International Journal of Mathematical Archive-3(4), 2012, Page: 1329-1335 MA Available online through <u>www.ijma.info</u> ISSN 2229 - 5046

ON DECOMPOSITIONS OF M-CONTINUITY

¹R. G. Balamurugan, ²O. Ravi* and ³J. Sivasakthivel

¹Department of Mathematics, Cauvery International School, Manaparai, Trichy-Dt., Tamil Nadu, India E-mail: rgbala2010@yahoo.com

²Department of Mathematics, P. M. Thevar College, Usilampatti, Madurai-Dt., Tamil Nadu, India E-mail: siingam@yahoo.com

> ³Department of Mathematics, Vivekananda College, Agasteeswaram, Kanyakumari-Dt., Tamil Nadu, India E-mail: jssvelkk@gmail.com

> > (Received on: 10-12-11; Accepted on: 15-04-12)

ABSTRACT

We introduce a new type of sets called m-A set, m-t set, m-B set, m-h set and m-C set and a new class of mappings called M-A continuous, M-B continuous and M-C continuous. We obtain several characterizations of this class and study its minimal properties and investigate the relationships with other mappings like M- α -continuous.

2010 Mathematics Subject Classifications: 54A05, 54C08.

Keywords and Phrases: minimal space, m-A set, m-B set, m-C set, M-A continuity, M-B continuity, M-C continuity.

1. INTRODUCTION

Njastad [7] initiated the concept of nearly open sets in topological spaces. Following it many research papers were introduced by Tong [11, 12], Hatir [3, 4, 5], Dontchev [1] and Ganster [2] in the name of "Decompositions of Continuity" in topological spaces. It is an effort based on them to bring out a paper in the name of "Decompositions of M-continuity" in minimal spaces using the new sets like m-A set, m-B set and m-C set and the new mappings like M-A continuous, M-B continuous and M-C continuous. In this paper, we obtain some important results in minimal spaces. In most of the occasions, our ideas are illustrated and substantiated by suitable examples.

2. PRELIMINARIES

Definition 2.1: [6, 8] Let X be a nonempty set and $\wp(X)$ the power set of X. A subfamily m_x of $\wp(X)$ is called a minimal structure (briefly, m-structure) on X if $\phi \in m_x$ and $X \in m_x$.

A set X with an m-structure m_x is called an m-space and is denoted by (X, m_x) . Each member of m_x is said to be m_x -open and the complement of an m_x -open set is said to be m_x -closed. Throughout this paper, (X, m_x) (or X) denotes minimal space.

Throughout this paper, (X, mx) (or X) denotes minimal space.

Definition 2.2: [6, 8] Let X be a nonempty set and m_x an m-structure on X. For a subset A of X, the m_x -closure of A and the m_x -Interior of A are defined as follows:

(1) m_x -Cl(A) = \cap { F : A \subset F, X – F \in m_x },

(2) m_x -Int(A) = \cup { U : U \subset A, U \in m_x}.

Lemma 2.3: [6, 8] Let X be a nonempty set and m_x a minimal structure on X. For subsets A and B of X, the following properties hold:

(1) m_x -Cl(X – A) = X – m_x -Int(A) and m_x -Int(X – A) = X – m_x -Cl(A),

(2) If $(X - A) \in m_x$, then m_x -Cl(A) = A and if $A \in m_x$, then m_x -Int(A) = A,

Corresponding author: O. Ravi, *E-mail: siingam@yahoo.com

- (3) m_x -Cl(ϕ) = ϕ , m_x -Cl(X) = X, m_x -Int(ϕ) = ϕ and m_x -Int(X) = X,
- (4) If $A \subset B$, then m_x -Cl(A) $\subset m_x$ -Cl(B) and m_x -Int(A) $\subset m_x$ -Int(B),
- (5) $A \subset m_x$ -Cl(A) and m_x -Int(A) $\subset A$,
- (6) m_x -Cl(m_x -Cl(A)) = m_x -Cl(A) and m_x -Int(m_x -Int(A)) = m_x -Int(A).

Definition 2.4: [8]A minimal space m_x on a nonempty set X is said to have property \mathfrak{B} if the union of any family of subsets belonging to m_x belongs to m_x .

Lemma 2.5: [8] The following are equivalent for the minimal space (X, m_x).

(1) m_x have property \mathfrak{B} ;

(2) If m_x -Int(E) = E, then E $\in m_x$;

(3) If m_x -Cl(F) = F, then $F^c \in m_x$.

Definition 2.6: [9] Let S be a subset of X. Then S is said to be

- (i) m_x - α -open if $S \subseteq m_x$ -Int $(m_x$ -Cl $(m_x$ -Int(S)));
- (ii) m_x -semi-open if $S \subseteq m_x$ -Cl $(m_x$ -Int(S));
- (iii) m_x -preopen if $S \subseteq m_x$ -Int $(m_x$ -Cl(S)).

The family of all m_x - α -open [resp. m_x -semi-open, m_x -preopen] sets of X is denoted by m_x - $\alpha O(X)$ [resp. m_x -SO(X), m_x -PO(X)].

Remark 2.7: [9]

- (i) Every m_x -open set is m_x - α -open but not conversely.
- (ii) A m_x -semi-open [m_x -preopen] set need not be m_x - α -open.

Example 2.8: Let $Y = \{p, q, r\}$ and $m_y = \{\phi, Y, \{p\}, \{q\}, \{p, q\}\}$. We have $m_y - \alpha O(Y) = \{\phi, Y, \{p\}, \{q\}, \{p, q\}\}; m_y - SO(Y) = \{\phi, Y, \{p\}, \{q\}, \{p, q\}, \{p, r\}, \{q, r\}\}$ and $m_y - PO(Y) = \{\phi, Y, \{p\}, \{q\}, \{p, q\}\}.$

Definition 2.9: A minimal space (X, m_x) has the property I if the any finite intersection of m-open sets is more.

Remark 2.10: For subsets A and B of a minimal space (X, m_x) satisfying property I, the following holds:

m-Int $(A \cap B) = m$ -Int $(A) \cap m$ -Int(B).

Example 2.11.: For subsets A and B of a minimal space (X, m_x) satisfying property \mathfrak{B} , the following does not hold:

m-Int $(A \cap B) = m$ -Int $(A) \cap m$ -Int(B).

Let X = { a, b, c, d}, $m_x = \{\phi, X, \{a\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$. Let A = {a, b} and B = {b, c}. Then A \cap B = {b}. We have m-Int(A) = {a, b}; m-Int(B) = {b, c} and m-Int(A) \cap m-Int(B) = {b}. But m-Int (A \cap B) = ϕ . Hence m-Int (A \cap B) \neq m-Int(A) \cap m-Int(B).

3. m-C SETS:

We introduce a new type of sets as follows:

Definition 3.1: A subset S of X is said to be

- (i) regular m-open [10] if S = m-Int(m-Cl(S)),
- (ii) regular m-closed if S = m-Cl(m-Int(S)).

The family of all regular m-closed sets of X is denoted m-RC(X).

Definition 3.2: A subset S of X is said to be

(i) a m-A set if $S = M \cap N$ where M is m-open and $N \in m-RC(X)$,

(ii) a m-t set if m-Int(m-Cl(S)) = m-Int(S),

© 2012, IJMA. All Rights Reserved

- (iii) a m-B set if $S = M \cap N$ where M is m-open and N is a m-t set,
- (iv) a m-h set if m-Int(m-Cl(m-Int(S))) = m-Int(S),
- (v) a m-C set if $S = M \cap N$ where M is m-open and N is a m-h set.

Example 3.3: Let $X = \{a, b, c\}$ and $m_x = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$. Then the sets in $\{\phi, X, \{b, c\}, \{a, c\}, \{c\}\}$ are called m_x -closed.

Example 3.4: Let $X = \{a, b, c\}$ and $m_x = \{\phi, X, \{a\}, \{c\}, \{a, b\}, \{a, c\}\}$. Then the sets in $\{\phi, X, \{b, c\}, \{a, b\}, \{c\}, \{b\}\}$ are called m_x -closed.

Example 3.5: Let $X = \{a, b, c\}$ and $m_x = \{\phi, X, \{a, b\}, \{b, c\}\}$. Then the sets in $\{\phi, X, \{c\}, \{a\}\}$ are called m_x -closed.

Remark 3.6: It is evident that any m-open set of X is an m- α -open and each m- α -open set of X is both m-semi-open and m-preopen. But the separate converses are not true.

Theorem 3.7: If A and B are two m-t sets of a space X satisfying property I, then $A \cap B$ is a m-t set in X.

Proof: Since $A \subset m$ -Cl(A), m-Int(A \cap B) \subset m-Int(m-Cl(A \cap B)) \subset m-Int(m-Cl(A) \cap m-Cl(B)) = m-Int(m-Cl(A)) \cap m-Int(m-Cl(A)) = m-Int(A) \cap m-Int(B) (since A, B are m-t sets) = m-Int(A \cap B). Thus m-Int(m-Cl(A \cap B)) = m-Int(A \cap B) and A \cap B is m-t set.

Theorem 3.8: If A is a m-t set of X and $B \subseteq X$ with $A \subseteq B \subseteq m$ -Cl(A) then B is a m-t set.

Proof: We note that m-Cl(B) \subseteq m-Cl(A). So we have m-Int(B) \subseteq m-Int(m-Cl(B)) \subseteq m-Int(m-Cl(A)) = m-Int(A) \subseteq m-Int(B). Thus m-Int(B) = m-Int(m-Cl(B)) and therefore B is a m-t set.

Remark 3.9: The union of two m-h sets need not be a m-h set. Refer Example 3.3, {a} and {b} are m-h sets but {a, b} is not m-h set.

Remark 3.10: Let (X, m_x) have property I. Then the intersection of any two m-h sets is a m-h set.

4. COMPARISON

Theorem 4.1: Any m-open set is an m-A set.

Proof: $S = X \cap S$ where $X \in m$ -RC(X) and S is m-open. The proof is completed.

Remark 4.2: The converse of Theorem 4.1 is not true. Refer Example 3.3, {b, c} is m-A set but not m-open.

Theorem 4.3: Any m-closed set is a m-t set.

Proof: Since A = m-Cl(A), m-Int(A) = m-Int(m-Cl(A)). The proof is completed.

Remark 4.4: The converse of Theorem 4.3 is not true. Refer Example 3.3, {a} is m-t set but not m-Closed.

Theorem 4.5: A regular m-open set is a m-t set.

Proof: Since S = m-Int(m-Cl(S)), m-Int(S) = m-Int(m-Cl(S)). The proof is completed.

Remark 4.6: The converse of Theorem 4.5 is not true. Refer Example 3.3. {c} is a m-t set but not regular m-open.

Theorem 4.7: Let (X, m_x) have property \mathfrak{B} . Then every regular m-open set is m-open.

Proof: Suppose S = m-Int(m-Cl(S)). Then m-Int(S) = m-Int(m-Cl(S)) and we have S = m-Int(S). Thus, S is m-open.

Remark 4.8: The converse of Theorem 4.7 is not true. Refer Example 3.3, {a, b} is m-open but not regular m-open.

Theorem 4.9: Any m-t set is m-B set.

Proof: $S = X \cap S$ where X is m-open and S is m-t set. The proof is completed.

Remark 4.10: The converse of Theorem 4.9 is not true. Refer Example 3.4, {a} is a m-B set but not m-t set.

© 2012, IJMA. All Rights Reserved

Theorem 4.11: Any m-open set is a m-B set.

Proof: Since $S = X \cap S$ where S is m-open and X is regular m-open, by Theorem 4.5, X is m-t set. The proof is completed.

Remark 4.12: The converse of Theorem 4.11 is not true. Refer Example 3.3, {c} is m-B set but not m-open.

Theorem 4.13: A m-closed set is a m-B set.

Proof: It follows from Theorem 4.3 and Theorem 4.9.

Theorem 4.14: Let (X, m_x) have property \mathfrak{B} . Then every m-A set is a m-B set.

Proof: $S = X \cap S$ where X is m-open and S is regular m-closed. Since S is m-closed, by Theorem 4.3, S is m-t set. The proof is completed.

Remark 4.15: The converse of Theorem 4.14 is not true. Refer Example 3.3, {c} is m-B set but not m-A set.

Theorem 4.16: Any m-t set is m-h set.

Proof: Since m-Int(S) = m-Int(m-Cl(S)), m-Cl(m-Int(S)) = m-Cl(m-Int(m-Cl(S))) implies m-Int(m-Cl(m-Int(S))) = m-Int(m-Cl(S)) = m-Int(S). The proof is completed.

Remark 4.17: The converse of Theorem 4.16 is not true. Refer Example 3.5, {b} is m-h set but not m-t set.

Theorem 4.18: Any m-h set is m-C set.

Proof: $S = X \cap S$ where X is m-open and S is m-h set. The proof is completed.

Remark 4.19: The converse of Theorem 4.18 is not true. Refer Example 3.4, {a} is m-C set but not m-h set.

Theorem 4.20: Any m-open set is m-C set.

Proof: $S = X \cap S$ where X is m-h set and S is m-open. The proof is completed.

Remark 4.21: The converse of Theorem 4.20 is not true. Refer Example 3.3, {c} is m-C set but not m-open.

Theorem 4.22: m-B set is m-C set.

Proof: $S = X \cap S$ where X is m-open and S is m-t set. By Theorem 4.16, S is m-h set. The proof is completed.

Remark 4.23: The converse of Theorem 4.22 is not true. Refer Example 3.5, {b} is m-C set but not m-B set.

Remark 4.24: A m-A set need not be m-semi-open as shown in the following example.

Let $X = \{a, b, c\}$ and $m_x = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{b, c\}, \{a, c\}\}$. Then the sets in $\{\phi, X, \{a\}, \{b\}, \{c\}, \{a, c\}, \{b, c\}\}$ are called m-closed. We have $\{c\}$ is m-A set but not m-semi-open.

Remark 4.25: A m-semi-open set need not be m-A set as shown in the following example.'

Let $X = \{a, b, c\}$ and $m_x = \{\phi, X, \{a\}\}$. Then the sets in $\{\phi, X, \{b, c\}\}$ are called m-closed. We have $\{a, b\}$ is m-semiopen but not m-A set.

Remark 4.26: By the previous Theorems, Examples and Remarks, we obtain the following diagram:

Here (1) = m-C set, (2) = m-B set, (3) = m-open set, (4) = m- α -open set, (5) = m-A set, (6) = m-semi-open set, (7) = m-h set, (8) = m-t set, (9) = regular m-open set, (10) = m-preopen set.

5. DECOMPOSITIONS OF M-CONTINUITY

Definition 5.1:

(i) Let $f: X \to Y$ be a mapping where X has property \mathfrak{B} . Then f is said to be M-continuous [8] if $f^{1}(V)$ is m_{x} -open in X for every m_{v} -open set V in Y.

(ii) Let f: $X \to Y$ be a mapping. Then f is said to be M- α -continuous [9] if f ⁻¹(V) is m- α -open in X for every m_y-open set V in Y.

We introduce a new class of mappings as follows.

Definition 5.2: Let $f: X \rightarrow Y$ be a mapping. Then f is said to be

(i) M-A continuous if $f^1(V)$ is M-A set in X for every m_v -open set V in Y.

(ii) M-B continuous if $f^{1}(V)$ is M-B set in X for every m_{y} -open set V in Y.

(iii) M-C continuous if $f^{1}(V)$ is m-C set in X for every m_{y} -open set V in Y.

Theorem 5.3: Let (X, m_x) have property \mathfrak{B} . Then a subset S of X is regular m-open if and only if it is both m-preopen and m-t set.

Proof: Let S be a regular m-open. By Theorem 4.5, S is m-t set. Also by Theorem 4.7, S is m-open. Thus, S is m-preopen.

Conversely, let S be both m-preopen and m-t set. Since $m-Int(S) \subseteq S \subseteq m-Int(m-Cl(S)) = m-Int(S)$, S = m-Int(m-Cl(S)). Hence, S is regular m-open.

Theorem 5.4: Let (X, m_x) have property \mathfrak{B} and property I. Then a subset S of X is m-open if and only if it is both m- α -open and m-A set.

Proof: Let S be an m-open. Then S is $m-\alpha$ -open and by Theorem 4.1, S is m-A set.

Conversely, let S be both m- α -open and m-A set. Since S is m-A set, S = M \cap N where M is m-open and N \in m-RC(X). Since S is m- α -open.

$$\begin{split} M \cap N &\subset m\text{-Int}(m\text{-Cl}(m\text{-Int}(M \cap N))) \subset m\text{-Int}(m\text{-Cl}(m\text{-Int}(M) \cap m\text{-Int}(N))) \\ &= m\text{-Int}(m\text{-Cl}(M \cap m\text{-Int}(N))) \text{ as } M \text{ is } m\text{-open } \subset m\text{-Int}(m\text{-Cl}(M) \cap m\text{-Cl}(m\text{-Int}(N))) \end{split}$$

= m-Int(m-Cl(M) \cap N) as N \in m-RC(X) \subset m-Int(m-Cl(M)) \cap m-Int(N)...(1)

Now since $M \subset m$ -Int(m-Cl(M)), by (1)

$$\begin{split} S &= M \cap N = (M \cap N) \bigcap M \subset (m\text{-Int}(m\text{-Cl}(M)) \cap m\text{-Int}(N)) \cap M \\ &= M \cap m\text{-Int}(N) \\ &= m\text{-Int}(M \cap N) \text{ by property I} \\ &= m\text{-Int}(S) \end{split}$$

Therefore, $S \subset m$ -Int(S). But m-Int(S) $\subset S$. Hence, S is m-open.

Theorem 5.5: Let (X, m_x) have property \mathfrak{B} and property I. Then a subset S of X is m-open if and only if it is both m- α -open and m-B set.

Proof: Let S be an m-open. Then S is m- α -open. Also, by Theorem 4.11, S is m-B set.

Conversely, let S be both m- α -open and m-B set. Since S is m-B set, S = X \cap S where X is m-open and S is m-t set.

Then $S = X \cap S \subset X \cap m$ -Int(m-Cl(S)) (as S is m-preopen) = $X \cap m$ -Int(S) (as S is m-t set). We have $S \subset X \cap m$ -Int(S). Hence $S \subset m$ -Int($X \cap S$) by property I and $S \subset m$ -Int(S). But always m-Int(S) $\subset S$. Thus S = m-Int(S) and by property \mathfrak{B} , S is m-open.

Theorem 5.6: Let (X, m_x) have property \mathfrak{B} and property I. Then a subset S of X is m-open if and only if it is both m- α -open and m-C set.

Proof: Let S be an m-open in X. Then S is m- α -open and by Theorem 4.20, S is m-C set.

Conversely, let S be both m- α -open and m-C set. Since S is m-C set, $S = M \cap N$ where M is m-open and N is m-h set. Since S is m- α -open set, $S \subset m$ -Int(m-Cl(m-Int(S))) = m-Int(m-Cl(m-Int(M))) \cap m-Int(m-Cl(m-Int(N))) = m-Int(m-Cl(M)) \cap m-Int(N) (as M is m-open and N is m-h set). Now $S = M \cap N = M \cap (M \cap N) = M \cap S \subset M \cap (m$ -Int(m-Cl(M)) $\cap m$ -Int(N)) = $M \cap m$ -Int(N) (as $M \subset m$ -Int(m-Cl(M))) = m-Int(M \cap N) (by property I) = m-Int(S). Thus, $S \subset m$ -Int(S) and m-Int(S) \subset S. Hence, by property \mathfrak{B} , S is m-open.

Theorem 5.7: Let (X, m_x) have property \mathfrak{B} and property I and $f: X \to Y$ be a mapping. Then f is M-continuous if and only if

- (i) it is M- α -continuous and M-A continuous.
- (ii) it is M- α -continuous and M-B continuous.
- (iii) it is M- α -continuous and M-C continuous.

Proof: It is the decompositions of M-continuity from Theorems 5.4, 5.5 and 5.6.

Remark 5. 8: In the above four theorems, both properties are used and so the above four theorems are nothing but topological results.

REFERENCES

[1] Dontchev, J. and Przemski, M., On the various decompositions of continuous and some weakly continuous functions, Acta Math. Hungar., 71(1996), no. 1-2, 109-120.

[2] Ganster, M. and Reilly, I. L., A decomposition of continuity, Acta Math. Hungar., 56 (1990), no. 3-4, 299-301.

[3] Hatir, E. and Noiri, T., Decompositions of continuity and complete continuity, Indian J. Pure Appl. Math., 33(2002), no. 5, 755-760.

[4] Hatir, E. and Noiri, T., Strong C sets and Decompositions of continuity, Acta Math. Hungar., 94(2002), no. 4, 281-287.

[5] Hatir, E., Noiri, T. and Yuksel, S., A decomposition of continuity, Acta Math. Hungar., 70(1996), no. 1-2, 145-150.

[6] Maki, H., On generalizing semi-open and preopen sets, Report for meeting on topological theory spaces and its applications, August 1996, Yatsushiro College of Technology, 13-18.

[7] Njastad, O., On some classes of nearly open sets, Pacific J. Math., 15(1965), 961-970.

[8] Popa, V. and Noiri, T., On M-continuous functions, Anal. Univ "Dunarea de Jos "Galati, Ser. Mat. Fiz. Mec. Tecor. (2), 18(2000), no. 23, 31-41.

[9] Ravi, O., Balamurugan, R. G. and Balakrishnan, M., On minimal quotient mappings, International Journal of Advances in Pure and Applied Mathematics, 1(2011), no. 2, 96-112.

[10] Ravi, O., Ganesan, S. and Latha, R., Almost \tilde{g}_{α} -closed functions and separation axioms, Mathematica Bohemica (Accepted).

[11] Tong, J., A decomposition of continuity, Acta Math Hungar., 48(1986), no 1-2, 11-15.

[12] Tong, J., On decomposition of continuity in topological spaces, Acta Math. Hungar., 54(1989), no. 1-2, 51-55.

[13] Won Keun Min. and Young Key Kim., On minimal precontinuous functions, Journal of the Chung Cheong Mathematical society, 22(2009), no. 4, 667-673.

[14] Won Keun Min. and Young Key Kim., On weak M-semicontinuity On spaces with minimal structures, Journal of the ChungCheong Mathematical society, 23 (2010), no. 2, 223-229.

[15] Won Keun Min., am-open sets and am-continuous functions, Commun. Korean. Math. Soc., 25 (2010), no. 2, 251-256.
