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ABSTRACT

LetG = (V, E) be a graph without isolated vertices. A set S £V is a total dominating set of G, if every vertexu €V is
adjacent to an element of S. Let B, (C,, i) be the family of total dominating sets of a cycle C, with cardinality i. Let d
(Cy, 1) be the number of total dominating sets in D(C,, i). In this paper, we study the concept of total domination
polynomial for any cycle C,. The total domination polynomial for any cycle C, is the polynomial D«(C,, x) =
Yiiins2 A (Co, D) X', if N = 2(mod4) and Dy(Cy, X) = Xi, 21 i (Cp, 1) X' if n Z 2(mod4). We obtain some properties
of Dy(C, ,x) and its coefficients. Also, we calculate the reduction formula to derive the total domination polynomial of
cycles.
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1. INTRODUCTION

Let G = (V, E) be a graph. For any vertex u € V, we define the open neighborhood of u as the set N(u) defined by N(u)
= {v/uv € E } and the closed neighborhood of u as the set N[u] defined by N[u] = N(u) u {u}. For a subset S of V,
the open neighborhood of S is N(S) which is defined as the union of N(u) for all u € S and the closed neighborhood of
Sis defined as N(S) U S. The maximum degree of the graph G is denoted by A(G) and the minimum degree is denoted
by 3(G). A set S of vertices in a graph G is said to be a dominating set if every vertex u € V is either an element of S or
is adjacent to an element of S. A set of vertices in a graph G is said to be a total dominating set if every vertex u € V is
adjacent to an element of S. The domination number of a graph, denoted by y(G), is the minimum cardinality of the
dominating sets in G. The total domination number of a graph G, denoted by y:(G), is the minimum cardinality of the
total dominating sets in G.

We use the notation [x] for the smallest integer grater than or equal to x. Also, we denote the set {1, 2, 3,....n} by [x],
throughout this paper.

2. TOTAL DOMINATING SETS OF CYCLES

In this section, we are going to investigate the total domination sets of cycles and some of its properties.

Definition 2.1: Let G be a graph of order n with no isolated vertices. Let D(G, i) be the family of total dominating sets
of G with cardinality i and let di(G, i) = [D(G, i)|. Then the total domination polynomial ~ Dy(G, x) of G is defined as
Dy(G, x) = Z’{;ﬂ ) (G, 1) X', where 1,(G) is the total domination number of G.

Let C, n >3 be the cycle with n vertices. Let V (C;) ={1,2,....n}and E (C,)={(1,2),(23) ..evve verrnnee (n-1,n), (n,
1)}. Let D¢ (Cy, i) be the collection of total domination sets in C, with cardinality i. We shall investigate the total

domination sets of cycles.

Lemma 2.2: [4] For n > 3, the total domination number of the cycle, C,, is given by
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1+ if n=2(mod4)

'Yt(Cn) on .

[E] if n#2(mod4)

Lemma 2.3: Let C,, n >3 be the cycle with [V(C,)| = n. Then di(C,,, i) = 0if i< [%] or i>nand dy(Cy, i) >0if [%] <
i<n.

Proof: If n= 2(mod4), then the total domination number of the cycle C, is y(Cy) =1+ % Therefore, di(Cy, i) =0,
when i < 1+ % or i>n. And di(C,, i) >0, when 1+§ < i< n. When n # 2(mod4), then the total domination number
of Cy is 7(Cn) = [ | Therefore, d(Cy, i) = 0if i< [ Z]ori>n.Also, d(Cy, i) >0 when [ Z]<i< n.Hence, in
general, we have dy(C,, i) = 0 when i < [%] or i >nand di(Cy, i) > 0 when [%] <i<n.

Lemma 2.4: Let Cp,, n > 3 be the cycle with [V (C,)| = n. Then
(i) D(Chi)=0¢ ifi<y(Cyori>n.

(i) D¢ (Cy, X) has no constant term and first degree terms.
(iii) Dy (Cy, x) is a strictly increasing function on [0, «).

Proof is obvious.

Lemma 2.5: Let Cp,, n > 3 be the cycle with [V(G)| = n.

(i) 1D (Chy, i-1) = D¢ (Cphas, i-1) = &, then, D (Cpp, i-1) = .

(if) 1D (Chy, i-1) # and Dy (Cpg, i-1) # ¢ then Dy (Crp, i-1) # .

(iii) If D¢ (Chay, i-1) = D¢ (Cpaz, i-1) = Dy (Chp, i-1) = ¢ then D, (Cy, 1) = b.

The proof of the lemma follows from lemma 2.3.

Lemma 2.6: Let Cp, n > 3 be the cycle with |V(C,)| = n. Suppose that D; (Cy,i) # ¢, then we have

1) D (Chai-1) = and D (Cha, i-1) #P ifandonlyifi=n.

() D (Chy,i-1) #, Di(Chy, i-1) #P and D, (Chs, i-1) = ¢ ifand only if i = n-1.

(i) Di(Cpa,i-1)=¢ and D (Cy, i-1) = ¢ if and only if n = 4k, and i = 2k for some positive integer k.

(iv) D (Cha, i-1) =, Dt (Cha, i-1) #P and D, (Ch, i-1) # P ifand only if n = 4k-1, and i = 2k for some k.
V) Di(Chy, i-1) #d, Di(Chey, i-1) #d and D, (Chs, i-1) # P if and only if [”2;1] +1<i<n2

Proof: The proof of the lemma is similar to the proof of lemma [2.4] in [7]

Theorem 2.7 Foreveryn=>5andi>[ = ]+1,

(i) D (Ca 2K) = {{1 2, 5, 6 ... 4k-3, 4k-2}, {23,6,7, ... Ak-2,48k-1}, {3.4,78,...... \4k-1,4K}, {1,458,
........... , 4k-3,4k} }, where k > 1.

(i) 1 D (Cos i-1) = d and Dy (Coa, i-1) # b then Dy (Coy i) = De (Coy 1) ={{ 1,2,3,....n }}.

(iii) If Dy (Cpa, i-1) #, Dy (Cro, i-1) # p and Dy (Chg, i-1) = ¢ then Dy (Cy, i) = Dy (Cp, n-1) = {[n] - {x}/ x €[n]}-

(iv) 1fD(Cos, i-1) % and D (Coa i-1) # b then Dy (Cny i) =

{xuf{n}} v
{rvu{n} ifltevY}u
{rvufn—-1}ifn—-2€eY}uU
{(YU{l} ifn—2€Yand1&Y}u
{yuln-2tifn-3n—-4€eYandn—-2¢Y}uU
{vr—-{1hu{nn-1}if1,23,n—3€Yandn—-2¢Y}uU
{(Z-mn-2H)u{n,n—-1} if12¢Zandn—4€Z} U
{Zu{n}} ifi,n—-2n—-3€Zand2¢Z} U
{Zu{n—-1}} if1,2n—2€Zandn—-3¢Z}U
{(Z-{1Hpufn—-1,n} ifn—-3,n—-2,¢Zand3 €Z} U
{{Z-m-2un-3n}ifL,n—2€Zand2,n—-3 ¢ Z}u
{(Z-n-3hu{n-2,n—-1}ifn—-3,n—4n—-5€Zand1¢Z} U
{(Z-n-3hDu{n,n—-1}ifn—-3,n—4n—-5€Zandn—2¢Z7Z} U
{(Z-n-2n-3Du{n—-4n-3,n}ifil,mn—6,n—5€Zandn—4,n—-3¢Z} U
{(Z-n-3n—-4pPu{n-5n-2,n—-1}if2,n—3€Zand1l,n—-2¢ Z} U
{(Z-n—-4hHu{n-3,n-2}ifn—-6,n—5n—-4€Zandn—2,n—3 &7} U
{(Z-n-2n-3hDu{n—4n—-1,n}ifn—-5n—-3,n—2€Zand1,2,n—4 ¢ 7}
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where X € Dy (Coa, i-1) = Dy (Crs i-1), Y € Dy (Coat, i-1) N Dy (Cpy i-1) and ZE Dy (Cryy i-1) = (D; (Caezy i-1) N Dy
(Coz, i-1) ).

Proof:

(i) Forany k > 1, split the vertices of Cy in to k number of sets of the form {1,2,3,4 }, {5,678 }............ and { 4k-3,
4k-2, 4k-1, 4k }. The four total dominating sets of cardinality 2k are constructed by choosing the first two numbers in
each set or second and third or third and fourth or first and fourth from each set. Hence, ®; (C4x, 2k) has the only four
total dominating sets, such as, {1, 2, 5, 6, ...... ,4k-3, 4k-2}, {2,3,6,7, ......... 4k-2,4k-1}, {3,4,7,8,...... ,4k-1,4k},
{1,458, ........... , 4k-3,4k}.

(ii) Since D (Cyz, i-1) = ¢ and D (Cpy, i-1) #d, by lemma 2.6, i = n. Therefore, D, (C,, i) = D (Cy, n) = {[n]}.

(iii) If D¢ (Cpog, i-1) £ b, D¢ (Cpp, i-1) # b and Dy (Cy3, i-1) = P, then by lemma 2.6, i = n-1 then D, (C,, i) = D, (Cy, n-
1) ={[n]- {x}/x €[n] }.

(iv) First, we consider the collection of total domination sets D (Cy.1, i-1) — D (Cy2, i-1). Each member of the above
collection contains 1 and n-1 or n-1 and n-2 or 1 and 2. In particular, the total dominating sets contain 1 or n-1. So, we
easily adjoin n to each of the member of D, (Cy4, i-1) — { (Ch, i-1). Let X € D (Cpy, i-1) — Dy (Cpp, 1-1). Let X;= X
u{n}. Therefore, X; € D (Cy,i).

Next, we consider D; (Cpy, i-1) N D, (Cyp, i-1). The members of the intersection contain 1 or 2 or n-2 or n-3 or
different combinations among themselves. In particular, 1 and n-2 play a very important role in the construction of new
total dominating sets. Let Y belongs to the intersection. When 1 € Y, adjoin n with Y or when n-2 € Y, adjoin n-1 with
Y or when n-2 ¢ Y and n-3, n-4 € Y, adjoin n-2 with Y or when 1 ¢ Y and n-2 €Y, adjoin 1 with Y or when n-2 ¢ Y
and 1, 2, 3, n-3 € Y then remove 1 from Y and adjoin n and n-1. Hence, in this collection we have the double the
number of members of their intersection and the elements of the intersection give rise to double number of distinct
elements in Dy (Cy, i). Therefore, in each case, the new element Y; ( generated by Y ) belongs to D (C,, i).

Finally, we consider the set, D; (Cn, i-1) — (D¢ (Cpy, 1-1) N Dy (Cpp, i-1)). Let Z € Dy (Cprz, i-1) = (D (Cpy, 1-1) N Dy
(Ch2, 1-1). When 1, n-2, n-3 € Z and 2 & Z, adjoin n with Z or when 1,2,n-2 € Z and n-3 ¢ Z adjoin n-1 to Z or when
1,2 ¢ Zand n-4 € Z, remove n-2 from Z and adjoin n and n-1 or when n-2, n-3 ¢ Z and 3€ Z, remove 1 from Z and
adjoin n and n-1 or when n-3, n-4, n-5 € Zand 1 ¢ Z then remove n-3 and adjoin n-1 and n-2 or when 1, n-2 € Z and 2,
n-3 & Z then remove n-2 and adjoin n and n-3. Also, when n-3, n-4, n-5 € Z and n-2 ¢ Z, remove n-3 and adjoin n and
n-1 or when n-6, n-5, 1€ Z and n-3, n-4 ¢ Z, remove n-2 and n-3 and adjoin n-4,n-3, n or when 2,n-3 € Zand 1, n-2 ¢
Z ,remove n-3 and n-4 and adjoin n-5, n-2, n-1 or when n-4, n-5, n-6 € Z and n-2, n-3 & Z remove n-4 and adjoin n-2
and n-3 or when n-2,n-3,n-5 € Zand 1, 2, n-4 € Z remove n-2, n-3 from Z and adjoin n, n-1, n-4. Hence the new total
dominating set Z; (generated by Z) belongs to D (C,,i). Therefore, we proved that X; ,Y1, Z; € D (Cy,i).

Conversely, Suppose that K € D (Cp,i). The total dominating set K contains 1 or 2 or n or n-1. By the same argument
as above, remove any one of the vertex from the above four vertices, we have, K =M u{x}, Mis an element of D,
(Chog, 1-1) Or D¢ (Cprp, i-1) or both. Hence the statement.

Theorem 2.8: If D, (C,, i) is the family of the dominating sets of C, with cardinality i, where i > [%] +1, then,

di (Cy, 1) = d; (Cpy, i-1) + di (Cprp, i-1).

Proof: From theorem 2.6, we consider all the three cases as given below, where i > [%] +1,

(1) 1D (Cpa, i-1) = D (Cpra, i-1) = b, then, D; (Cpi) = P

(i) If D¢ (Cha, i-1) #¢ and D (Cp, i-1) = P then D (Cy, i) = {{n}U X/ X € D, (Cp4, i-1)}

(iii) 1f Dy (Cos, i-1) £ and Dy (Cpz, i-1) # b, then Dy(Cp,i) =
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{xufn}}u
{yu{n} if1erv} u
{vufn—-1}ifn—-2€evY}uU
{(YU{1} ifn—-2€Yand1¢Y}U
{vufn-2}ifn-3n—4€Yandn—-2¢Y}u
{d-{1hu{nn-1}if1,23,n—3€Yandn—2¢VY}uU
{(Z-n-2Hhu{n,n—-1} if1,2¢Zandn—4€Z} U
{Zu{n}} ifi,n—-2n—-3€Zand2¢Z}U
{Zu{n—-1}} if1,2n—2€Zandn—3¢Z} U
{(Z-{1Hufn—-1,n} ifn—-3,n—2,¢ Zand3 €Z} U
{{Z-m-2}um—-3,n}ifl,n—-2€Zand2,n—3 ¢ Z} U
{(Z-n-3hHDu{n—-2,n—-1}ifn—3,n—4n—-5€Zand1 ¢ Z} U
{(Z-n-3hHDu{n,n—-1}ifn-3,n—4,n—-5€Zandn—-2¢7Z} U
{(Z-n-2,n-3hDu{n—4n-3,n}ifl,m—6,n—5€Zandn—4,n—-3 ¢ Z} U
{(Z-n-3n-4pHhuf{n-5n-2,n—-1}if2,n—3€Zand1l,n—2¢ Z} U
{(Z-n—-4phHhu{n-3,n-2}ifn—-6,n—5n—-4€Zandn—-2,n—3 & Z} U
{(Z-tn-2n-3hDu{n—4n—-1,n}ifn—-5n—-3,n—2€Zand1,2,n—4 ¢ Z}

Where X € Dy (Coy, i-1) — Dy (Coz, i-1), Y € Dy (Cp, i-1) N Dy (Cpzy i-1) and ZE Dy (Co, i-1) — (D (Cpezy i-1) N
D, (Coz, i-1) ).

From the above construction in each case, we obtain that,
dy (Cp, 1) = d; (Cpog, i-1) + ¢ (Cprz, 1-1).

Theorem 2.9: Let C,,, n >3 be the cycle with | V(C,,)| = n. Then, the following properties hold:
(1) Forn>3,4(Cy,n)=1

(i) Forn>3,d(Cy,n-1)=n

(i) Forn>5,d (Cy,n-2) = 2 n(n-3)

(i)  Forn=7,d (Cyn-3) = ¢ [n(n’ 9n+20)]

(v)  Fork>1,d;(Cy, 2k)=4

(vi)  For k> 1, d; (Cye1, k+1) = 2k+1

(vii) For k>1, d; (Cyy, 2k+1) = 4k

(viii) For k> 1,d; (Cax+2, 2k +2) = (2k+1)?

Proof:

(i) For any graph G with n vertices, we have d; (G, n) = 1. Hence, d; (C,, n) =1.

(if) For any graph G with n vertices and 8 (G) > 2, then, we have ¢ (G, n-1) = n. Hence d; (C,, n-1) = n.

(iii) Proof by induction on n. First, suppose that n = 5, then d; (Cs, 3) = 5. Now suppose that the result is true for all
natural numbers less than n. From theorem 2.8,

(iv) d (Cn N-2) = d(Cp1, n-3) +  (Coz, 1-3), N > 6
= - (n-1)(n-4) +n-2
= %n(n-3).

(v) Proof by induction on n. First, suppose that n = 7, then d, (C;, 7-3) = 7. Now suppose that the result is true for all
the natural numbers less than n. Therefore,

d; (Coy Mm-3) = m(m?- 9m+20) , 7 <m <n-1.

From theorem 2.8, d; (C,, n-3) = d; (C-1, n-4) + d; (Cy2, n-4)

(- 1)((0-1)°- 9 (n-1) + 20) + % (- 2)(n - 5)
= (n—1) (1°-11n+30) + (n* - 7n+10)

% [n®-9n? +20n]

% n(n?-9n+20).

Hence the result is true for all n.
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(Vi) D (Cax, 2K) has the only four total dominating sets, such as, {1, 2,5, 6, ...... ,4k-3, 4k-2}, {2,3,6,7, .....,4k-2,4k-
1}, {3,4,78,...... 4k-1,4k}, {1,458, ........... , 4k-3,4k}.

Hence d; (Cy, 2k) = 4.

(vii) Consider a cycle Cy.q. Then it has 2k+1 vertices, The total dominating sets of Cy.; of cardinality k+1 are
{1,2,5,6,9,10,......... 2k-3, 2k-2, 2k+1}, {2,3,6,7,10,11,........ 2k-2, 2k-1,1} {3,4,7,8,11,12,....... 2k-1, 2Kk,
2 {2k+1, 1,45,....... 2k-4, 2k-3, 2k}. Therefore, we have 2k+1 total dominating sets Coys
cardinality k+1. Hence d; (Cpx+1. k+1) = 2k+1.

By observation, easily we can see (vii) and (viii).

3. TOTAL DOMINATION POLYNOMIAL OF CYCLE

Definition 3.1: Let D (C,, i ) be the family of total dominating sets of C, with cardinality i, and let di (Cry 1) =Dy
(Cy, )] Then the total dominating polynomial D, (C,, x) of C, is defined as

Dt (o X) = 21 ey it (Cns 1) X

Particularly, the total domination polynomial of C, is defined by
Dt (Coy X) = Xfq4n /2 di (Co, i) X', if 0 =2(mod4).
Dr (Co, X) = Xipn /21 de (Coy 1) X', if 0 £ 2(Mod4).

Theorem 3.2: Let Cp,, n > 3 be a cycle with [V (C,)| = n. Then, forany k > 1
(i)  D¢(Cae X) = 4x* + X [ Dy (Caer, X) + Dy (Carcz, X) ]

(i)  D¢(Casz, X) =-2X 2"+ X [ Dy (Car, X) + Dy (Carr, X)

(iii) D¢ (Caszr X) = - 4x "+ X [ Dy (Cagsz » X) + Dy (Cax, X) ]

(iv) Di(Casa, X) =2% 2 4 x [ Dt (Casz2 s X) + D¢ (Cagen, X) 1.

Proof: Proof of (i).
From theorem 2.7 and 2.8, d; (Cgy, 2k) =4,k > 1

d; (C4k, 2k+m) =d (C4k_1, 2k+m-1) + d; (C4k_2, 2k+m-1), 2 <m<2k

Summing all the equalities, we get,

D¢ (Cai, X) = di(Cax, 2K) X2 + X2k d; (Cay, 2k+m) x4,
=4 X%+ 32k [di (Car, 2k+m-1) + d; (Carp , 2k+m-1)] x2™
=4 X%+ Y2k d (Caer, 2k+m-1) X ™ + ¥2n  d, (Carep, 2k+m-1) X2,
=4 X+ x Y2, di (Caer, 2k#m-1) X2 ™+ x 32K, dy (Caxea, 2k+m-1) XK
= 4 x** + X [Df(Cater, X) + Dy (Caezr X)]-

Hence, D;(Cae X) =4 X%+ X [ D¢ (Caiers X) + D¢ (Caezs X)]

Proof of (ii).

From theorem 2.7 and 2.8, we have Dy(Cgyy+1, 2k+1) =4k +1 and

dt(C4k+1, 2k+m) =d (C4k, 2k+m-1) + dt(C4k_1, 2k+m-1) , 2 < m<2k+1.

Now, Dy (Caeet, X) = dCaper, 2K+1) XM+ X2KEL d, (Caprs, 2k#m) X2
= dy (Casg, 2k+1) X2K™ + 32k41 - 1d, (Cyy, 2k+M-1) + g (Caeq, 2k+m-1)] x2K ™

= dy (Casr, 2k+1) X2K™ + 32k41 g (Cpy, 2kAm-1) X2™ + F2K+1 g (Cpeq, 2ktm-1) x4

= (4k+1) X2 +2)1(<+[m§1:’2"k;11 di (Cax, 2k'2"km'1) XM - dy(Cak, 2K) X2 + X [ 224 di(Caea,
2k+m-1) 3™ dy(Cype, 2K)X* ]

= (4k+1) x** + x [D(Cyo X) -4 X + X [Df(Care, X) - (4k-1)*]

= [( 4k+1) - 4- (4k-1)] x*** + X Dy (CX) + X Dy (Caper, X)

Dy (Caker, X) = - 2x%“* +x [ D (CaX) + Dy (CarX) 1.

© 2012, IIMA. All Rights Reserved 1383



A. Vijayan* & S. Sanal Kumar/ On Total Domination sets and Polynomials of Cycles / IIMA- 3(4), April-2012, Page: 1379-1385
Proof of (iii):
From theorem 2.7 and 2.8, d; (Cyys2, 2k+2) = (2k+1)2, 1<k and
di (Caksz, 2k+m) = d; (Cyyss, 2k+m-1) + d; (Cai, 2k+m-1) , 3 <m < 2k+2

NOW Dy (Cacrz, X) = de (Carez, 2K+2) X2+ 22K42 d (Capr, 2k+m) X
= d; (Caerp, 2k#2) X242+ 32632 [dy (Cagees, 2K+M-1) + d; (Ca, 2k+m-1) X2
= (2k+1)? x***? + Y2k42 4 (Cyer, 2km-1) 3™ + F2k+2 g (Cyy, 2k+m-1) x24T
= (2k+1)? x2k+2 + X[ 2242 d(Caerr, 2k+m-1) X2 ™ - dy (Cagen, 2k+1) X
X [ T2k+2 d, (Cyy, 2k+m-1) x*™ - dy(Cay, 2K) X°*- i (Ca, 2k+1) x4
— (2k+1)2 2k+2 (4k+1) X k+2 -4 X2k+1 k2 2k+2 + X Dt (C4k+1; X) + X Dt (C4k; X)
= - 4T 4 (4kP+4K+1-4k-1- 4K?) x*¥*2 + X [ D(Caer, X) + DCair X)]
Dt(C4k+z, X) = - 4x%Y +x [ Dy (Cagsn, X) + Dt (Cak, X) 1.

Proof of (iv)
From theorem 2.7 and 2.8, d; (Cyy+3, 2k+2) = 4k+3 and
d; (C4k+3, 2k+m) =, (C4k+2, 2k+m-1) + d; (C4k+1, 2k+m-1), 3 <m < 2k+3

NOW Dy(Caerz, X) = O (Capsz, 2k+2) x2K°2+ F2K43 4 (Cyerz, 2k+m) X2
= dy (Cagsz, 2k+2) X2K*2 4 F'2k43 [d, (Cyerp, 2k+m-1) + d; (Cagsr, 2k+m-1)]x%™
= 0 (Casz, 2k+2) X 22 + F2ZKA3 f (Cpres, 2k+m-1) X2 ™ + $2K43 g (Cppesq, 2k+m-1) X2
= (4k+3) X **% + X [ T2k+3 d(Cyesn, 2k+m-1)x 2K ™1
+X [ 22k43 d, (Caesr, 2k+m-1) X2 ™ - d; (Cags, 2k+1) X2€
= (4k+3) x ** + x [ 22k+3 di(Caxsz, 2k+m-1)x 2™
+ X [ 2223 d (Cyer, 2k+m-1) X2 ™ - (4k+1) x4+
= [(4k+3) — (4k+1)] x° 4 x Dt (Caks2, X) + X Dy (Cags1,X)

Dt (Cakss » X) = 2x**2 + X[ Dy (Cakszr X) + Dy (Cages, X)]-

Using all the above theorems and lemmas, we obtain the coefficients of Dy(Cy, i ) for 2 <n < 18 in Table 1.

i |2|3|4]5 6|7 8 9 10 | 11 12 13 14 15 | 16 | 17| 18
C; |31

Ci 4141

C|0]5|5]|1

Cc|0]0|9]6 |1

C,|0]0|7]14,7 |1

Cs|0|0|4]|16 20| 8 1

Cy|0]0|0] 9 30|27 9 1

Cip|0|0]0] 0O ]|25|50| 35 | 10 1

Cn|0|0]0O] 0|11 |5 77 | 44 | 11 1

C|0|0]0] 0] 4 |36)|105|112| 54 | 12 1

Ci3/0(0]0] 0] 0 |13 91 |182]| 156 | 65 13 1

Cu |0|0]0] O] 0| 0| 49 |19]294 210 | 77 14 1

Cs|0[0]0O] 0] 0| 0| 15| 140|378 | 450 | 275 90 15 1
Cs|0|0]0]0O]0]|O0 4 | 64 | 336|672 | 660 | 352 | 104 | 16 1
Cy7/0(0]0]0O]0]|O0 0 17 | 204 | 714 | 1122 | 935 | 442 | 119 | 17 | 1
Cs|0|0]0]0O]0]O0 0 0 81 | 540 | 1386 | 1782 | 1287 | 546 | 135 |18 | 1

Table 1: di(C,, i), the number of total dominating sets of C, with cardinality i.
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