominating sets in $\mathcal{D}_t(C_n, i)$. In this paper, we study the concept of total domination polynomial for any cycle C_n . The total domination polynomial for any cycle C_n is the polynomial $D_t(C_n, x) = \sum_{i=1+n/2}^n d_t(C_n, i) x^i$, if $n \equiv 2 \pmod{4}$ and $D_t(C_n, x) = \sum_{i=1+n/2}^n d_t(C_n, i) x^i$ if $n \not\equiv 2 \pmod{4}$. We obtain some properties of $D_t(C_n, x)$ and its coefficients. Also, we calculate the reduction formula to derive the total domination polynomial of cycles.

Keywords: cycles, total dominating set, total domination number, total domination polynomial.

Mathematics subject classification: 05C69, 11B83.

1. INTRODUCTION

total dominating sets in G.

Let G = (V, E) be a graph. For any vertex $u \in V$, we define the open neighborhood of u as the set N(u) defined by $N(u) = \{ v / uv \in E \}$ and the closed neighborhood of u as the set N[u] defined by $N[u] = N(u) \cup \{u\}$. For a subset S of V, the open neighborhood of S is N(S) which is defined as the union of N(u) for all $u \in S$ and the closed neighborhood of S is defined as $N(S) \cup S$. The maximum degree of the graph S is denoted by S and the minimum degree is denoted by S be a dominating set if every vertex S is either an element of S or is adjacent to an element of S. A set of vertices in a graph S is said to be a total dominating set if every vertex S is adjacent to an element of S. The domination number of a graph, denoted by S is the minimum cardinality of the dominating sets in S. The total domination number of a graph S denoted by S is the minimum cardinality of the

We use the notation [x] for the smallest integer grater than or equal to x. Also, we denote the set $\{1, 2, 3,n\}$ by [x], throughout this paper.

2. TOTAL DOMINATING SETS OF CYCLES

In this section, we are going to investigate the total domination sets of cycles and some of its properties.

Definition 2.1: Let G be a graph of order n with no isolated vertices. Let $\mathfrak{D}_t(G, i)$ be the family of total dominating sets of G with cardinality i and let $d_t(G, i) = |\mathfrak{D}_t(G, i)|$. Then the total domination polynomial $D_t(G, x)$ of G is defined as $D_t(G, x) = \sum_{i=vt(G)}^n d_t(G, i) x^i$, where $\gamma_t(G)$ is the total domination number of G.

Let C_n , $n \ge 3$ be the cycle with n vertices. Let $V(C_n) = \{1,2,....n\}$ and $E(C_n) = \{(1,2),(2,3),.....(n-1,n),(n,1)\}$. Let $\mathfrak{D}_t(C_n,i)$ be the collection of total domination sets in C_n with cardinality i. We shall investigate the total domination sets of cycles.

Lemma 2.2: [4] For $n \ge 3$, the total domination number of the cycle, C_n is given by

Corresponding author: A. Vijayan, *E-mail: naacnmccm@gmail.com

A. Vijayan* & S. Sanal Kumar/ On Total Domination sets and Polynomials of Cycles / IJMA- 3(4), April-2012, Page: 1379-1385

$$\gamma_{t}(C_{n}) = \begin{cases} 1 + \frac{n}{2} & \text{if } n \equiv 2 \pmod{4} \\ \lceil \frac{n}{2} \rceil & \text{if } n \not\equiv 2 \pmod{4} \end{cases}$$

Lemma 2.3: Let C_n , $n \ge 3$ be the cycle with $|V(C_n)| = n$. Then $d_t(C_n, i) = 0$ if $i < \lceil \frac{n}{2} \rceil$ or i > n and $d_t(C_n, i) > 0$ if $\lceil \frac{n}{2} \rceil < i \le n$.

Proof: If $n \equiv 2 \pmod{4}$, then the total domination number of the cycle C_n is $\gamma_t(C_n) = 1 + \frac{n}{2}$. Therefore, $d_t(C_n, i) = 0$, when $i < 1 + \frac{n}{2}$ or i > n. And $d_t(C_n, i) > 0$, when $1 + \frac{n}{2} \le i \le n$. When $n \not\equiv 2 \pmod{4}$, then the total domination number of C_n is $\gamma_t(C_n) = \lceil \frac{n}{2} \rceil$. Therefore, $d_t(C_n, i) = 0$ if $i < \lceil \frac{n}{2} \rceil$ or i > n. Also, $d_t(C_n, i) > 0$ when $\lceil \frac{n}{2} \rceil \le i \le n$. Hence, in general, we have $d_t(C_n, i) = 0$ when $i < \lceil \frac{n}{2} \rceil$ or i > n and $d_t(C_n, i) > 0$ when $\lceil \frac{n}{2} \rceil < i \le n$.

Lemma 2.4: Let C_n , $n \ge 3$ be the cycle with $|V(C_n)| = n$. Then

- (i) $\mathfrak{D}_t(C_n, i) = \varphi \text{ if } i < \gamma_t(C_n) \text{ or } i > n.$
- (ii) $D_t(C_n, x)$ has no constant term and first degree terms.
- (iii) $D_t(C_n, x)$ is a strictly increasing function on $[0, \infty)$.

Proof is obvious.

Lemma 2.5: Let C_n , $n \ge 3$ be the cycle with $|V(C_n)| = n$.

- $(i) \quad \text{If } \mathfrak{D}_t\left(C_{n\text{-}1}, i\text{-}1\right) = \mathfrak{D}_t\left(C_{n\text{-}3}, i\text{-}1\right) = \varphi, \text{ then, } \mathfrak{D}_t\left(C_{n\text{-}2}, i\text{-}1\right) = \varphi.$
- (ii) If $\mathfrak{D}_t(C_{n-1}, i-1) \neq \varphi$ and $\mathfrak{D}_t(C_{n-3}, i-1) \neq \varphi$ then $\mathfrak{D}_t(C_{n-2}, i-1) \neq \varphi$.
- (iii) If $\mathfrak{D}_{t}(C_{n-1}, i-1) = \mathfrak{D}_{t}(C_{n-3}, i-1) = \mathfrak{D}_{t}(C_{n-2}, i-1) = \phi$ then $\mathfrak{D}_{t}(C_{n}, i) = \phi$.

The proof of the lemma follows from lemma 2.3.

Lemma 2.6: Let C_n , $n \ge 3$ be the cycle with $|V(C_n)| = n$. Suppose that $\mathfrak{D}_t(C_n,i) \ne \emptyset$, then we have

- (i) $\mathfrak{D}_t(C_{n-2}, i-1) = \varphi$ and $\mathfrak{D}_t(C_{n-1}, i-1) \neq \varphi$ if and only if i = n.
- $\text{(ii)} \quad \mathfrak{D}_t\left(C_{n\text{-}1},\text{i-}1\right) \neq \varphi, \, \mathfrak{D}_t\left(C_{n\text{-}2},\text{i-}1\right) \neq \varphi \text{ and } \mathfrak{D}_t\left(C_{n\text{-}3},\text{i-}1\right) = \varphi \text{ if and only if } i = n\text{-}1.$
- (iii) $\mathfrak{D}_t(C_{n-1}, i-1) = \varphi$ and $\mathfrak{D}_t(C_{n-2}, i-1) = \varphi$ if and only if n = 4k, and i = 2k for some positive integer k.
- (iv) $\mathfrak{D}_t\left(C_{n-1},i-1\right)=\varphi$, $\mathfrak{D}_t\left(C_{n-2},i-1\right)\neq\varphi$ and $\mathfrak{D}_t\left(C_{n-3},i-1\right)\neq\varphi$ if and only if n=4k-1, and i=2k for some k.
- $(v) \quad \mathfrak{D}_t(C_{n-1},i-1) \neq \varphi \ , \ \mathfrak{D}_t(C_{n-2},i-1) \neq \varphi \ \text{and} \ \mathfrak{D}_t\left(C_{n-3},i-1\right) \neq \varphi \ \text{if and only if} \ \lceil \frac{n-1}{2} \rceil + 1 < i \leq n-2.$

Proof: The proof of the lemma is similar to the proof of lemma [2.4] in [7]

Theorem 2.7 For every $n \ge 5$ and $i > \lceil \frac{n}{2} \rceil + 1$,

- (i) \mathfrak{D}_t (C_{4k}, 2k) = {{1, 2, 5, 6,,4k-3, 4k-2}, {2,3,6,7,,4k-2,4k-1}, {3,4,7,8,....,4k-1,4k}, {1,4,5,8,,4k-3,4k}}, where $k \ge 1$.
- (ii) If $\mathfrak{D}_{t}(C_{n-2}, i-1) = \varphi$ and $\mathfrak{D}_{t}(C_{n-1}, i-1) \neq \varphi$ then $\mathfrak{D}_{t}(C_{n}, i) = \mathfrak{D}_{t}(C_{n}, n) = \{\{1, 2, 3, \dots, n\}\}.$
- $\text{(iii)} \ \ \text{If} \ \mathfrak{D}_t \ (C_{n\text{-}1}, \text{i-}1) \ \neq \varphi, \ \mathfrak{D}_t \ (C_{n\text{-}2}, \text{i-}1) \ \neq \varphi \ \text{and} \ \mathfrak{D}_t \ (C_{n\text{-}3}, \text{i-}1) = \varphi \ \text{then} \ \mathfrak{D}_t \ (C_n, \text{i}) = \mathfrak{D}_t \ (C_n, \text{n-}1) = \{[n] \{x\} / \ x \in [n]\}.$
- (iv) If $\mathfrak{D}_t(C_{n-1}, i-1) \neq \phi$ and $\mathfrak{D}_t(C_{n-2}, i-1) \neq \phi$ then $\mathfrak{D}_t(C_n, i) =$

```
\{X \cup \{n\}\} \cup
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             \{Y \cup \{n\} \mid if \ 1 \in Y\} \cup
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         \{ Y \cup \{n-1\} \ if \ n-2 \in Y \} \cup \{n-1\} \ if \ n-2 \in Y \} \cup \{n-1\} \ if \ n-2 \in Y \} \cup \{n-1\} \ if \ n-2 \in Y \} \cup \{n-1\} \ if \ n-2 \in Y \} \cup \{n-1\} \ if \ n-2 \in Y \} \cup \{n-1\} \ if \ n-2 \in Y \} \cup \{n-1\} \ if \ n-2 \in Y \} \cup \{n-1\} \ if \ n-2 \in Y \} \cup \{n-1\} \ if \ n-2 \in Y \} \cup \{n-1\} \ if \ n-2 \in Y \} \cup \{n-1\} \ if \ n-2 \in Y \} \cup \{n-1\} \ if \ n-2 \in Y \}
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             \{Y \cup \{1\} \text{ if } n-2 \in Y \text{ and } 1 \notin Y\} \cup
                                                                                                                                                                                                                                                                                                                                                                                          \{ Y \cup \{n-2\} \ if \ n-3, n-4 \in Y \ and \ n-2 \notin Y \} \cup \{ n-2 \} \ if \ n-3, n-4 \in Y \ and \ n-2 \notin Y \} \cup \{ n-2 \} \ if \ n-3, n-4 \in Y \ and \ n-2 \notin Y \} \cup \{ n-2 \} \ if \ n-3, n-4 \in Y \ and \ n-2 \notin Y \} \cup \{ n-2 \} \ if \ n-3, n-4 \in Y \ and \ n-2 \notin Y \} \cup \{ n-2 \} \ if \ n-3, n-4 \in Y \ and \ n-2 \notin Y \} \cup \{ n-2 \} \ if \ n-3, n-4 \in Y \ and \ n-2 \notin Y \} \cup \{ n-2 \} \ if \ n-3, n-4 \in Y \ and \ n-2 \notin Y \} \cup \{ n-2 \} \ if \ n-3, n-4 \in Y \ and \ n-2 \notin Y \} \cup \{ n-2 \} \ if \ n-3, n-4 \in Y \ and \ n-2 \notin Y \} \cup \{ n-2 \} \ if \ n-3, n-4 \in Y \ and \ n-2 \notin Y \} \cup \{ n-2 \} \ if \ n-3, n-4 \in Y \ and \ n-2 \notin Y \} \cup \{ n-2 \} \ if \ n-3, n-4 \in Y \ and \ n-2 \notin Y \} \cup \{ n-2 \} \ if \ n-3, n-4 \in Y \ and \ n-2 \notin Y \} \cup \{ n-2 \} \ if \ n-3, n-4 \in Y \ and \ n-2 \notin Y \} \cup \{ n-2 \} \ if \ n-3, n-4 \in Y \ and \ n-2 \notin Y \} \cup \{ n-2 \} \ if \ n-3, n-4 \in Y \ and \ n-2 \notin Y \} \cup \{ n-2 \} \ if \ n-3, n-4 \in Y \ and \ n-2 \notin Y \} \cup \{ n-2 \} \ if \ n-3, n-4 \in Y \ and \ n-2 \notin Y \} \cup \{ n-2 \} \ if \ n-3, n-4 \in Y \ and \ n-2 \notin Y \} \cup \{ n-2 \} \ if \ n-3, n-4 \in Y \ and \ n-2 \notin Y \} \cup \{ n-2 \} \ if \ n-3, n-4 \in Y \ and \ n-2 \notin Y \} \cup \{ n-2 \} \ if \ n-2 \in Y \ and \ n-2 \notin Y \} \cup \{ n-2 \} \ and \ n-2 \notin Y \} \cup \{ n-2 \} \ and \ n-2 \notin Y \} \cup \{ n-2 \} \ and \ n-2 \notin Y \} \cup \{ n-2 \} \ and \ n-2 \notin Y \} \cup \{ n-2 \} \ and \ n-2 \notin Y \} \cup \{ n-2 \} \ and \ n-2 \notin Y \} \cup \{ n-2 \} \ and \ n-2 \notin Y \} \cup \{ n-2 \} \ and \ n-2 \notin Y \} \cup \{ n-2 \} \ and \ n-2 \notin Y \} \cup \{ n-2 \} \ and \ n-2 \notin Y \} \cup \{ n-2 \} \ and \ n-2 \notin Y \} \cup \{ n-2 \} \ and \ n-2 \notin Y \} \cup \{ n-2 \} \ and \ n-2 \notin Y \} \cup \{ n-2 \} \ and \ n-2 \notin Y \} \cup \{ n-2 \} \ and \ n-2 \notin Y \} \cup \{ n-2 \} \ and \ n-2 \notin Y \} \cup \{ n-2 \} \ and \ n-2 \notin Y \} \cup \{ n-2 \} \ and \ n-2 \notin Y \} \cup \{ n-2 \} \ and \ n-2 \notin Y \} \cup \{ n-2 \} \ and \ n-2 \notin Y \} \cup \{ n-2 \} \ and \ n-2 \notin Y \} \cup \{ n-2 \} \ and \ n-2 \notin Y \} \cup \{ n-2 \} \ and \ n-2 \notin Y \} \cup \{ n-2 \} \ and \ n-2 \notin Y \} \cup \{ n-2 \} \ and \ n-2 \notin Y \} \cup \{ n-2 \} \ and \ n-2 \notin Y \} \cup \{ n-2 \} \ and \ n-2 \notin Y \} \cup \{ n-2 \} \ and \ n-2 \notin Y \} \cup \{ n-2 \} \ and \ n-2 \notin Y \} \cup \{ n-2 \} \ and \ n-2 \notin Y \} \cup \{ n-2 \} \ and \ n-2 \notin Y \} \cup \{ n-2 \} \ and \ n-2 \notin Y \} \cup \{ n-2 \} \ and \ n-2 \notin Y \} \cup \{ n-2 \} \ and \ n
                                                                                                                                                                                                                                                                                        \{ (Y - \{1\}) \cup \{n, n-1\} \text{ if } 1, 2, 3, n-3 \in Y \text{ and } n-2 \notin Y \} \cup \{ (Y - \{1\}) \cup \{n, n-1\} \text{ if } 1, 2, 3, n-3 \in Y \text{ and } n-2 \notin Y \} \cup \{ (Y - \{1\}) \cup \{n, n-1\} \text{ if } 1, 2, 3, n-3 \in Y \text{ and } n-2 \notin Y \} \cup \{ (Y - \{1\}) \cup \{n, n-1\} \text{ if } 1, 2, 3, n-3 \in Y \text{ and } n-2 \notin Y \} \cup \{ (Y - \{1\}) \cup \{n, n-1\} \text{ if } 1, 2, 3, n-3 \in Y \text{ and } n-2 \notin Y \} \cup \{ (Y - \{1\}) \cup \{n, n-1\} \text{ if } 1, 2, 3, n-3 \in Y \text{ and } n-2 \notin Y \} \cup \{ (Y - \{1\}) \cup \{n, n-1\} \text{ if } 1, 2, 3, n-3 \in Y \text{ and } n-2 \notin Y \} \cup \{ (Y - \{1\}) \cup \{n, n-1\} \text{ if } 1, 2, 3, n-3 \in Y \text{ and } n-2 \notin Y \} \cup \{ (Y - \{1\}) \cup \{n, n-1\} \text{ if } 1, 2, 3, n-3 \in Y \text{ and } n-2 \notin Y \} \cup \{ (Y - \{1\}) \cup \{n, n-1\} \text{ if } 1, 2, 3, n-3 \in Y \text{ and } n-2 \notin Y \} \cup \{ (Y - \{1\}) \cup \{n, n-1\} \text{ if } 1, 2, 3, n-3 \in Y \text{ and } n-2 \notin Y \} \cup \{ (Y - \{1\}) \cup \{n, n-1\} \text{ if } 1, 2, 3, n-3 \in Y \text{ and } n-2 \notin Y \} \cup \{ (Y - \{1\}) \cup \{n, n-1\} \text{ if } 1, 2, 3, n-3 \in Y \text{ and } n-2 \notin Y \} \cup \{ (Y - \{1\}) \cup \{n, n-1\} \text{ if } 1, 2, 3, n-3 \in Y \text{ and } n-2 \notin Y \} \cup \{ (Y - \{1\}) \cup \{n, n-1\} \text{ if } 1, 3, 3, n-3 \in Y \text{ and } n-2 \notin Y \} \cup \{ (Y - \{1\}) \cup \{n, n-1\} \text{ if } 1, 3, 3, n-3 \in Y \text{ and } n-2 \notin Y \} \cup \{ (Y - \{1\}) \cup \{n, n-1\} \text{ if } 1, 3, 3, n-3 \in Y \text{ and } n-2 \notin Y \text{ and }
                                                                                                                                                                                                                                                                                                                                 \{(Z - \{n-2\}) \cup \{n, n-1\} \mid if \ 1, 2 \notin Z \ and \ n-4 \in Z\} \cup \{n, n-1\} \mid if \ 1, 2 \notin Z \ and \ n-4 \in Z\} \cup \{n, n-1\} \mid if \ 1, 2 \notin Z \ and \ n-4 \in Z\} \cup \{n, n-1\} \mid if \ 1, 2 \notin Z \ and \ n-4 \in Z\} \cup \{n, n-1\} \mid if \ 1, 2 \notin Z \ and \ n-4 \in Z\} \cup \{n, n-1\} \mid if \ 1, 2 \notin Z \ and \ n-4 \in Z\} \cup \{n, n-1\} \mid if \ 1, 2 \notin Z \ and \ n-4 \in Z\} \cup \{n, n-1\} \mid if \ 1, 2 \notin Z \ and \ n-4 \in Z\} \cup \{n, n-1\} \mid if \ 1, 2 \notin Z \ and \ n-4 \in Z\} \cup \{n, n-1\} \mid if \ 1, 2 \notin Z \ and \ n-4 \in Z\} \cup \{n, n-1\} \mid if \ 1, 2 \notin Z \ and \ n-4 \in Z\} \cup \{n, n-1\} \mid if \ 1, 2 \notin Z \ and \ n-4 \in Z\} \cup \{n, n-1\} \mid if \ 1, 2 \notin Z \ and \ n-4 \in Z\} \cup \{n, n-1\} \mid if \ 1, 2 \notin Z \ and \ n-4 \in Z\} \cup \{n, n-1\} \mid if \ 1, 2 \notin Z \ and \ n-4 \in Z\} \cup \{n, n-1\} \mid if \ 1, 2 \notin Z \ and \ n-4 \in Z\} \cup \{n, n-1\} \mid if \ 1, 2 \notin Z \ and \ n-4 \in Z\} \cup \{n, n-1\} \mid if \ 1, 2 \notin Z \ and \ n-4 \in Z\} \cup \{n, n-1\} \mid if \ 1, 2 \notin Z \ and \ n-4 \in Z\} \cup \{n, n-1\} \mid if \ 1, 2 \notin Z \ and \ n-4 \in Z\} \cup \{n, n-1\} \mid if \ 1, 2 \notin Z \ and \ n-4 \in Z \ an
                                                                                                                                                                                                                                                                                                                                                                                                                                       \{Z \cup \{n\}\}\ if \ 1, n-2, n-3 \in Z \ and \ 2 \notin Z\} \cup
                                                                                                                                                                                                                                                                                                                                                                                                  \{Z \cup \{n-1\}\}\ if\ 1,2,n-2 \in Z\ and\ n-3 \notin Z\} \cup
                                                                                                                                                                                                                                                                                                                          \{(Z - \{1\}) \cup \{n - 1, n\} \text{ if } n - 3, n - 2, \notin Z \text{ and } 3 \in Z\} \cup \{(Z - \{1\}) \cup \{n - 1, n\} \text{ if } n - 3, n - 2, \notin Z \text{ and } 3 \in Z\} \cup \{(Z - \{1\}) \cup \{n - 1, n\} \text{ if } n - 3, n - 2, \notin Z \text{ and } 3 \in Z\} \cup \{(Z - \{1\}) \cup \{n - 1, n\} \text{ if } n - 3, n - 2, \notin Z \text{ and } 3 \in Z\} \cup \{(Z - \{1\}) \cup \{n - 1, n\} \text{ if } n - 3, n - 2, \notin Z \text{ and } 3 \in Z\} \cup \{(Z - \{1\}) \cup \{n - 1, n\} \text{ if } n - 3, n - 2, \notin Z \text{ and } 3 \in Z\} \cup \{(Z - \{1\}) \cup \{n - 1, n\} \text{ if } n - 3, n - 2, \notin Z \text{ and } 3 \in Z\} \cup \{(Z - \{1\}) \cup \{n - 1, n\} \text{ if } n - 3, n - 2, \notin Z \text{ and } 3 \in Z\} \cup \{(Z - \{1\}) \cup \{n - 1, n\} \text{ if } n - 3, n - 2, \notin Z \text{ and } 3 \in Z\} \cup \{(Z - \{1\}) \cup \{n - 1, n\} \text{ if } n - 3, n - 2, \notin Z \text{ and } 3 \in Z\} \cup \{(Z - \{1\}) \cup \{n - 1, n\} \text{ if } n - 3, n - 2, \notin Z \text{ and } 3 \in Z\} \cup \{(Z - \{1\}) \cup \{n - 1, n\} \text{ if } n - 3, n - 2, \notin Z \text{ and } 3 \in Z\} \cup \{(Z - \{1\}) \cup \{n - 1, n\} \text{ if } n - 3, n - 2, \notin Z \text{ and } 3 \in Z\} \cup \{(Z - \{1\}) \cup \{n - 1, n\} \text{ if } n - 3, n - 2, \notin Z \text{ and } 3 \in Z\} \cup \{(Z - \{1\}) \cup \{n - 1, n\} \text{ if } n - 3, n - 2, \notin Z \text{ and } 3 \in Z\} \cup \{(Z - \{1\}) \cup \{n - 1, n\} \text{ if } n - 3, n - 2, \notin Z \text{ and } 3 \in Z\} \cup \{(Z - \{1\}) \cup \{n - 1, n\} \text{ if } n - 3, n - 2, \notin Z \text{ and } 3 \in Z\} \cup \{(Z - \{1\}) \cup \{n - 1, n\} \text{ if } n - 3, n - 2, \notin Z \text{ and } 3 \in Z\} \cup \{(Z - \{1\}) \cup \{n - 1, n\} \text{ if } n - 3, n - 2, \notin Z \text{ and } 3 \in Z\} \cup \{(Z - \{1\}) \cup \{n - 1, n\} \text{ if } n - 3, n - 2, \notin Z \text{ and } 3 \in Z\} \cup \{(Z - \{1\}) \cup \{n - 1, n\} \text{ if } n - 3, n - 2, \notin Z \text{ and } 3 \in Z\} \cup \{(Z - \{1\}) \cup \{n - 1, n\} \text{ if } n - 3, n - 2, \notin Z \text{ and } 3 \in Z\} \cup \{(Z - \{1\}) \cup \{n - 1, n\} \text{ if } n - 3, n - 2, \notin Z \text{ and } 3 \in Z\} \cup \{(Z - \{1\}) \cup
                                                                                                                                                                                                                                                                     \{\{Z - \{n-2\}\}\} \cup \{n-3,n\} \text{ if } 1, n-2 \in Z \text{ and } 2, n-3 \notin Z\} \cup \{n-3,n\} \text{ if } 1, n-2 \in Z \text{ and } 2, n-3 \notin Z\} \cup \{n-3,n\} \text{ if } 1, n-2 \in Z \text{ and } 2, n-3 \notin Z\} \cup \{n-3,n\} \text{ if } 1, n-2 \in Z \text{ and } 2, n-3 \notin Z\} \cup \{n-3,n\} \text{ if } 1, n-2 \in Z \text{ and } 2, n-3 \notin Z\} \cup \{n-3,n\} \text{ if } 1, n-2 \in Z \text{ and } 2, n-3 \notin Z\} \cup \{n-3,n\} \text{ if } 1, n-2 \in Z \text{ and } 2, n-3 \notin Z\} \cup \{n-3,n\} \text{ if } 1, n-2 \in Z \text{ and } 2, n-3 \notin Z\} \cup \{n-3,n\} \text{ if } 1, n-2 \in Z \text{ and } 2, n-3 \notin Z\} \cup \{n-3,n\} \text{ if } 1, n-2 \in Z \text{ and } 2, n-3 \notin Z\} \cup \{n-3,n\} \text{ if } 1, n-2 \in Z \text{ and } 2, n-3 \notin Z \text
                                                                                                                                                                          \{(Z - \{n-3\}) \cup \{n-2, n-1\} \text{ if } n-3, n-4, n-5 \in Z \text{ and } 1 \notin Z\} \cup \{n-2, n-1\} \text{ if } n-3, n-4, n-5 \in Z \text{ and } 1 \notin Z\} \cup \{n-2, n-1\} \text{ if } n-3, n-4, n-5 \in Z \text{ and } 1 \notin Z\}
                                                                                                                                                                          \{(Z - \{n-3\}) \cup \{n, n-1\} \text{ if } n-3, n-4, n-5 \in Z \text{ and } n-2 \notin Z\} \cup \{(Z - \{n-3\}) \cup \{n, n-1\} \text{ if } n-3, n-4, n-5 \in Z \text{ and } n-2 \notin Z\} \cup \{(Z - \{n-3\}) \cup \{n, n-1\} \text{ if } n-3, n-4, n-5 \in Z \text{ and } n-2 \notin Z\} \cup \{(Z - \{n-3\}) \cup \{n, n-1\} \text{ if } n-3, n-4, n-5 \in Z \text{ and } n-2 \notin Z\} \cup \{(Z - \{n-3\}) \cup \{n, n-1\} \text{ if } n-3, n-4, n-5 \in Z \text{ and } n-2 \notin Z\} \cup \{(Z - \{n-3\}) \cup \{n, n-1\} \text{ if } n-3, n-4, n-5 \in Z \text{ and } n-2 \notin Z\} \cup \{(Z - \{n-3\}) \cup \{n, n-1\} \text{ if } n-3, n-4, n-5 \in Z \text{ and } n-2 \notin Z\} \cup \{(Z - \{n-3\}) \cup \{n, n-1\} \text{ if } n-3, n-4, n-5 \in Z \text{ and } n-2 \notin Z\} \cup \{(Z - \{n-3\}) \cup \{n, n-1\} \text{ if } n-3, n-4, n-5 \in Z \text{ and } n-2 \notin Z\} \cup \{(Z - \{n-3\}) \cup \{n, n-1\} \text{ if } n-3, n-4, n-5 \in Z \text{ and } n-2 \notin Z\} \cup \{(Z - \{n-1\}) \cup \{n, n-1\} \text{ if } n-3, n-4, n-5 \in Z \text{ and } n-2 \notin Z\} \cup \{(Z - \{n-1\}) \cup \{n, n-1\} \text{ if } n-3, n-4, n-5 \in Z \text{ and } n-2 \notin Z\} \cup \{(Z - \{n-1\}) \cup \{n, n-1\} \text{ if } n-3, n-4, n-5 \in Z \text{ and } n-2 \notin Z\} \cup \{(Z - \{n-1\}) \cup \{n, n-1\} \text{ if } n-3, n-4, n-5 \in Z \text{ and } n-2 \notin Z\} \cup \{(Z - \{n-1\}) \cup \{n, n-1\} \text{ if } n-3, n-4, n-5 \in Z \text{ and } n-2 \notin Z\} \cup \{(Z - \{n-1\}) \cup \{n, n-1\} \text{ if } n-3, n-4, n-5 \in Z \text{ and } n-2 \notin Z\} \cup \{(Z - \{n-1\}) \cup \{n, n-1\} \text{ if } n-3, n-4, n-5 \in Z \text{ and } n-2 \notin Z\} \cup \{(Z - \{n-1\}) \cup \{n, n-1\} \text{ if } n-3, n-4, n-5 \in Z \text{ and } n-2 \notin Z\} \cup \{(Z - \{n-1\}) \cup \{n, n-1\} \text{ if } n-3, n-4, n-5 \in Z \text{ and } n-2 \notin Z\} \cup \{(Z - \{n-1\}) \cup \{n, n-1\} \text{ if } n-3, n-4, n-4 \in Z \text{ if } n-2 \in Z \text{ and } n-2 \notin Z\} \cup \{(Z - \{n-1\}) \cup \{n, n-1\} \text{ if } n-2 \in Z \text{ if } n-2 
           \{(Z - \{n-2, n-3\}) \cup \{n-4, n-3, n\} \text{ if } 1, n-6, n-5 \in Z \text{ and } n-4, n-3 \notin Z\} \cup \{(Z - \{n-2, n-3\}) \cup \{n-4, n-3, n\} \text{ if } 1, n-6, n-5 \in Z \text{ and } n-4, n-3 \notin Z\} \cup \{(Z - \{n-2, n-3\}) \cup \{n-4, n-3, n\} \text{ if } 1, n-6, n-5 \in Z \text{ and } n-4, n-3 \notin Z\} \cup \{(Z - \{n-2, n-3\}) \cup \{n-4, n-3, n\} \text{ if } 1, n-6, n-5 \in Z \text{ and } n-4, n-3 \notin Z\} \cup \{(Z - \{n-2, n-3\}) \cup \{n-4, n-3, n\} \text{ if } 1, n-6, n-5 \in Z \text{ and } n-4, n-3 \notin Z\} \cup \{(Z - \{n-2, n-3\}) \cup \{n-4, n-3, n\} \text{ if } 1, n-6, n-5 \in Z \text{ and } n-4, n-3 \notin Z\} \cup \{(Z - \{n-2, n-3\}) \cup \{n-4, n-3, n\} \text{ if } 1, n-6, n-5 \in Z \text{ and } n-4, n-3 \notin Z\} \cup \{(Z - \{n-2, n-3\}) \cup \{n-4, n-3, n\} \text{ if } 1, n-6, n-5 \in Z \text{ and } n-4, n-3 \notin Z\} \cup \{(Z - \{n-2, n-3\}) \cup \{n-4, n-3, n\} \text{ if } 1, n-6, n-5 \in Z \text{ and } n-4, n-3 \notin Z\} \cup \{(Z - \{n-2, n-3\}) \cup \{n-4, n-3, n\} \text{ if } 1, n-6, n-5 \in Z \text{ and } n-4, n-3 \notin Z\} \cup \{(Z - \{n-2, n-3\}) \cup \{n-4, n-3, n\} \text{ if } 1, n-6, n-5 \in Z \text{ and } n-4, n-3 \notin Z\} \cup \{(Z - \{n-2, n-3\}) \cup \{n-4, n-3, n\} \text{ if } 1, n-6, n-5 \in Z \text{ and } n-4, n-3 \notin Z\} \cup \{(Z - \{n-3, n-3, n\}) \cup \{n-4, n-3, n\} \text{ if } 1, n-6, n-5 \in Z \text{ and } n-4, n-3 \notin Z\} \cup \{(Z - \{n-3, n-3, n\}) \cup \{n-4, n-3, n\} \text{ if } 1, n-6, n-5 \in Z \text{ and } n-4, n-3 \in Z \text{ if } 1, n-6, n-5 \in Z \text{ and } n-4, n-3 \in Z \text{ if } 1, n-6, n-5 \in Z \text{ and } n-4, n-3 \in Z \text{ if } 1, n-6, n-5 \in Z \text{ and } n-4, n-3 \in Z \text{ if } 1, n-6, n-6 \in Z \text{ and } 1, n-6, n-6 \in Z \text{ and } 1, 
                                                                           \{(Z - \{n-3, n-4\}) \cup \{n-5, n-2, n-1\} \ if \ 2, n-3 \in Z \ and \ 1, n-2 \notin Z\} \cup \{n-3, n-4\} \}
                                                            \{(Z - \{n-4\}) \cup \{n-3, n-2\} \ if \ n-6, n-5, n-4 \in Z \ and \ n-2, n-3 \notin Z\} \ \cup \}
\{(Z - \{n-2, n-3\}) \cup \{n-4, n-1, n\} \ if \ n-5, n-3, n-2 \in Z \ and \ 1, 2, n-4 \notin Z\}
```

 $\text{where } X \in \mathfrak{D}_t \ (C_{n\text{-}1}, \ i\text{-}1) - \ \mathfrak{D}_t \ (C_{n\text{-}2}, \ i\text{-}1), \ Y \in \mathfrak{D}_t \ (C_{n\text{-}1}, \ i\text{-}1) \cap \mathfrak{D}_t \ (C_{n\text{-}2}, \ i\text{-}1) \ \text{and} \ Z \in \mathfrak{D}_t \ (C_{n\text{-}1}, \ i\text{-}1) - \ (\mathfrak{D}_t \ (C_{n\text{-}2}, \ i\text{-}1) \cap \mathfrak{D}_t \ (C_{n\text{-}2}, \ i\text{-}1) \cap \mathfrak$

Proof:

- (ii) Since $\mathfrak{D}_{t}(C_{n-2}, i-1) = \phi$ and $\mathfrak{D}_{t}(C_{n-1}, i-1) \neq \phi$, by lemma 2.6, i = n. Therefore, $\mathfrak{D}_{t}(C_{n}, i) = \mathfrak{D}_{t}(C_{n}, n) = \{[n]\}$.
- (iii) If $\mathfrak{D}_{t}(C_{n-1}, i-1) \neq \varphi$, $\mathfrak{D}_{t}(C_{n-2}, i-1) \neq \varphi$ and $\mathfrak{D}_{t}(C_{n-3}, i-1) = \varphi$, then by lemma 2.6, i = n-1 then $\mathfrak{D}_{t}(C_{n}, i) = \mathfrak{D}_{t}(C_{n}, n-1) = \{ [n] \{x\}/x \in [n] \}$.
- (iv) First, we consider the collection of total domination sets \mathfrak{D}_t (C_{n-1} , i-1) $-\mathfrak{D}_t$ (C_{n-2} , i-1). Each member of the above collection contains 1 and n-1 or n-1 and n-2 or 1 and 2. In particular, the total dominating sets contain 1 or n-1. So, we easily adjoin n to each of the member of \mathfrak{D}_t (C_{n-1} , i-1) -t (C_{n-2} , i-1). Let $X \in \mathfrak{D}_t$ (C_{n-1} , i-1) $-\mathfrak{D}_t$ (C_{n-2} , i-1). Let $X_1 = X \cup \{n\}$. Therefore, $X_1 \in \mathfrak{D}_t$ (C_n ,i).

Next, we consider \mathfrak{D}_t $(C_{n-1}, i-1) \cap \mathfrak{D}_t$ $(C_{n-2}, i-1)$. The members of the intersection contain 1 or 2 or n-2 or n-3 or different combinations among themselves. In particular, 1 and n-2 play a very important role in the construction of new total dominating sets. Let Y belongs to the intersection. When $1 \in Y$, adjoin n with Y or when $n-2 \in Y$, adjoin n-1 with Y or when $n-2 \notin Y$ and n-3, $n-4 \in Y$, adjoin n-2 with Y or when $1 \notin Y$ and $n-2 \in Y$, adjoin 1 with Y or when $n-2 \notin Y$ and 1, 2, 3, $n-3 \in Y$ then remove 1 from Y and adjoin n and n-1. Hence, in this collection we have the double the number of members of their intersection and the elements of the intersection give rise to double number of distinct elements in \mathfrak{D}_t (C_n, i) . Therefore, in each case, the new element Y_1 (generated by Y) belongs to \mathfrak{D}_t (C_n, i) .

Finally, we consider the set, \mathfrak{D}_t (C_{n-2} , i-1) - (\mathfrak{D}_t (C_{n-1} , i-1) \cap \mathfrak{D}_t (C_{n-2} , i-1)). Let $Z \in \mathfrak{D}_t$ (C_{n-2} , i-1) - (\mathfrak{D}_t (C_{n-1} , i-1) \cap \mathfrak{D}_t (C_{n-2} , i-1). When 1, n-2, n-3 \in Z and 2 \notin Z, adjoin n with Z or when 1,2,n-2 \in Z and n-3 \notin Z adjoin n-1 to Z or when 1,2 \notin Z and n-4 \in Z, remove n-2 from Z and adjoin n and n-1 or when n-2, n-3 \notin Z and 3 \in Z, remove 1 from Z and adjoin n and n-1 or when n-3, n-4, n-5 \in Z and 1 \notin Z then remove n-3 and adjoin n-1 and n-2 or when 1, n-2 \in Z and 2, n-3 \notin Z then remove n-2 and adjoin n and n-3. Also, when n-3, n-4, n-5 \in Z and n-2 \notin Z, remove n-3 and adjoin n and n-1 or when n-6, n-5, 1 \in Z and n-3, n-4 \notin Z, remove n-2 and n-3 and adjoin n-4, n-3, n or when 2, n-3 \in Z and 1, n-2 \notin Z remove n-3 and n-4 and adjoin n-5, n-2, n-1 or when n-4, n-5, n-6 \in Z and n-2, n-3 \notin Z remove n-4 and adjoin n-2 and n-3 or when n-2, n-3, n-5 \in Z and 1, 2, n-4 \notin Z remove n-2, n-3 from Z and adjoin n, n-1, n-4. Hence the new total dominating set Z₁ (generated by Z) belongs to \mathfrak{D}_t (C_n ,i). Therefore, we proved that X_1 , Y_1 , $Z_1 \in$ \mathfrak{D}_t (C_n ,i).

Conversely, Suppose that $K \in \mathfrak{D}_t$ (C_n,i) . The total dominating set K contains 1 or 2 or n or n-1. By the same argument as above, remove any one of the vertex from the above four vertices, we have, $K = M \cup \{x\}$, M is an element of \mathfrak{D}_t $(C_{n-1},i-1)$ or \mathfrak{D}_t $(C_{n-2},i-1)$ or both. Hence the statement.

Theorem 2.8: If $\mathfrak{D}_t(C_n, i)$ is the family of the dominating sets of C_n with cardinality i, where $i > \lceil \frac{n}{2} \rceil + 1$, then,

$$d_t(C_n, i) = d_t(C_{n-1}, i-1) + d_t(C_{n-2}, i-1).$$

Proof: From theorem 2.6, we consider all the three cases as given below, where $i > \lceil \frac{n}{2} \rceil + 1$,

- (i) If $\mathfrak{D}_t(C_{n-1}, i-1) = \mathfrak{D}_t(C_{n-2}, i-1) = \phi$, then, $\mathfrak{D}_t(C_n, i) = \phi$
- (ii) If $\mathfrak{D}_{t}(C_{n-1}, i-1) \neq \emptyset$ and $\mathfrak{D}_{t}(C_{n-2}, i-1) = \emptyset$ then $\mathfrak{D}_{t}(C_{n}, i) = \{\{n\} \cup X/X \in \mathfrak{D}_{t}(C_{n-1}, i-1)\}$
- (iii) If \mathfrak{D}_t $(C_{n\text{-}1}, i\text{-}1) \neq \varphi$ and \mathfrak{D}_t $(C_{n\text{-}2}, i\text{-}1) \neq \varphi$, then $\mathfrak{D}_t(C_n, i) =$

A. Vijayan* & S. Sanal Kumar/ On Total Domination sets and Polynomials of Cycles / IJMA- 3(4), April-2012, Page: 1379-1385

$$\left\{ \begin{array}{l} \{ X \cup \{n\} \} \ \cup \\ \{ Y \cup \{n\} \ if \ 1 \in Y \} \ \cup \\ \{ Y \cup \{n-1\} \ if \ n-2 \in Y \} \ \cup \\ \{ Y \cup \{1\} \ if \ n-2 \in Y \ and \ 1 \not \in Y \} \ \cup \\ \{ Y \cup \{n-2\} \ if \ n-3, n-4 \in Y \ and \ n-2 \not \in Y \} \ \cup \\ \{ (Y-\{1\}) \cup \{n,n-1\} \ if \ 1,2,3,n-3 \in Y \ and \ n-2 \not \in Y \} \ \cup \\ \{ (Z-\{n-2\}) \cup \{n,n-1\} \ if \ 1,2 \not \in Z \ and \ n-4 \in Z \} \ \cup \\ \{ Z \cup \{n\} \} \ if \ 1,n-2,n-3 \in Z \ and \ 2 \not \in Z \} \ \cup \\ \{ Z \cup \{n-1\} \} \ if \ 1,2,n-2 \in Z \ and \ n-3 \not \in Z \} \ \cup \\ \{ (Z-\{1\}) \cup \{n-1,n\} \ if \ n-3,n-2,\not \in Z \ and \ 3 \in Z \} \ \cup \\ \{ (Z-\{n-2\}) \cup \{n-3,n\} \ if \ 1,n-2 \in Z \ and \ 2,n-3 \not \in Z \} \ \cup \\ \{ (Z-\{n-3\}) \cup \{n-2,n-1\} \ if \ n-3,n-4,n-5 \in Z \ and \ n-2 \not \in Z \} \ \cup \\ \{ (Z-\{n-3,n-4\}) \cup \{n-4,n-3,n\} \ if \ 1,n-6,n-5 \in Z \ and \ 1,n-2 \not \in Z \} \ \cup \\ \{ (Z-\{n-3\}) \cup \{n-3,n-2\} \ if \ n-6,n-5,n-4 \in Z \ and \ n-2,n-3 \not \in Z \} \ \cup \\ \{ (Z-\{n-3,n-4\}) \cup \{n-3,n-2\} \ if \ n-6,n-5,n-4 \in Z \ and \ 1,2,n-4 \not \in Z \} \ \cup \\ \{ (Z-\{n-2,n-3\}) \cup \{n-4,n-1,n\} \ if \ n-5,n-3,n-2 \in Z \ and \ 1,2,n-4 \not \in Z \} \ \cup \\ \{ (Z-\{n-2,n-3\}) \cup \{n-4,n-1,n\} \ if \ n-5,n-3,n-2 \in Z \ and \ 1,2,n-4 \not \in Z \} \ \cup \\ \{ (Z-\{n-2,n-3\}) \cup \{n-4,n-1,n\} \ if \ n-5,n-3,n-2 \in Z \ and \ 1,2,n-4 \not \in Z \} \ \cup \\ \{ (Z-\{n-2,n-3\}) \cup \{n-4,n-1,n\} \ if \ n-5,n-3,n-2 \in Z \ and \ 1,2,n-4 \not \in Z \} \ \cup \\ \{ (Z-\{n-2,n-3\}) \cup \{n-4,n-1,n\} \ if \ n-5,n-3,n-2 \in Z \ and \ 1,2,n-4 \not \in Z \} \ \cup \\ \{ (Z-\{n-2,n-3\}) \cup \{n-4,n-1,n\} \ if \ n-5,n-3,n-2 \in Z \ and \ 1,2,n-4 \not \in Z \} \ \} \ \}$$

Where $X \in \mathfrak{D}_{t}(C_{n-1}, i-1) - \mathfrak{D}_{t}(C_{n-2}, i-1), Y \in \mathfrak{D}_{t}(C_{n-1}, i-1) \cap \mathfrak{D}_{t}(C_{n-2}, i-1) \text{ and } Z \in \mathfrak{D}_{t}(C_{n-1}, i-1) - (\mathfrak{D}_{t}(C_{n-2}, i-1) \cap \mathfrak{D}_{t}(C_{n-2}, i-1))$ $\mathfrak{D}_{t}\left(C_{n-2},i-1\right)$).

From the above construction in each case, we obtain that,

$$d_t(C_n, i) = d_t(C_{n-1}, i-1) + d_t(C_{n-2}, i-1).$$

Theorem 2.9: Let C_n , $n \ge 3$ be the cycle with $|V(C_n)| = n$. Then, the following properties hold:

- For $n \ge 3$, $d_t(C_n, n) = 1$
- For $n \ge 3$, $d_t(C_n, n-1) = n$ (ii)
- (iii)
- For $n \ge 5$, $d_t(C_n, n-2) = \frac{1}{2}n(n-3)$ For $n \ge 7$, $d_t(C_n, n-3) = \frac{1}{6}[n(n^2-9n+20)]$ (iv)
- For $k \ge 1$, $d_t(C_{4k}, 2k) = 4$ (v)
- (vi) For $k \ge 1$, $d_t(C_{2k+1}, k+1) = 2k+1$
- (vii) For $k \ge 1$, $d_t(C_{4k}, 2k+1) = 4k^2$
- (viii) For $k \ge 1, d_t(C_{4k+2}, 2k+2) = (2k+1)^2$

Proof:

- (i) For any graph G with n vertices, we have $d_t(G, n) = 1$. Hence, $d_t(C_n, n) = 1$.
- (ii) For any graph G with n vertices and δ (G) \geq 2, then, we have d (G, n-1) = n. Hence d_t (C_n, n-1) = n.
- (iii) Proof by induction on n. First, suppose that n = 5, then $d_t(C_5, 3) = 5$. Now suppose that the result is true for all natural numbers less than n. From theorem 2.8,

$$\begin{split} \text{(iv)} \quad d_t \; (C_n, \, n\text{--}2) &= d_t \, (C_{n\text{--}1}, \, n\text{--}3) + d_t \, (C_{n\text{--}2}, \, n\text{--}3), \, n \geq 6 \\ &= \; \frac{1}{2} \, (n\text{--}1)(n\text{--}4) + n\text{--}2 \\ &= \; \frac{1}{2} \, n(n\text{--}3). \end{split}$$

Proof by induction on n. First, suppose that n = 7, then $d_t(C_7, 7-3) = 7$. Now suppose that the result is true for all the natural numbers less than n. Therefore,

$$d_t(C_m, m-3) = m(m^2 - 9m+20), 7 \le m \le n-1.$$

$$\begin{split} \text{From theorem 2.8, } d_t\left(C_n,\, n\text{--}3\right) &= d_t\left(C_{n\text{--}1},\, n\text{--}4\right) + d_t\left(C_{n\text{--}2},\, n\text{--}4\right) \\ &= \frac{1}{6}\left(n-1\right)\left(\left(n\text{--}1\right)^2 - 9\left(n\text{--}1\right) + 20\right) + \frac{1}{2}\left(n-2\right)(n-5) \\ &= \frac{1}{6}\left(n-1\right)\left(n^2\text{--}11n\text{+-}30\right) + \frac{1}{2}\left(n^2-7n\text{+-}10\right) \\ &= \frac{1}{6}\left[n^3\text{--}9n^2 + 20n\right] \\ &= \frac{1}{6}\,n(n^2\text{--}9n\text{+-}20). \end{split}$$

Hence the result is true for all n.

1}, $\{3,4,7,8,\ldots,4k-1,4k\}$, $\{1,4,5,8,\ldots,4k-3,4k\}$.

Hence
$$d_t(C_{4k}, 2k) = 4$$
.

(vii) Consider a cycle C_{2k+1} . Then it has 2k+1 vertices, The total dominating sets of C_{2k+1} of cardinality k+1 are $\{1,2,5,6,9,10,\ldots$ $2k-3, 2k-2, 2k+1\}, \{2,3,6,7,10,11,\ldots$ $2k-2, 2k-1,1\}, \{3,4,7,8,11,12,\ldots$ 2k-1, 2k,2},..... $\{2k+1, 1,4,5,.....2k-4, 2k-3, 2k\}$. Therefore, we have 2k+1 total dominating sets C_{2k+1} cardinality k+1. Hence $d_t(C_{2k+1}, k+1) = 2k+1$.

By observation, easily we can see (vii) and (viii).

3. TOTAL DOMINATION POLYNOMIAL OF CYCLE

Definition 3.1: Let $\mathfrak{D}_t(C_n, i)$ be the family of total dominating sets of C_n with cardinality i, and let $d_t(C_n, i) = |\mathfrak{D}_t|$ (C_n, i) . Then the total dominating polynomial $D_t(C_n, x)$ of C_n is defined as

$$D_{t}(C_{n}, x) = \sum_{i=\gamma t}^{n} (C_{n}) d_{t}(C_{n}, i) x^{i}.$$

Particularly, the total domination polynomial of C_n is defined by

$$D_t(C_n, x) = \sum_{i=1+n/2}^n d_t(C_n, i) x^i$$
, if $n \equiv 2 \pmod{4}$.

$$D_t(C_n, x) = \sum_{i=\lceil n/2 \rceil}^n d_t(C_n, i) x^i$$
, if $n \not\equiv 2 \pmod{4}$.

 $\begin{array}{ll} \textbf{Theorem 3.2:} \ Let \ C_n, \ n \geq 3 \ be \ a \ cycle \ with \ |V \ (C_n)| = n. \ Then, \ for \ any \ k \geq 1 \\ (i) \qquad D_t \ (C_{4k}, \ x) = 4x^{2k} + x \ [\ D_t \ (C_{4k-1} \ , \ x) + D_t \ (C_{4k-2} \ , \ x) \] \end{array}$

- (ii) $D_t(C_{4k+1}, x) = -2x^{2k+1} + x [D_t(C_{4k}, x) + D_t(C_{4k-1}, x)]$ (iii) $D_t(C_{4k+2}, x) = -4x^{2k+1} + x [D_t(C_{4k+1}, x) + D_t(C_{4k}, x)]$
- (iv) $D_t(C_{4k+3}, x) = 2x^{2k+2} + x [D_t(C_{4k+2}, x) + D_t(C_{4k+1}, x)].$

Proof: Proof of (i).

From theorem 2.7 and 2.8, d_t (C_{4k} , 2k) = 4, $k \ge 1$

$$d_t\left(C_{4k},\,2k+m\right) = d_t\left(C_{4k\text{-}1}\,,\,2k+m\text{-}1\right) + d_t\left(C_{4k\text{-}2},\,2k+m\text{-}1\right), \quad 2 \leq m \leq 2k.$$

Summing all the equalities, we get,

$$\begin{array}{l} D_t\left(C_{4k},\,x\right) = d_t\!\left(C_{4k},\,2k\right)\,x^{2k} + \sum_{m=1}^{2k} \,d_t\left(C_{4k},\,2k\!+\!m\right)\,x^{2k\!+\!m}. \\ = 4\,\,x^{2k} + \sum_{m=1}^{2k} \,\left[d_t\left(C_{4k\!-\!1},\,2k\!+\!m\!-\!1\right) + d_t\left(C_{4k\!-\!2},\,2k\!+\!m\!-\!1\right)\right]\,x^{2k\!+\!m} \\ = 4\,\,x^{2k} + \sum_{m=1}^{2k} \,d_t\left(C_{4k\!-\!1},\,2k\!+\!m\!-\!1\right)\,x^{2k\!+\!m} + \sum_{m=2}^{2n} \,d_t\left(C_{4k\!-\!2},\,2k\!+\!m\!-\!1\right)\,x^{2k\!+\!m}. \\ = 4\,\,x^{2k} + \,x\,\,\sum_{m=1}^{2k} \,d_t\left(C_{4k\!-\!1},\,2k\!+\!m\!-\!1\right)\,x^{2k\!+\!m\!-\!1} + \,x\,\,\sum_{m=1}^{2k} \,d_t\left(C_{4k\!-\!2},\,2k\!+\!m\!-\!1\right)\,x^{2k\!+\!m\!-\!1} \\ = 4\,\,x^{2k} + \,x\,\,\left[D_t\!\left(C_{4k\!-\!1},\,x\right) + D_t\left(C_{4k\!-\!2},\,x\right)\right]. \end{array}$$

Hence,
$$D_t(C_{4k}, x) = 4 x^{2k} + x [D_t(C_{4k-1}, x) + D_t(C_{4k-2}, x)]$$

Proof of (ii).

From theorem 2.7 and 2.8, we have $D_t(C_{4k+1}, 2k+1) = 4k + 1$ and

$$d_t(C_{4k+1}, 2k+m) = d_t(C_{4k}, 2k+m-1) + d_t(C_{4k-1}, 2k+m-1), 2 \le m \le 2k+1.$$

$$\begin{aligned} &\text{Now, D}_t\left(C_{4k+1},\,x\right) = d_t(C_{4k+1},\,2k+1)\,\,x^{2k+1} + \sum_{m=2}^{2k+1}\,d_t\left(C_{4k+1},\,2k+m\right)\,x^{2k+m} \\ &= d_t\left(C_{4k+1},\,2k+1\right)\,x^{2k+1} + \sum_{m=2}^{2k+1}\,\,\left[d_t\left(C_{4k},\,2k+m-1\right) + d_t\left(C_{4k-1},\,2k+m-1\right)\right]\,x^{2k+m} \\ &= d_t\left(C_{4k+1},\,2k+1\right)\,x^{2k+1} + \sum_{m=2}^{2k+1}\,d_t\left(C_{4k},\,2k+m-1\right)\,x^{2k+m} + \sum_{m=2}^{2k+1}\,d_t\left(C_{4k-1},\,2k+m-1\right)\,x^{2k+m} \\ &= (4k+1)\,x^{2k+1} + x\,\left[\sum_{m=1}^{2k+1}\,d_t\left(C_{4k},\,2k+m-1\right)\,x^{2k+m-1} - d_t(C_{4k},\,2k)\,x^{2k}\right] + x\,\left[\sum_{m=1}^{2k+1}\,d_t(C_{4k-1},\,2k)x^2\right] \\ &= (4k+1)\,x^{2k+1} + x\,\left[D_t(C_{4k},\,x) - 4\,x^2\right] + x\,\left[D_t(C_{4k-1},\,x) - (4k-1)^{2k}\right] \\ &= \left[(4k+1) - 4 - (4k-1)\right]\,x^{2k+1} + x\,D_t\left(C_{4k},x\right) + x\,D_t\left(C_{4k-1},\,x\right) \end{aligned}$$

$$D_t\left(C_{4k+1},\,x\right) = \text{-}\ 2x^{2k+1} + x\ [\ D_t\left(C_{4k},x\right) + D_t\left(C_{4k-1},x\right)\].$$

Proof of (iii):

From theorem 2.7 and 2.8, $d_t(C_{4k+2}, 2k+2) = (2k+1)^2$, $1 \le k$ and

$$d_t(C_{4k+2}, 2k+m) = d_t(C_{4k+1}, 2k+m-1) + d_t(C_{4k}, 2k+m-1), 3 \le m \le 2k+2$$

$$\begin{array}{l} \text{Now } D_t \left(C_{4k+2}, \, x \right) = d_t \left(C_{4k+2}, \, 2k+2 \right) \, x^{2k+2} + \sum_{m=3}^{2k+2} \, d_t \left(C_{4k+2}, \, 2k+m \right) \, x^{2k+m} \\ = d_t \left(C_{4k+2}, \, 2k+2 \right) \, x^{2k+2} + \sum_{m=3}^{2k+2} \, \left[d_t \left(C_{4k+1}, \, 2k+m-1 \right) + d_t \left(C_{4k}, \, 2k+m-1 \right) \, x^{2k+m} \right. \\ = \left(2k+1 \right)^2 \, x^{2k+2} + \sum_{m=3}^{2k+2} \, d_t \left(C_{4k+1}, \, 2k+m-1 \right) \, x^{2k+m} + \sum_{m=3}^{2k+2} \, d_t \left(C_{4k}, \, 2k+m-1 \right) \, x^{2k+m} \\ = \left(2k+1 \right)^2 \, x^{2k+2} + x \left[\begin{array}{c} \sum_{m=2}^{2k+2} \, d_t (C_{4k+1}, \, 2k+m-1) \, x^{2k+m-1} - d_t \left(C_{4k+1}, \, 2k+1 \right) \, x^{2k+1} \right] \\ + x \left[\begin{array}{c} \sum_{m=1}^{2k+2} \, d_t \left(C_{4k}, \, 2k+m-1 \right) \, x^{2k+m-1} - d_t (C_{4k}, \, 2k) \, x^{2k} - d_t \left(C_{4k}, \, 2k+1 \right) \, x^{2k+1} \right] \\ = \left(2k+1 \right)^2 \, x^{2k+2} - \left(4k+1 \right) \, x^{2k+2} - 4 \, x^{2k+1} - 4k^2 x^{2k+2} + x \, D_t \left(C_{4k+1}, \, x \right) + x \, D_t \left(C_{4k}, \, x \right) \\ = -4 x^{2k+1} + \left(4k^2 + 4k + 1 - 4k - 1 - 4k^2 \right) \, x^{2k+2} + x \, \left[D_t \left(C_{4k+1}, \, x \right) + D_t \left(C_{4k}, \, x \right) \right] \\ D_t \left(C_{4k+2}, \, x \right) = -4 x^{2k+1} + x \, \left[D_t \left(C_{4k+1}, \, x \right) + D_t \left(C_{4k}, \, x \right) \right]. \end{array}$$

Proof of (iv)

From theorem 2.7 and 2.8, $d_t(C_{4k+3}, 2k+2) = 4k+3$ and

$$d_t\left(C_{4k+3},\,2k+m\right) = d_t\left(C_{4k+2},\,2k+m-1\right) + d_t\left(C_{4k+1},\,2k+m-1\right), \quad \ 3 \leq m \leq 2k+3$$

$$\begin{array}{l} \text{Now } D_t(C_{4k+3},\,x) = d_t \; (C_{4k+3},\,2k+2) \; x^{2k+2} + \sum_{m=3}^{2k+3} \; d_t \; (C_{4k+3},\,2k+m) \; x^{2k+m} \\ = d_t \; (C_{4k+3},\,2k+2) \; x^{2k+2} + \sum_{m=3}^{2k+3} \; \left[d_t \; (C_{4k+2},\,2k+m-1) + d_t \; (C_{4k+1},\,2k+m-1) \right] x^{2k+m} \\ = d_t \; (C_{4k+3},\,2k+2) \; x^{2k+2} + \sum_{m=3}^{2k+3} \; d_t (C_{4k+2},\,2k+m-1) \; x^{2k+m} + \sum_{m=3}^{2k+3} \; d_t \; (C_{4k+1},\,2k+m-1) \; x^{2k+m} \\ = (4k+3) \; x^{2k+2} + x \; \left[\; \sum_{m=3}^{2k+3} \; d_t \; (C_{4k+2},\,2k+m-1) x^{2k+m-1} \right] \\ \quad + x \; \left[\sum_{m=2}^{2k+3} \; d_t \; (C_{4k+1},\,2k+m-1) \; x^{2k+m-1} - d_t \; (C_{4k+1},\,2k+1) \; x^{2k+1} \right] \\ = (4k+3) \; x^{2k+2} + x \; \left[\sum_{m=3}^{2k+3} \; d_t \; (C_{4k+2},\,2k+m-1) x^{2k+m-1} \right] \\ \quad + x \; \left[\sum_{m=2}^{2k+3} \; d_t \; (C_{4k+1},\,2k+m-1) \; x^{2k+m-1} \right] \\ = \left[(4k+3) - (4k+1) \right] \; x^{2k+2} + x \; D_t \; (C_{4k+2},\,x) + x \; D_t \; (C_{4k+1},x) \end{array}$$

$$D_t(C_{4k+3}, x) = 2x^{2k+2} + x[D_t(C_{4k+2}, x) + D_t(C_{4k+1}, x)].$$

Using all the above theorems and lemmas, we obtain the coefficients of $D_t(C_k, i)$ for $2 \le n \le 18$ in Table 1.

i	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
C_3	3	1															
C_4	4	4	1														
C_5	0	5	5	1													
C_6	0	0	9	6	1												
C_7	0	0	7	14	7	1											
C_8	0	0	4	16	20	8	1										
C ₉	0	0	0	9	30	27	9	1									
C_{10}	0	0	0	0	25	50	35	10	1								
C_{11}	0	0	0	0	11	55	77	44	11	1							
C_{12}	0	0	0	0	4	36	105	112	54	12	1						
C_{13}	0	0	0	0	0	13	91	182	156	65	13	1					
C_{14}	0	0	0	0	0	0	49	196	294	210	77	14	1				
C_{15}	0	0	0	0	0	0	15	140	378	450	275	90	15	1			
C_{16}	0	0	0	0	0	0	4	64	336	672	660	352	104	16	1		
C_{17}	0	0	0	0	0	0	0	17	204	714	1122	935	442	119	17	1	
C_{18}	0	0	0	0	0	0	0	0	81	540	1386	1782	1287	546	135	18	1

Table 1: $d_t(C_n, i)$, the number of total dominating sets of C_n with cardinality i.

REFERENCES:

- [1] Alikhani.S and Hamzeh Torabi, 2010, On Domination Polynomials of complete partite Graphs, Worled Applied Sciences Journal, 9(1):23-24.
- [2] Alikhani.S and Peng.Y.H, 2008, Domination sets and Domination Polynomial of cycles, Global Journal of pure and Applied Mathematics, Vol.4 no2.

- [3] Alikhani.S and Peng.Y.H, 2009, Introduction to Domination Polynomial of a graph, arXiv: 0905.2251v1 [math.CO] 14 may.
- [4] Chartrand.G and Zhang.p, 2005, Introduction to Graph Theory, Mc Graw Hill, Higher Education.
- [5] Maryam Atapour and Nasrin Soltankhah, 2009, On Total Domination sets in Graphs, Int. J. Contemp. Math. Sciences, Vol.4, no.6, 253-257.
- [6] Vijayan.A, Sanal Kumar.S, On Total Domination Polynomial of graphs, submitted.
- [7] Vijayan.A, Sanal Kumar.S, On Total Domination sets and Polynomial of Paths, to appear in International Journal of Mathematics Research.
