STABILITY OF JENSEN TYPE QUADRATIC FUNCTIONAL EQUATIONS IN MULTI-BANACH SPACES

Manoj Kumar*& Ashish Kumar**

Department of Mathematics, Maharshi Dayanand University, Rohtak-124001, India E-mail: *manoj.ahlawat393@gmail.com, **akrmsc@gmail.com

(Received on: 20-03-12; Accepted on: 05-04-12)

ABSTRACT

In this paper, we investigate the Hyers-Ulam-Rassias stability of a Jensen-type quadratic functional equations in Multi-Banach Spaces using Direct approach.

Mathematics Subject Classification: 39B82, 39B52, 39B72.

Keywords and Phrases: Jensen-Type Quadratic functional equations, Multi-Banach spaces.

1. INTRODUCTION

One of the interesting questions in the theory of non-linear functional analysis involved is the stability problem of functional equations as follows: Under what conditions is there a homomorphism near an approximately homomorphism between a group and a metric group, which was first given by S. M. Ulam [11]. In 1941, D. H. Hyers [1] gave the first affirmative answer to this question for approximately additive functions under the assumption of Banach spaces. Th. M. Rassias [13] gave the generalized version of Hyer's result for approximately linear mappings.

In 1994, P. Gavruta [9] provided a further generalization of Th. M. Rassias [13] result in which he replaced the bound $\varepsilon(\|x\|^p + \|y\|^p)$ by a general function $\phi(x, y)$ for the existence of unique linear mapping. During last decades, Hyers-Ulam-Rassias stability of various functional equations have been extensively introduced by a number of mathematicians ([12], [14-16]) on various spaces such as normed spaces, Banach space, Fuzzy normed space, RN-space, IRN-space, Non-Archimedean space etc.

In 1983, F. Skof [2] first proved the stability of the quadratic functional equation f(x+y)+f(x-y)=2 f(x)+2 f(y) for the mapping $f: X \rightarrow Y$, where X is a normed space and Y is a Banach space. P. Cholewa [8] again generalized the Skof's result for abelian groups. Lator on, Skof's [2] result was generalized by many mathematicians on various spaces. The functional equations

$$D(fx, fy) = 2f((x \pm y) / 2) - f(x) - f(y)$$
(1.1)

and

$$D'(fx, fy) = f(ax \pm ay) - 2a^{2}[f(x) + f(y)]$$
(1.2)

for all x, $y \in X$ are called Jensen-Type Quadratic functional equations. In 2009, S.Y.Jang, Rye Lee, Choonkil Park, and Dong Yun Shin [10] proved the Fuzzy stability of equation (1.1) and (1.2).

In the section 2, we adopt some usual terminology, notion and conventions of the theory of Multi-Banach spaces. In the last section, we prove the stability problem in the sense of Hyers-Ulam-Rassias for the functional equations (1.1) and (1.2) on Multi-Banach spaces. We also present some corollaries in reference to our results.

2. PRELIMINARIES

The multi-Banach space was first investigated by Dales and Polyakov [3]. Theory of multi-Banach spaces is similar to the operator sequence space and has some connections with operator spaces and Banach spaces. In 2007, H. G. Dales

Manoj Kumar* & Ashish Kumar** / Stability of Jensen Type Quadratic Functional Equations in Multi-Banach Spaces / IJMA- 3(4), April-2012, Page: 1372-1378

and M. S. Moslehian [4] first proved the stability of mappings on multi-normed spaces and also gave some examples on multi-normed spaces. The asymptotic aspects of the quadratic functional equations in multi-normed spaces was investigated by M. S. Moslehian, K. Nikodem, and D. Popa [6] in 2009. In last two decades, the stability of functional equations on multi-normed spaces was proved by many mathematicians ([5], [7], [17]).

Now, we adopt some usual terminology, notion and convention of the theory of multi-Banach spaces from [3] and [4].

Let $(E, ||\cdot||)$ be a complex normed space, and let $k \in \mathbb{N}$. We denote by E^k the linear space $E \oplus ... \oplus E$ consisting of k-tuples $(x_1, ..., x_k)$, where $x_1, ..., x_k \in E$. The linear operations on E^k are defined coordinate-wise. The zero element of either E or E^k is denoted by E^k . We denote by E^k and by E^k and E^k are group of permutations on E^k are symbols.

Definition 2.1:(Multi - norm) A multi-norm on $\{E^k : k \in N\}$ is a sequence $(\|\cdot\|_k) = (\|\cdot\|_k : k \in N)$ such that $\|\cdot\|_k$ is a norm on E^k for each $k \in N$, $\|x\|_1 = \|x\|$ for each $x \in E$, and the following axioms are satisfied for each $k \in N$ with $k \ge 2$:

- (N1) $||(x_{\sigma(1)},...,x_{\sigma(k)})||_k = ||(x_1,...,x_k)||_k$, for $\sigma \in S_k$, $x_1,...,x_k \in E$;
- $(N2) \qquad \|(\alpha_{1}x_{1},...,\,\alpha_{k}x_{k})\|_{k} \leq \left(max_{1\in\mathbf{N}_{k}}\;|\alpha_{i}|\right)\,\|(x_{1},...,\,x_{k})\|_{k},\, \text{for }\alpha_{1},...,\,\alpha_{k}\in C,\,x_{1},...,\,x_{k}\in E;$
- (N3) $||(x_1,...,x_{k-1},0)||_k = ||(x_1,...,x_{k-1})||_{k-1}$, for $x_1,...,x_{k-1} \in E$;
- $(N4) \qquad \|(x_1,...,\,x_{k-1},\,x_{k-1})||_k = \|(x_1,...,\,x_{k-1})||_{k-1}, \ for \ x_1,...,\,x_{k-1} \!\in\! E$

In this case, we say that $((E^k, \|\cdot\|_k) : k \in \mathbb{N})$ is a multi-normed space (see [3], [4]).

Suppose that $((E^k, \|\cdot\|_k) : k \in \mathbb{N})$ is a multi-normed space, and take $k \in \mathbb{N}$. We need the following two properties of multi-norms. They can be found in [3].

- (a) $\|(x,...,x)\|_k = \|x\|$, for $x \in E$,
- (b) $\max_{i \in N_k} ||x_i|| \le ||(x_1, ..., x_k)||_k \le \sum_{i=1}^k ||x_i|| \le k \max_{i \in N_k} ||x_i||, \text{ for } x_1, ..., x_k \in E.$

It follows from (b) that if $(E, \|\cdot\|)$ is a Banach space, then $(E^k, \|\cdot\|_k)$ is a Banach space for each $k \in \mathbb{N}$; in this case, $((E^k, \|\cdot\|_k) : k \in \mathbb{N})$ is a multi-Banach space.

Lemma 2.2: Suppose that $k \in \mathbb{N}$ and $(x_1, ..., x_k) \in E^k$. For each $j \in \{1, ..., k\}$, let $(X_n^j)_{n=1,2,...}$ be a sequence in E such

that $\lim_{n\to\infty} x_n^j = x_j$. Then

$$lim_{n\to\infty} \; \big(x_{n}^{1}-y_{1},...,x_{n}^{k}-y_{k}^{} \,\big) \; = (x_{1}-y_{1},...,\,x_{k}-y_{k})$$

holds for all $(y_1, ..., y_k) \in E^k$ (see [3], [4]).

Definition 2.3: Let $((E^k, \|\cdot\|_k) : k \in \mathbb{N})$ be a multi-normed space. A sequence $\{x_n\}$ in E is a multi-null sequence if for each $\varepsilon > 0$, there exists $n_0 \in \mathbb{N}$ such that

$$\label{eq:sup} \begin{split} \sup_{k \,\in\, N} \; ||(x_n, \ldots, \, x_{n+k-1})||_k \leq \epsilon \;\; (n \geq n_0). \end{split}$$

Let $x \in E$, we say that the sequence $\{x_n\}$ is multi-convergent to x in E and write $\lim_{n\to\infty} x_n = x$ if $(x_n - x)$ is a multi-null sequence (see [3], [4]).

Lemma 2.4: If a mapping $f: X \rightarrow Y$ satisfies the functional equation (1.1) and (1.2) then f is a Quadratic mapping.

3. MAIN RESULTS

In this section, we prove the Hyers – Ulam – Rassias stability of functional equations (1.1) and (1.2). Throughout this section, let E be a linear space and $((F^n, ||\cdot||_n): n \in N)$ be a multi-Banach space.

3.1 Stability of the functional equation (1.1) by Direct Approach

Theorem 3.1: Let E be a linear space and $((F^n, \|\cdot\|_n): n \in N)$ be a multi-Banach space. Let f: E \rightarrow F is a mapping satisfying f(0) = 0 such that

Manoj Kumar* & Ashish Kumar**/ Stability of Jensen Type Quadratic Functional Equations in Multi-Banach Spaces / IJMA- 3(4),
April-2012, Page: 1372-1378

$$\sup_{k \in \mathbb{N}} \| D(f(x_1, y_1), \dots, D | f(x_k, y_k) \|_k \le \varepsilon$$
(3.1)

for all $x_1, ..., x_k, y_1, ..., y_k \in E$ and $\varepsilon \ge 0$. Then there exist a unique mapping $C : E \to F$ such that

$$\sup_{k \in \mathbb{N}} \| (f(x_1) - C(x_1), \ f(x_2) - C(x_2), ..., f(x_k) - C(x_k)) \|_k \le \frac{\varepsilon}{3}$$
 (3.2)

for all $x_1, ..., x_k \in E$.

Proof: Let $y_1, ..., y_k = 0$ and replacing $x_1, ..., x_k$ with $2x_1, ..., 2x_k$ in (3.1), we obtain

$$\sup_{k \in \mathbb{N}} \left\| \left(\frac{f(2x_1)}{4} - f(x_1) ..., \frac{f(2x_k)}{4} - f(x_k) \right) \right\|_{k} \le \frac{\varepsilon}{4}$$
(3.3)

again replacing $x_1, ..., x_k$ by $2x_1, ..., 2x_k$ and dividing by 4 to the inequality (3.3), we get

$$\sup_{k \in \mathbb{N}} \left\| \left(\frac{f(2^2 x_1)}{4^2} - f(x_1), ..., \frac{f(2^2 x_k)}{4^2} - f(x_k) \right) \right\|_{t} \le \frac{\varepsilon}{4^2} + \frac{\varepsilon}{4}$$

By using induction for a positive integer 'n', we obtain

$$\sup_{k \in \mathbb{N}} \left\| \left(\frac{f(2^{n} x_{1})}{4^{n}} - f(x_{1}), \dots, \frac{f(2^{n} x_{k})}{4^{n}} - f(x_{k}) \right) \right\|_{k} \le \sum_{i=0}^{n-1} \frac{\varepsilon}{4^{i+1}} \le \sum_{i=0}^{\infty} \frac{\varepsilon}{4^{i+1}}$$
(3.4)

Now, to prove that the sequence $\left\{\frac{f(2^nx)}{4^n}\right\}$ is a Cauchy sequence, we fix $x \in E$ and replacing $x_1, x_2, ..., x_k$ with $x_2, ..., x_k$ with $x_1, x_2, ..., x_k$ with $x_2, ..., x_k$ with $x_1, x_2, ..., x_k$ with $x_2, ..., x_k$ with $x_1, x_2, ..., x_k$ with $x_2, ..., x_k$ with $x_1, x_2, ..., x_k$ with $x_2, ..., x_k$ with $x_1, x_2, ..., x_k$ with $x_2, ..., x_k$ with $x_1, x_2, ..., x_k$ with $x_2, ..., x_k$ with

$$\begin{split} \sup_{k \in \mathbb{N}} \left\| \left(\frac{f(2^{n} x)}{4^{n}} - \frac{f(2^{m} x)}{4^{m}}, ..., \frac{f(2^{n+k-1} x)}{4^{n+k-1}} - \frac{f(2^{m+k-1} x)}{4^{m+k-1}} \right) \right\|_{k} \\ & \leq \sup_{k \in \mathbb{N}} \left\| \left(\frac{f(2^{n} x)}{4^{n}} - \frac{f(2^{m} x)}{4^{m}}, ..., \frac{1}{4^{k-1}} \left(\frac{f(2^{n} (2^{k-1} x)) - f(2^{m} (2^{k-1} x))}{4^{m}} \right) \right\|_{k} \end{split}$$

Now, applying the condition N3 of definition (2.1) we get

$$\leq \sup_{k \in \mathbb{N}} \left\| \left(\frac{f(2^{n} x)}{4^{n}} - \frac{f(2^{m} x)}{4^{m}}, ..., \frac{f(2^{n} (2^{k-1} x)}{4^{m}} - \frac{f(2^{m} (2^{k-1} x)}{4^{n}}) \right) \right\|_{k} \leq \sum_{i=m}^{n-1} \frac{\varepsilon}{4^{i+1}}$$

$$(3.5)$$

Hence inequality (3.5) shows that $\left\{\frac{f(2^n x)}{4^n}\right\}$ is a Cauchy sequence as $n\to\infty$, since Y is complete space, thus, the

sequence $\left\{\frac{f(2^n x)}{4^n}\right\}$ is convergent to a fixed point $C(x) \in Y$, such that

$$C(x) = \lim_{n \to \infty} \frac{f(2^n x)}{4^n}$$
(3.6)

Therefore, as $n \rightarrow \infty$ inequality (3.4) implies the inequality (3.2),

$$\sup_{k \,\in\, N} \, \|(C(x_1) - f(x_1)\,, \ldots,\, C(x_k) - f(x_k))\|_k \leq \, \sum_{i \,=\, 0}^\infty \frac{\epsilon}{4^{i+1}} \leq \frac{\epsilon}{3}$$

Manoj Kumar^{*} & Ashish Kumar^{**} / Stability of Jensen Type Quadratic Functional Equations in Multi-Banach Spaces / IJMA- 3(4), April-2012, Page: 1372-1378

Now, to prove that the mapping C: $X \rightarrow Y$ is additive, putting $x_1 = x_2 = \dots = x_k = 2^n x$ and $y_1, = \dots = y_k = 2^n y$ in (3.1) and dividing both sides by 4^n , we get

$$\left\| \frac{1}{4^n} f\left(\frac{2^n (x+y)}{2}\right) + \frac{1}{4^n} f\left(\frac{2^n (x-y)}{2}\right) - \frac{f(2^n x) + f(2^n y)}{4^n} \right\| \le \frac{\varepsilon}{4^n}$$

which upon taking the limit as $n \to \infty$, yields

$$C\left(\frac{x+y}{2}\right) + C\left(\frac{x-y}{2}\right) - \frac{C(x) + C(y)}{2} = 0$$

Hence C is quadratic mapping which satisfies the inequality (3.1).

Now, To prove the uniqueness of mapping C, let as consider another mapping C' which satisfies (3.1), then we have $C'(2^nx) = 4^n C(x)$, such that

$$\begin{split} \left\| \, C^{\, \prime}(x) - C(x) \, \right\| & \leq \frac{1}{4^n} \, \| C^{\prime}(2^n x) - C(2^n x) \| \\ & \leq \frac{1}{4^n} \, \| C^{\prime}(2^n x) - f(2^n x) \| + \frac{1}{4^n} \, \| f(2^n x) - C(2^n x) \| \\ & \leq \frac{2\epsilon}{3.4^n} \end{split}$$

Using the property (a) of multi-norms, we have C = C'

This proves the uniqueness. This evidently completes the proof of Theorem 3.1.

Corollary 3.1: Let E be a linear-space and $((F^n, \|\cdot\|_n) : n \in N)$ be a multi-Banach space. Let $f : E \to F$ be a mapping satisfying f(0) = 0 such that

$$\sup_{k \in \mathbb{N}} \|D f(x_1, y_1), \dots, Df(x_k, y_k)\|_k \le \phi(x_1, y_1, \dots, x_k, y_k)$$
(3.7)

for all $x_1,..., x_k, y_1,..., y_k \in E$ and $\psi: E^{2k} \to [0, \infty), k \in N$. Then, there exists a unique Quadratic mapping $C: E \to F$ such that

$$\sup_{k \in \mathbb{N}} \|f(x_1) - C(x_1), \dots, f(x_k) - C(x_n)\|_k \le \sum_{i=0}^{\infty} \frac{1}{4^{i+1}} \phi(2^i x_1, 0, \dots, 2^i x_k, 0)$$
(3.8)

for all $x_1, \ldots, x_k \in E$.

Proof: Proof is similar to that of Theorem 3.1 by replacing the condition $\phi(x_1, y_1, ..., x_k, y_k)$ in place of ε . **Corollary 3.2:** Let $(E, \|\cdot\|)$ be a normed space and let $((F^n, \|\cdot\|_n) : n \in N)$ be a multi-Banach space.

Let $0 , <math>\theta \ge 0$ and let $f : E \rightarrow F$ be a mapping satisfying f(0) = 0 and

$$\sup_{k \in \mathbb{N}} \|D f(x_1, y_1), ..., D f(x_k, y_k)\|_k \le \theta (\|x_1\|^p + \|y_1\|^p, ..., \|x_k\|^p + \|y_k\|^p)$$
(3.9)

for all $x_1, ..., x_k, y_1, ..., y_k \in E$. Then, there exists unique Quadratic mapping $C : E \rightarrow F$ such that

$$\sup_{k \in \mathbb{N}} \|(f(x_1) - C(x_1), ..., f(x_k) - C(x_k))\|_k \le \frac{\theta}{4 - 2^p} (\|x_1\|^p, ..., \|y_k\|^p)$$
(3.10)

for all $x_1,...,x_k \in E$.

Proof: Proof is similar to that of Theorem 3.1 by replacing the condition $\theta(||x_1||^p + ||y_1||^p, ..., ||x_k||^p + ||y_k||^p)$ in place of ε .

3.1 Stability of the functional equation (1.2) by Direct Approach

Theorem 3.2: Let E be a linear space and $((F^n, \|\cdot\|_n): n \in \mathbb{N})$ be a multi-Banach space. Let f: E \rightarrow F is a mapping satisfying f(0) = 0, such that

$$\sup_{k \in \mathbb{N}} \|D'f(x_1, y_1), ..., D'f(x_k, y_k)\|_k \le \varepsilon$$
(3.11)

for all $x_1, ..., x_k, y_1, ..., y_k \in E$. Then there exists a unique mapping C: E \rightarrow F such that

$$\sup_{k \in \mathbb{N}} \|(f(x_1) - C(x_1), \dots, f(x_k) - C(x_k))\|_k \le \frac{\varepsilon}{2(a^2 - 1)}$$
(3.12)

for all $x_1, ..., x_k \in E$.

Proof: Let $y_1, ..., y_k = 0$ in (3.11), we get

$$\sup_{k \in \mathbb{N}} \left\| \left(\frac{f(ax_1)}{a^2} - f(x_1), ..., \frac{f(ax_k)}{a^2} - f(x_k) \right) \right\|_{L^{\infty}} \le \frac{\varepsilon}{2a^2}$$
(3.13)

Replacing $x_1, ..., x_k$ with $ax_1, ax_2, ..., ax_k$ and dividing by a^2 in (3.13), we get

$$\sup_{k \in \mathbb{N}} \left\| \left(\frac{f(a^2 x_1)}{a^4} - f(x_1), ..., \frac{f(a^2 x_k)}{a^4} - f(x_k) \right) \right\|_{k} \le \frac{\varepsilon}{2a^4} + \frac{\varepsilon}{2a^2}$$

for all $x_1, ..., x_k \in E$. Using induction on a positive integer 'n', we obtain that

$$\sup_{k \in \mathbb{N}} \left\| \left(\frac{f(a^{n} x_{1})}{a^{2n}} - f(x_{1}), ..., \frac{f(a^{n} x_{k})}{a^{2n}} - f(x_{k}) \right) \right\|_{k} \le \frac{1}{2} \sum_{i=1}^{n} \frac{\varepsilon}{a^{2i}}$$
(3.14)

To prove that the sequence $\left\{\frac{f(a^nx)}{a^{2n}}\right\}$ is Cauchy sequence, we fix $x \in E$ and replacing $x_1, x_2, ..., x_k$ with $x_1, x_2, ..., x_k$

$$\begin{split} \sup_{k \in N} \left\| \left(\frac{f(a^n x)}{a^{2n}} - \frac{f(a^m x)}{a^{2m}}, ..., \frac{f(a^{n+k-l} x)}{a^{2(n+k-l)}} - \frac{f(a^{m+k-l} x)}{a^{2(m+k-l)}} \right) \right\|_k \\ & \leq \sup_{k \in N} \left\| \left(\frac{f(a^n x)}{a^{2n}} - \frac{f(a^m x)}{a^{2m}}, ..., \frac{1}{a^{2(k-l)}} \left(\frac{f(a^{n+k-l} x)}{a^{2n}} - \frac{+(a^m (a^{k-l} x))}{a^{2m}} \right) \right) \right\|_k \end{split}$$

Using the condition N 3 of definition 2.1, we get

$$\leq \frac{1}{2} \sum_{i=m+1}^{n} \frac{\varepsilon}{a^{2i}} \tag{3.15}$$

Hence inequality (3.15) shows that $\left\{ \frac{f(a^n x)}{a^{2n}} \right\}$ is a Cauchy sequence as $n \to \infty$, since F is complete space. Thus, the

sequence $\left\{ \frac{f(a^n x)}{a^{2n}} \right\}$ is convergent to a fixed point $C(x) \in F$ such that

$$C(x) = \lim_{n \to \infty} \frac{f(a^n x)}{a^{2n}}$$
(3.16)

Manoj Kumar* & Ashish Kumar**/ Stability of Jensen Type Quadratic Functional Equations in Multi-Banach Spaces / IJMA- 3(4), April-2012, Page: 1372-1378

Therefore, as $n \rightarrow \infty$ inequality (3.14) implies inequality (3.12),

$$\sup_{k\,\in\,N}\,\left\|\left(C(x_1)-f(x_1)\;,...,\,C(x_k)-f(x_k)\right)\right\|_k\leq\frac{\epsilon}{2(a^2-1)}$$

rest of the proof is similar to the proof of theorem 3.1.

Corollary 3.3: Let E be a linear space and $(F^n, \|\cdot\|_n)$; $n \in N)$ be a multi-Banach space. Let $\phi : E^{2n} \to [0, \infty)$ be a function such that for some $0 < \alpha < a^2$; $n \in N$.

$$\phi(ax_1, 0, ..., ax_k, 0) \le \alpha \phi(x_1, 0, ..., x_k, 0)$$

for all $x_1, ..., x_k \in E$. If $f : E \rightarrow F$ is a mapping satisfying f(0) = 0 such that

$$\sup_{k \in N} \|D^{'}(f(x_1, y_1), ..., D^{'}(f(x_k, y_k)))\|_{k} \le \phi(x_1, y_1, ..., x_k, y_k)$$

Then there exists a unique mapping $C : E \rightarrow F$ such that

$$\sup_{k \,\in\, N} \, \|(f(x_1) - C(x_1)\,, ...,\, f(x_k) - C(x_k))\| \leq \frac{\varphi(x_1, 0,, x_k\,, 0)}{2(a^2 - \alpha)}$$

for all $x_1, ..., x_k \in E$.

Corollary 3.4: Let E be a linear space and $((F^n, \|\cdot\|_n) : n \in N)$ be a multi-Banach space. Let $0 and <math>\theta \ge 0$ let $f : E \to F$ be a mapping satisfying f(0) = 0, such that

$$\sup_{k \in \mathbb{N}} \| (D'f(x_1, y_1), \dots, D'f(x_k, y_k)) \|_k \le \theta (\|x_1\|^p + \|y_1\|^p, \dots, \|x_k\|^p + \|y_k\|^p)$$

for all $x_1, ..., x_k, y_1, ..., y_k \in E$. Then, there exists a unique mapping $C : E \rightarrow F$ such that

$$\sup_{k \, \in \, N} \, \|(f(x_1) - C(x_1), \ldots, \, f(x_k) - C(x_k))\|_k \leq \frac{\theta}{2(a^2 - a^p)} \, (\|x_1\|^p, \ldots, \, \|x_k\|^p)$$

for all $x_1, ..., x_k \in E$.

REFERENCES

- [1] D. H. Hyers, On the Stability of the Linear Functional Equation, Proc. Nat. Acad. Sci. U.S.A. (27) (1941), pp. 222–224.
- [2] F. Skof, Proprietà locali e approssimazione di operatori, Rend. Sem. Mat. Fis. Milano, (53)(1983), pp. 113–129.
- [3] H. G. Dales and M. E. Polyakov, Multi-normed spaces and multi-Banach algebras, preprint.
- [4] H. G. Dales and M. S. Moslehian, Stability of mappings on multi-normed paces, Glasgow Mathematical Journal, (49)(2)(2007), pp. 321–332.
- [5] L. Wang, B. Liu and R. Bai, Stability of a Mixed Type Functional Equation on Multi-Banach Spaces: A Fixed Point Approach, Fixed Point Theory and Applications, vol. 2010, Art. ID 283827, 9 pages doi:10.1155/2010/283827
- [6] M. S. Moslehian, K. Nikodem, and D. Popa, Asymptotic aspect of the quadratic functional equation in multinormed spaces, Journal of Mathematical Analysis and Applications, (355) (2) (2009), pp. 717–724.
- [7] M. S. Moslehian and H. M. Srivastava, Jensens functional equations in multi-normed spaces, Taiwnese J. of Math., (14) (2) (2010), pp. 453-462.
- [8] P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math., (27) (1984), pp. 76-86.
- [9] P. Gavruta, A Generalization of the Hyers-Ulam-Rassias Stability of Approximately Additive Mappings, J. Math. Anal. Appl. (184) (1994), pp. 431–436.

Manoj Kumar* & Ashish Kumar** / Stability of Jensen Type Quadratic Functional Equations in Multi-Banach Spaces / IJMA- 3(4), April-2012, Page: 1372-1378

- [10] S.Y. Jang, Rye Lee, C. Park and Dong Yun Shin, Fuzzy stability of Jensen Type Quadratic functional equations, Abstract and AppliedAnalysis, vol.2009, Article ID 535678
- [11]S. M. Ulam, A Collection of the Mathematical Problems, Interscience Publ. New York, 1960.
- [12] S. Czerwik, On the stability of the quadratic mappings in normed spaces, Abh. Math. Sem. Univ. Hamburg, (62) (1992), pp. 59–64.
- [13] Th. M. Rassias, On the stability of the Linear mapping in Banach spaces, Procc. Of the American Mathematical Society, (72) (2) (1978), pp. 297-300.
- [14] Th. M. Rassias, On the stability of the functional equations in Banach spaces, J. Math. Anal. Appl., (251) (2000), pp. 264–284.
- [15] T. Aoki, On the stability of the linear transformation in Banach spaces, Journal of the Mathematical Society, (2) (1-2) (1950), pp. 64-66.
- [16] V. Radu, The fixed point alternative and the stability of functional equations, Fixed Point Theory, (4) (1) (2003), pp. 91–96.
- [17] Z. Wang, X. Li, and Th. M. Rassias, Stability of an Additive-Cubic-Quartic Functional Equation in Multi-Banach Spaces, Abstract and Applied Analysis, vol. 2011, Article ID 536520, 11 pages doi:10.1155/2011/536520
