International Journal of Mathematical Archive-3(4), 2012, Page: 1324-1328 (C大 $\$$ MA Available online through www.ijma.info ISSN 2229-5046

CONTRACTION OF IDEALS IN BOOLEAN LIKE SEMI RING

B. V. N. Murthy*
Department of Mathematics, Simhadhri Educational Society group of Institutions, Sabbavaram Mandal Visakhapatnam, AP, India
E-mail: bvnmurthymaths@yahoo.com
\&
K.Venkateswarlu
Department of Mathematics, Addis Ababa University, Addis Ababa, Ethiopia
E-mail: drkvenky@yahoo.co.in

(Received on: 03-04-12; Accepted on: 22-04-12)

Abstract

In this paper, we introduce the concept of contraction of an ideal in a Boolean like semi ring and obtain certain properties of these special classes of ideals. We obtain this in theorem 2.5 below

Mathematics Subject Classification:16Y30, 16 Y 60.
Keywords: Boolean like semi rings and Contraction of an ideal.

INTRODUCTION

The concept of Boolean like semi rings is due to Venkateswarlu, Murthy and Amaranth in [6].
The present paper is divided into 2 sections. In section 1, we give preliminary concepts and results regarding Boolean like semi rings. In section 2 , we establish that Let R and S be two Boolean like semi rings. Let I be an ideal of S and let $f: R \rightarrow S$ be a homomorphism then $f^{-1}(I)$ is an ideal of R (see theorem 2.3). Further we introduce the concept of contraction of an ideal and study of of its properties in Boolean like semi ring (see theorems 2.5)

1. PRELIMINARIES: BOOLEAN LIKE SEMI RINGS AND ITS PROPERTIES

We recall certain definitions and results concerning Boolean like semi rings from [6]
Definition 1.1: A non empty set R together with two binary operations + and . satisfying the following conditions is called a Boolean like semi ring

1. $(\mathrm{R},+$) is an abelian group
2. (R, .) is a semi group
3. $a .(b+c)=a . b+a . c$ for all $a, b, c \in R$
4. $a+a=0$ for all $a \in R$
5. $a b(a+b+a b)=a b$ for all $a, b \in R$.

Example 1.2: Let $\mathrm{R}=\{0, \mathrm{a}, \mathrm{b}, \mathrm{c}\}$. The binary operations + and . are defined as follows

+	0	a	b	c
0	0	a	b	c
a	a	0	c	b
b	b	c	0	a
c	c	b	a	0

•	0	a	b	c
0	0	0	0	0
a	0	0	a	a
b	0	0	b	b
c	0	a	b	c

Then ($\mathrm{R},+$, .) is a Boolean like semi ring. We observe that $\mathrm{cab} \neq \mathrm{cba}$.

[^0]
B. V. N. Murthy* \& K. Venkateswarlu/ CONTRACTION OF IDEALS IN BOOLEAN LIKE SEMI RING/ IJMA- 3(4), April-2012, Page: 1324-1328

Example 1.3: Let $\mathrm{R}=\{0, \mathrm{x}, \mathrm{y}, \mathrm{z}\}$. The binary operations + and. are defined as follows

+	0	x	y	z
0	0	x	y	z
x	x	0	z	y
y	y	z	0	x
z	z	y	x	0

\cdot	0	x	y	z
0	0	0	0	0
x	0	x	0	x
y	0	0	0	0
z	0	z	0	z

Then ($R,+,$.) is a Boolean like semi ring. We note that $a b c=a c b$ for $a l l a, b, c \in R$.
Example 1.4: Let $\mathrm{R}=\{0, \mathrm{p}, \mathrm{q}, 1\}$. The binary operations + and. are defined as follows

+	0	p	q	1
0	0	p	q	1
p	p	0	1	q
q	q	1	0	p
1	1	q	p	0

\cdot	0	p	q	1
0	0	0	0	0
p	0	0	p	p
q	0	0	q	q
1	0	p	q	1

Then R is a Boolean like semi ring. It is clear that $\mathrm{a} .1=1 . \mathrm{a}=\mathrm{a}$ for all $\mathrm{a} \in \mathrm{R}$.
The following are properties of Boolean like semi rings
Let R be a Boolean like semi ring. Then
Lemma 1.5: For a $\in R$, a. $0=0$
Lemma 1.6: For $a \in R, a^{4}=a^{2}$ (weak idempotent law)
Remark 1.7: From the above lemma 1.6, we have $a^{2 n}=a^{2}$, for any integer $n>0$
Lemma 1.8: If R is a Boolean like semi ring then, $a^{n}=a$ or a^{2} or a^{3} for any integer $n>0$ and $0 a^{2}=0$ and $0\left(a+a^{2}\right)=0 a$ for all $a \in R$.

Definition 1.9: A Boolean like semi ring R is said to be weak commutative if $a b c=a c b$, for $a l l a, b, c \in R$.
Lemma 1.10: If R is a Boolean like semi ring with weak commutative then $0 . a=0$ for all $a \in R$
Lemma 1.11: Let R be Boolean like semi ring then for any $a, b \in R$ and for any integers $m, n>0, \quad 1 . a^{m} a^{n}=a^{m+n} \quad 2$. $\left(a^{m}\right)^{n}=a^{m n} \quad 3 .(a b)^{n}=a^{n} b^{n}$ if R is weak commutative.

Definition 1.12: An element $1 \in R$ is said to be unity if $a 1=1 a=a$, for $a l l a \in$. If $a 1=a$, then 1 is called right unity and if $1 a=a$, then 1 is called left unity.

Definition 1.13: A non empty subset I of R is said to be an ideal if

1. $(I,+)$ is a sub group of $(R,+)$, i.e , for $a, b \in I \Rightarrow a+b \in I$
2. ra $\in I$, for all $a \in I, r \in R$, i.e $R I \subseteq I$
3. $(r+a) s+r s \in I$, for all $r, s \in R, a \in I$

Theorem 1.14: The set of all nilpotent elements of a weak commutative Boolean like semi ring form an ideal.
Theorem 1.15: If I is an ideal of a weak commutative Boolean like semi ring R then the radical of I, denoted by $r(I)$ and is defined as $\left\{x \in R / x^{n} \in I\right.$, for some positive integer $\left.n\right\}$ is an ideal of R.

Theorem 1.16: If I and J are ideals of a Boolean like semi ring R then $I+J$ is an ideal of R.

B. V. N. Murthy* \& K. Venkateswarlu/ CONTRACTION OF IDEALS IN BOOLEAN LIKE SEMI RING/ IJMA- 3(4), April-2012,
 Page: 1324-1328

Theorem 1.17: If I and J are ideals of a Boolean like semi ring R then $I \cap J$ is an ideal of R.
Theorem 1.18: If I and J are left ideals of a Boolean like semi ring R then the product $I J=\left\{a_{1} b_{1}+a_{2} b_{2}+----+a_{n} b_{n} / a_{i} \in I, b_{i} \in J\right\}$ is a left ideal of R.

Theorem 1.19:. If I and J are ideals of a weak commutative Boolean like semi ring R then
i. $\quad I \subseteq r(I)$
ii. $\quad r(I \cap J)=r(I) \cap r(J)$
iii. If $\mathrm{I} \subseteq \mathrm{J}$ then $\mathrm{r}(\mathrm{I}) \subseteq \mathrm{r}(\mathrm{J})$
iv. $\quad r(r(I))=r(I)$
v. $\quad r(I+J)=r(r(I)+r(J))$
vi. If R has right unity 1 then $\mathrm{r}(\mathrm{I})=\mathrm{R}$ if and only if $\mathrm{I}=\mathrm{R}$
vii. $\quad r(I J)=r(I \cap J)$

Definition 1.20: Let R be a Boolean like semi ring. Let I and J be ideals of R. Then their ideal quotient is denoted by ($\mathrm{I}: \mathrm{J}$) and is defined by $(\mathrm{I}: \mathrm{J})=\{\mathrm{x} \in \mathrm{R} / \mathrm{Jx} \subseteq \mathrm{I}\}$.

Now we have the following
Theorem 1.21: If R is a weak commutative Boolean like Semi ring and I, J and K are ideals of R then the following hold.

1. ($I: J)=\{x \in R / J x \subseteq I\}$ is an ideal of R.
2. $\mathrm{I} \subseteq(\mathrm{I}: \mathrm{J})$
3. ((I:J):K $)=(\mathrm{I}: \mathrm{JK})$
4. $\left(\cap I_{i}: J\right)=\cap_{i}\left(I_{i}: J\right)$

2. CONTRACTION OF IDEALS IN A BOOLEAN LIKE SEMI RING

We now introduce the concept of contraction of an ideal in a Boolean like semi ring
Definition 2.1: If R and R^{\prime} are Boolean like semi rings. A mapping $f: R \rightarrow R^{\prime}$ is said to be a Boolean like semi ring homomorphism (or simply homomorphism) of R into R'if $f(a+b)=f(a)+f(b)$ and $f(a b)=f(a) f(b)$ for all $a, b \in R$.

Theorem 2.2: A mapping $f: R \rightarrow R^{\prime}$ is a homomorphism of a Boolean like semi ring R into R^{\prime} then $f(0)=0^{\prime}$ and $f(R)$ is weak commutative if R is weak commutative.

Theorem 2.3: Let R and S be two Boolean like semi rings. Let I be an ideal of S and let $f: R \rightarrow S$ be a homomorphism then $f^{-1}(I)$ is an ideal of R.

Proof: $f^{-1}(I)=\{x \in R / f(x) \in I\}$
From theorem 2.2, we have $0^{\prime}=f(0) \in I \Rightarrow 0 \in f^{-1}(I)$
Hence $f^{-1}(I)$ is non empty and $f^{-1}(I) \subseteq R$.
Let $\mathrm{x}, \mathrm{y} \in \mathrm{f}^{-1}(\mathrm{I}) \Rightarrow \mathrm{f}(\mathrm{x}), \mathrm{f}(\mathrm{y}) \in \mathrm{I} \Rightarrow \mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{y}) \in \mathrm{I}$

$$
\Rightarrow \mathrm{f}(\mathrm{x}+\mathrm{y}) \in \mathrm{I} \Rightarrow \mathrm{x}+\mathrm{y} \in \mathrm{f}^{-1}(\mathrm{I})
$$

Hence $\left(f^{-1}(I),+\right)$ is a sub group of $(R,+)$.
Let $\mathrm{x} \in \mathrm{f}^{-1}(\mathrm{I})$ and $\mathrm{r}, \mathrm{s} \in \mathrm{R} \Rightarrow \mathrm{f}(\mathrm{x}) \in \mathrm{I}$
Consider $f(r x)=f(r) f(x) \in I$ (I is an ideal of S)

$$
\Rightarrow \mathrm{rx} \in \mathrm{f}^{-1}(\mathrm{I})
$$

Consider $f((r+x) s+r s)=f((r+x) s)+f(r s)$

$$
\begin{aligned}
& =f(r+x) f(s)+f(r) f(s) \\
& =[f(r)+f(x)] f(s)+f(r) f(s) \in I \quad(I \text { is an ideal of } S)
\end{aligned}
$$

Thus $f^{-1}(I)$ is an ideal of R.

B. V. N. Murthy* \& K. Venkateswarlu/ CONTRACTION OF IDEALS IN BOOLEAN LIKE SEMI RING/ IJMA- 3(4), April-2012, Page: 1324-1328

Definition 2.4: Let R and S be two Boolean like semi rings. If I is an ideal of S and $f: R \rightarrow S$ is a homomorphism then $f^{-1}(I)$ is an ideal of R, called the contraction of I and is denoted by I^{c}.

Theorem 2.5: Let I and J be two ideals of S then
(i) $\left(I^{\mathrm{c}}+\mathrm{J}^{\mathrm{c}}\right) \subseteq(\mathrm{I}+\mathrm{J})^{\mathrm{c}}$
(ii) $(I \cap J)^{\mathrm{c}}=\left(\mathrm{I}^{\mathrm{c}} \cap \mathrm{J}^{\mathrm{c}}\right)$
(iii) $\mathrm{I}^{\mathrm{c}} \mathrm{J}^{\mathrm{c}} \subseteq(\mathrm{IJ})^{\mathrm{c}}$
(iv) $[\mathrm{r}(\mathrm{I})]^{\mathrm{c}}=\mathrm{r}\left(\mathrm{I}^{\mathrm{c}}\right)$
(v) $(\mathrm{I}: \mathrm{J})^{\mathrm{c}} \subseteq\left(\mathrm{I}^{\mathrm{c}}: \mathrm{J}^{\mathrm{c}}\right)$

Proof:

(i) We have $\mathrm{I} \subseteq \mathrm{I}+\mathrm{J} \Rightarrow \mathrm{f}^{-1}(\mathrm{I}) \subseteq \mathrm{f}^{-1}(\mathrm{I}+\mathrm{J}) \Rightarrow \mathrm{I}^{\mathrm{c}} \subseteq(\mathrm{I}+\mathrm{J})^{\mathrm{c}}$

Also $\mathrm{J} \subseteq \mathrm{I}+\mathrm{J} \Rightarrow \mathrm{f}^{-1}(\mathrm{~J}) \subseteq \mathrm{f}^{-1}(\mathrm{I}+\mathrm{J}) \Rightarrow \mathrm{J}^{\mathrm{c}} \subseteq(\mathrm{I}+\mathrm{J})^{\mathrm{c}}$
Hence $\left(\mathrm{I}^{\mathrm{C}}+\mathrm{J}^{\mathrm{c}}\right) \subseteq(\mathrm{I}+\mathrm{J})^{\mathrm{C}}$
(ii) $I \cap J \subseteq I$ and $I \cap J \subseteq J \Rightarrow f^{-1}(I \cap J) \subseteq f^{-1}(I)$ and $f^{-1}(I \cap J) \subseteq f^{-1}(J)$

$$
\Rightarrow(\mathrm{I} \cap \mathrm{~J})^{\mathrm{c}} \subseteq\left(\mathrm{I}^{\mathrm{c}} \cap \mathrm{~J}^{\mathrm{c}}\right)
$$

```
Suppose \(\mathrm{x} \in\left(\mathrm{I}^{\mathrm{C}} \cap \mathrm{J}^{\mathrm{c}}\right) \Rightarrow \mathrm{x} \in \mathrm{I}^{\mathrm{c}}\) and \(\mathrm{x} \in \mathrm{J}^{\mathrm{c}}\)
    \(\Rightarrow \mathrm{x} \in \mathrm{f}^{-1}(\mathrm{I})\) and \(\mathrm{x} \in \mathrm{f}^{-1}(\mathrm{~J})\)
    \(\Rightarrow \mathrm{f}(\mathrm{x}) \in \mathrm{I}\) and \(\mathrm{f}(\mathrm{x}) \in \mathrm{J}\)
    \(\Rightarrow \mathrm{f}(\mathrm{x}) \in \mathrm{I} \cap \mathrm{J}\)
    \(\Rightarrow \mathrm{x} \in \mathrm{f}^{-1}(\mathrm{I} \cap \mathrm{J})\)
    \(\Rightarrow \mathrm{x} \in(\mathrm{I} \cap \mathrm{J})^{\mathrm{c}}\)
```

Hence $\left(I^{c} \cap J^{c}\right) \subseteq(I \cap J)^{c}$, Thus $(I \cap J)^{c}=\left(I^{c} \cap J^{c}\right)$.
(iii) Let $\mathrm{x} \in\left(\mathrm{I}^{\mathrm{c}} \mathrm{J}^{\mathrm{c}}\right)$ then $\mathrm{x}=\mathrm{a}_{1} \mathrm{~b}_{1}+\mathrm{a}_{2} \mathrm{~b}_{2}+\ldots--+\mathrm{a}_{\mathrm{n}} \mathrm{b}_{\mathrm{n}}, \mathrm{a}_{\mathrm{i}} \in \mathrm{I}^{\mathrm{c}}, \mathrm{b}_{\mathrm{i}} \in \mathrm{J}^{\mathrm{c}}$

Since $a_{i} \in I^{c}, b_{i} \in J^{c} \Rightarrow a_{i} \in f^{-1}(I), b_{i} \in f^{-1}(J)$
$\Rightarrow \mathrm{f}\left(\mathrm{a}_{\mathrm{i}}\right) \in \mathrm{I}$ and $\mathrm{f}\left(\mathrm{b}_{\mathrm{i}}\right) \in \mathrm{J}$
$\Rightarrow f\left(a_{i}\right) f\left(b_{i}\right) \in I J$, for all $i=1,2,3, \ldots, n$
$\Rightarrow f\left(a_{i} b_{i}\right) \in I J$, for all $i=1,2,3, \ldots, n$
$\Rightarrow \Sigma_{\mathrm{i}} \mathrm{f}\left(\mathrm{a}_{\mathrm{i}} \mathrm{b}_{\mathrm{i}}\right) \in \mathrm{IJ} \quad$ (by definition of IJ)
$\Rightarrow \mathrm{f}\left(\Sigma_{\mathrm{i}} \mathrm{a}_{\mathrm{i}} \mathrm{b}_{\mathrm{i}}\right) \in \mathrm{IJ}$
$\Rightarrow \mathrm{f}(\mathrm{x}) \in \mathrm{IJ}$
$\Rightarrow \mathrm{x} \in \mathrm{f}^{-1}(\mathrm{IJ})$
$\Rightarrow \mathrm{x} \in(\mathrm{IJ})^{\mathrm{c}}$
Thus $\mathrm{I}^{\mathrm{c}} \mathrm{J}^{\mathrm{c}} \subseteq(\mathrm{IJ})^{\mathrm{c}}$
(iv) Let $\mathrm{x} \in[\mathrm{r}(\mathrm{I})]^{\mathrm{c}} \Leftrightarrow \mathrm{f}(\mathrm{x}) \in \mathrm{r}(\mathrm{I})$

$$
\begin{aligned}
& \left.\Leftrightarrow[f(x)]^{n} \in I \quad \text { by definition of radical of } I\right) \\
& \Leftrightarrow f\left(x^{n}\right) \in I \\
& \Leftrightarrow x^{n} \in f^{-1}(I) \Leftrightarrow x^{n} \in I^{c} \Leftrightarrow x \in r\left(I^{c}\right)
\end{aligned}
$$

Thus $\quad[r(I)]^{c}=r\left(I^{c}\right)$.
$(I: J)^{c} \subseteq\left(I^{c}: J^{c}\right)$
(v) Let $\mathrm{x} \in(\mathrm{I}: \mathrm{J})^{\mathrm{c}} \Rightarrow \mathrm{f}(\mathrm{x}) \in(\mathrm{I}: \mathrm{J}) \Rightarrow \mathrm{Jf}(\mathrm{x}) \subseteq \mathrm{I}$
© 2012, IJMA. All Rights Reserved

We now prove that $\mathrm{J}^{\mathrm{c}} \mathrm{x} \subseteq \mathrm{I}^{\mathrm{C}}$
Let $\mathrm{z} \in \mathrm{J}^{\mathrm{c}} \mathrm{x} \Rightarrow \mathrm{z}=\mathrm{yx}$, for some $\mathrm{y} \in \mathrm{J}^{\mathrm{c}}$.
If $\mathrm{y} \in \mathrm{J}^{\mathrm{c}} \Rightarrow \mathrm{y} \in \mathrm{f}^{-1}(\mathrm{~J}) \Rightarrow \mathrm{f}(\mathrm{y}) \in \mathrm{J}$
Now $f(z)=f(y x)=f(y) f(x) \in J f(x) \subseteq I \quad($ from A)
Hence $f(z) \in I \Rightarrow z \in f^{-1}(I) \Rightarrow z \in I^{c .}$ Hence $J^{c} x \subseteq I^{c}$
$\Rightarrow \mathrm{x} \in\left(\mathrm{I}^{\mathrm{c}}: \mathrm{J}^{\mathrm{c}}\right)$. Thus $(\mathrm{I}: \mathrm{J})^{\mathrm{c}} \subseteq\left(\mathrm{I}^{\mathrm{c}}: \mathrm{J}^{\mathrm{c}}\right)$

REFERENCES:

1. Foster .A.L: The theory of Boolean like rings, Trans.Amer.Math.Soc. Vol.59, 1946,
2. Gunter Pilz: Near-Rings, The theory and its applications (North-Holland) 1983.
3. Subrahmanyam. N.V: Boolean semi rings, Math. Annalen 148, 395-401,1962
4. Swaminathan V : Boolean- like rings, PhD dissertation ,, Andhra University, India, 1982
5. Swaminathan V: On Foster’s Boolean- like rings, Math. Seminar Notes, Kobe University, Japan, Vol 8, 1980, 347-367.
6. Venkateswarlu.K, Murthy. BVN and Amarnath. N:Boolean like semi rings, International Journal of contemporary Mathematical Sciences, Vol. 6, 2011, no.13, 619 - 635.
7. Venkateswarlu.K and Murthy. BVN: Primary ideals in Boolean like semi rings - Int. J. Contemp. Math. Sciences, Vol. 6, 2011, no. 28, 1367 -1377.
8. Venkateswarlu.K and Murthy. BVN: Semi Prime ideals and Annihilators in a Boolean like semi rings'International Journal of Algebra, Vol. 5, 2011, no. 28, 1363 - 1370.

[^0]: *Corresponding author: B. V. N. Murthy*, *E-mail: bvnmurthymaths@yahoo.com

