CONTRACTION OF IDEALS IN BOOLEAN LIKE SEMI RING

B. V. N. Murthy*

Department of Mathematics, Simhadhri Educational Society group of Institutions, Sabbavaram Mandal Visakhapatnam, AP, India

E-mail: bvnmurthymaths@yahoo.com

&

K.Venkateswarlu

Department of Mathematics, Addis Ababa University, Addis Ababa, Ethiopia E-mail: drkvenky@yahoo.co.in

(Received on: 03-04-12; Accepted on: 22-04-12)

ABSTRACT

In this paper, we introduce the concept of contraction of an ideal in a Boolean like semi ring and obtain certain properties of these special classes of ideals . We obtain this in theorem 2.5 below

Mathematics Subject Classification: 16Y30, 16 Y 60.

Keywords: Boolean like semi rings and Contraction of an ideal.

INTRODUCTION

The concept of Boolean like semi rings is due to Venkateswarlu, Murthy and Amaranth in [6].

The present paper is divided into 2 sections. In section 1, we give preliminary concepts and results regarding Boolean like semi rings. In section 2, we establish that Let R and S be two Boolean like semi rings. Let I be an ideal of S and let $f: R \to S$ be a homomorphism then $f^{-1}(I)$ is an ideal of R (see theorem 2.3). Further we introduce the concept of contraction of an ideal and study of of its properties in Boolean like semi ring (see theorems 2.5)

1. PRELIMINARIES: BOOLEAN LIKE SEMI RINGS AND ITS PROPERTIES

We recall certain definitions and results concerning Boolean like semi rings from [6]

Definition 1.1: A non empty set R together with two binary operations + and . satisfying the following conditions is called a Boolean like semi-ring

- 1. (R, +) is an abelian group
- 2. (R, .) is a semi group
- 3. a.(b+c) = a.b +a.c for all a, b, $c \in R$
- 4. a + a = 0 for all $a \in R$
- 5. $ab(a+b+ab) = ab \text{ for all } a, b \in R$.

Example 1.2: Let $R = \{0, a, b, c\}$. The binary operations + and . are defined as follows

+	0	a	b	c
0	0	a	b	c
a	a	0	С	b
b	b	c	0	a
с	c	b	a	0

•	0	a	b	c
0	0	0	0	0
a	0	0	a	a
b	0	0	b	b
с	0	a	b	c

Then (R, +, .) is a Boolean like semi ring. We observe that $cab \neq cba$.

Corresponding author: B. V. N. Murthy, *E-mail: bvnmurthymaths@yahoo.com

Example 1.3: Let $R = \{0, x, y, z\}$. The binary operations + and. are defined as follows

+	0	X	y	Z
0	0	X	у	Z
х	X	0	Z	у
у	у	Z	0	X
Z	Z	y	X	0

•	0	X	у	z
0	0	0	0	0
X	0	X	0	X
у	0	0	0	0
Z	0	Z	0	z

Then (R, +, .) is a Boolean like semi ring. We note that abc = acb for all $a, b, c \in R$.

Example 1.4: Let $R=\{0,p,q,1\}$. The binary operations + and. are defined as follows

+	0	p	q	1
0	0	p	q	1
p	p	0	1	q
q	q	1	0	p
1	1	q	p	0

•	0	p	q	1
0	0	0	0	0
p	0	0	p	p
q	0	0	q	q
1	0	p	q	1

Then R is a Boolean like semi ring. It is clear that a.1 = 1.a = a for all $a \in R$.

The following are properties of Boolean like semi rings

Let R be a Boolean like semi ring. Then

Lemma 1.5: For $a \in R$, a.0 = 0

Lemma 1.6: For $a \in R$, $a^4 = a^2$ (weak idempotent law)

Remark 1.7: From the above lemma 1.6, we have $a^{2n} = a^2$, for any integer n > 0

Lemma 1.8: If R is a Boolean like semi ring then, $a^n = a$ or a^2 or a^3 for any integer n > 0 and $0a^2 = 0$ and $0(a + a^2) = 0a$ for all $a \in R$.

Definition 1.9: A Boolean like semi ring R is said to be **weak commutative** if abc = acb, for all a, b, $c \in R$.

Lemma 1.10: If R is a Boolean like semi ring with weak commutative then 0.a = 0 for all $a \in R$

Lemma 1.11: Let R be Boolean like semi ring then for any $a, b \in R$ and for any integers m, n > 0, $a^m a^n = a^{m+n}$ 2. $a^m a^n = a^{m+n}$ 3. $a^m a^n = a^m a^n = a^{m+n}$ 3. $a^m a^n = a^m a^n = a^{m+n}$ 4.

Definition 1.12: An element $1 \in R$ is said to be unity if a1=1a=a, for all $a \in R$. If a1=a, then 1 is called right unity and if 1a=a, then 1 is called left unity.

Definition 1.13: A non empty subset I of R is said to be an ideal if

- 1. (I,+) is a sub group of (R,+), i.e, for $a,b \in I \Rightarrow a+b \in I$
- 2. $ra \in I$, for all $a \in I$, $r \in R$, i.e $RI \subseteq I$
- 3. $(r+a)s + rs \in I$, for all $r, s \in R$, $a \in I$

Theorem 1.14: The set of all nilpotent elements of a weak commutative Boolean like semi ring form an ideal.

Theorem 1.15: If I is an ideal of a weak commutative Boolean like semi ring R then the radical of I, denoted by r(I) and is defined as $\{x \in R \mid x^n \in I, \text{ for some positive integer } n \}$ is an ideal of R.

Theorem 1.16: If I and J are ideals of a Boolean like semi ring R then I + J is an ideal of R.

B. V. N. Murthy* & K. Venkateswarlu/ CONTRACTION OF IDEALS IN BOOLEAN LIKE SEMI RING/ IJMA- 3(4), April-2012, Page: 1324-1328

Theorem 1.17: If I and J are ideals of a Boolean like semi ring R then $I \cap J$ is an ideal of R.

Theorem 1.18: If I and J are left ideals of a Boolean like semi ring R then the product $IJ = \{a_1b_1 + a_2b_2 + \dots + a_nb_n / a_i \in I, b_i \in J\}$ is a left ideal of R.

Theorem 1.19: If I and J are ideals of a weak commutative Boolean like semi ring R then

i. $I \subseteq r(I)$ ii. $r(I \cap J) = r(I) \cap r(J)$ iii. If $I \subseteq J$ then $r(I) \subseteq r(J)$ iv. r(r(I)) = r(I)v. r(I+J) = r(r(I)+r(J))vi. If R has right unity 1 then r(I) = R if and only if I = Rvii. $r(IJ) = r(I \cap J)$

Definition 1.20: Let R be a Boolean like semi ring. Let I and J be ideals of R. Then their ideal quotient is denoted by (I: J) and is defined by (I: J) = $\{x \in \mathbb{R} \mid Jx \subset I\}$.

Now we have the following

Theorem 1.21: If R is a weak commutative Boolean like Semi ring and I, J and K are ideals of R then the following hold.

- 1. $(I:J) = \{x \in R/Jx \subset I\}$ is an ideal of R.
- 2. $I \subseteq (I:J)$
- 3. ((I:J):K) = (I:JK)
- 4. $(\bigcap I_i : J) = \bigcap_i (I_i : J)$

2. CONTRACTION OF IDEALS IN A BOOLEAN LIKE SEMI RING

We now introduce the concept of contraction of an ideal in a Boolean like semi ring

Definition 2.1: If R and R' are Boolean like semi rings. A mapping $f: R \rightarrow R'$ is said to be a Boolean like semi ring homomorphism (or simply homomorphism) of R into R'if f(a + b) = f(a) + f(b) and f(ab) = f(a)f(b) for all $a, b \in R$.

Theorem 2.2: A mapping $f: R \to R'$ is a homomorphism of a Boolean like semi ring R into R' then f(0) = 0' and f(R) is weak commutative if R is weak commutative.

Theorem 2.3: Let R and S be two Boolean like semi rings. Let I be an ideal of S and let $f: R \to S$ be a homomorphism then $f^{-1}(I)$ is an ideal of R.

Proof:
$$f^{-1}(I) = \{ x \in R / f(x) \in I \}$$

From theorem 2.2, we have $0' = f(0) \in I \Rightarrow 0 \in f^{-1}(I)$

Hence $f^{-1}(I)$ is non empty and $f^{-1}(I) \subseteq R$.

Let
$$x, y \in f^{-1}(I) \Rightarrow f(x), f(y) \in I \Rightarrow f(x) + f(y) \in I$$

$$\Rightarrow f(x+y) \in I \Rightarrow x+y \in f^{-1}(I)$$

Hence $(f^{-1}(I), +)$ is a sub group of (R, +).

Let
$$x \in f^{-1}(I)$$
 and $r, s \in R \implies f(x) \in I$

Consider
$$f(rx) = f(r) f(x) \in I$$
 (I is an ideal of S)
 $\Rightarrow rx \in f^{-1}(I)$

Consider
$$f((r+x)s+rs) = f((r+x)s) + f(rs)$$

= $f(r+x)f(s) + f(r)f(s)$
= $[f(r)+f(x)]f(s) + f(r)f(s) \in I$ (I is an ideal of S)

Thus $f^{-1}(I)$ is an ideal of R.

B. V. N. Murthy* & K. Venkateswarlu/ CONTRACTION OF IDEALS IN BOOLEAN LIKE SEMI RING/ IJMA- 3(4), April-2012, Page: 1324-1328

Definition 2.4: Let R and S be two Boolean like semi rings. If I is an ideal of S and $f: R \to S$ is a homomorphism then $f^{-1}(I)$ is an ideal of R, called the contraction of I and is denoted by I^c .

```
Theorem 2.5: Let I and J be two ideals of S then
```

```
(i) (I^c + J^c) \subseteq (I + J)^c
```

(ii)
$$(I \cap J)^c = (I^c \cap J^c)$$

(iii)
$$I^c J^c \subseteq (IJ)^c$$

(iv)
$$[r(I)]^c = r(I^c)$$

(v)
$$(I:J)^c \subset (I^c:J^c)$$

Proof:

(i) We have
$$I \subseteq I + J \Rightarrow f^{-1}(I) \subseteq f^{-1}(I + J) \Rightarrow I^{c} \subseteq (I + J)^{c}$$

Also
$$J \subset I + J \Rightarrow f^{-1}(J) \subset f^{-1}(I + J) \Rightarrow J^{c} \subset (I + J)^{c}$$

Hence $(I^c + J^c) \subset (I + J)^c$

$$\begin{array}{ll} \text{(ii)} \ \ I \cap J \subseteq I \ \text{and} \ I \cap J \subseteq J \ \Rightarrow \ f^{\text{-1}}(\ I \cap J \) \subseteq f^{\text{-1}}(\ I \) \ \text{and} \ f^{\text{-1}}(\ I \cap J \) \subseteq f^{\text{-1}}(\ J \) \\ \Rightarrow \ \ (\ I \cap J \)^c \subseteq (I^c \cap J^c \) \\ \end{array}$$

Suppose
$$x \in (I^c \cap J^c) \Rightarrow x \in I^c$$
 and $x \in J^c$
 $\Rightarrow x \in f^{-1}(I)$ and $x \in f^{-1}(J)$
 $\Rightarrow f(x) \in I$ and $f(x) \in J$
 $\Rightarrow f(x) \in I \cap J$
 $\Rightarrow x \in f^{-1}(I \cap J)$
 $\Rightarrow x \in (I \cap J)^c$

Hence $(I^c \cap J^c) \subseteq (I \cap J)^c$, Thus $(I \cap J)^c = (I^c \cap J^c)$.

(iii) Let
$$x \in (I^c J^c)$$
 then $x = a_1b_1 + a_2b_2 + ---- + a_nb_n$, $a_i \in I^c$, $b_i \in J^c$

Since
$$a_i \in I^c$$
, $b_i \in J^c \implies a_i \in f^{-1}(I)$, $b_i \in f^{-1}(J)$
 $\implies f(a_i) \in I$ and $f(b_i) \in J$

$$\Rightarrow$$
 f(a_i) f(b_i) \in IJ, for all i = 1,2,3, ..., n

$$\Rightarrow$$
 f($a_i b_i$) \in IJ, for all $i = 1,2,3,...,n$

$$\Rightarrow \Sigma_i f(a_i b_i) \in IJ$$
 (by definition of IJ)

$$\Rightarrow \; f(\, \Sigma_i \, a_i \, b_i \,) \in IJ$$

$$\Rightarrow$$
 f(x) \in IJ

$$\Rightarrow x \in f^1(IJ)$$

$$\Rightarrow x \in (IJ)^c$$

Thus $I^c J^c \subset (IJ)^c$

$$\begin{array}{ll} \text{(iv)} & \text{Let } x \in \left[\ r(\ I \) \right]^c \Leftrightarrow f \ (\ x \) \in r \ (I \) \\ & \Leftrightarrow \left[\ f \ (\ x \) \right]^n \in I \quad \text{by definition of radical of } I) \\ & \Leftrightarrow f \ (\ x^n \) \in I \\ & \Leftrightarrow x^n \ \in f^{-1}(\ I \) \Leftrightarrow \ x^n \ \in I^c \Leftrightarrow \ x \in \ r(\ I^c \) \\ \end{array}$$

Thus
$$[r(I)]^c = r(I^c)$$
.

$$(I:J)^c \subseteq (I^c:J^c)$$

$$(v)$$
 Let $x \in (I:J)^c \Rightarrow f(x) \in (I:J) \Rightarrow Jf(x) \subseteq I$ (A)

B. V. N. Murthy* & K. Venkateswarlu/ CONTRACTION OF IDEALS IN BOOLEAN LIKE SEMI RING/ IJMA- 3(4), April-2012, Page: 1324-1328

We now prove that $J^c x \subseteq I^c$ Let $z \in J^c x \Rightarrow z = yx$, for some $y \in J^c$. If $y \in J^c \Rightarrow y \in f^1(J) \Rightarrow f(y) \in J$ Now $f(z) = f(yx) = f(y)f(x) \in Jf(x) \subseteq I$ (from A) Hence $f(z) \in I \Rightarrow z \in f^1(I) \Rightarrow z \in I^c$. Hence $J^c x \subseteq I^c$ $\Rightarrow x \in (I^c \colon J^c)$. Thus $(I \colon J)^c \subseteq (I^c \colon J^c)$

REFERENCES:

- 1. Foster .A.L: The theory of Boolean like rings, Trans.Amer.Math.Soc. Vol.59, 1946,
- 2. Gunter Pilz: Near-Rings, The theory and its applications (North-Holland) 1983.
- 3. Subrahmanyam. N.V: Boolean semi rings, Math. Annalen 148, 395-401,1962
- 4. Swaminathan V: Boolean-like rings, PhD dissertation, Andhra University, India, 1982
- 5. Swaminathan V: On Foster's Boolean- like rings, Math. Seminar Notes, Kobe University, Japan, Vol 8, 1980, 347-367.
- 6. Venkateswarlu.K, Murthy. BVN and Amarnath. N:Boolean like semi rings, International Journal of contemporary Mathematical Sciences, Vol. 6, 2011, no.13, 619 635.
- 7. Venkateswarlu.K and Murthy. BVN: Primary ideals in Boolean like semi rings Int. J. Contemp. Math. Sciences, Vol. 6, 2011, no. 28, 1367 -1377.
- 8. Venkateswarlu.K and Murthy. BVN: Semi Prime ideals and Annihilators in a Boolean like semi rings'-International Journal of Algebra, Vol. 5, 2011, no. 28, 1363 1370.
