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ABSTRACT 
In this work, we intend to introduce a new class of parametric generalized nonlinear quasi-variational inclusions. We 
prove the existence of solutions for our inclusions and study the sensitivity analysis of the solution set. The continuity 
and the Lipschitz continuity of the solution set with respect to the parameter are proved under the suitable assumptions 
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1. INTRODUCTION  
 
In recent years, much attention has been devoted to develop general methods for the sensitivity analysis of solution set 
for variational inequalities and variational inclusions. From the mathematical and engineering point of view, sensitivity 
properties of various variational inequalities can provide new insight concerning the problem being studied and can 
stimulate ideas for solving problems. The sensitivity analysis of solution set for variational inequalities have been 
studied extensively by many authors using quite different methods. By using the projection technique, Dafermos [3], 
Mukherjee and Verma [19], Noor [22] and Yen [29] dealt with the sensitivity analysis for variational inequalities with 
single valued mappings. By using the implicit function approach that makes use of so-called normal mappings, 
Robinson [28] dealt with the sensitivity analysis for variational inequalities in finite-dimensional spaces. By using 
resolvent operator technique, Adly[1], Noor and Noor[25,21], and Aggarwal et al.[2] study the sensitivity analysis for 
quasi-variational inclusions with single valued mappings. Recently, by using projection technique and the property of 
fixed point set of multi-valued contractive mappings, Ding and Lou [9], Liu et al.[18],Ding[11] study the behavior and 
sensitivity analysis of solution set In this paper, we intend to introduce a new class of parametric generalized nonlinear 
quasi-variational inclusions and prove the existence of solutions for our inclusions and study the sensitivity analysis of 
the solution set by using resolvent operator technique. 
 
2. PRELIMINARIES 
 
Let H be a real Hilbert space with a norm ||. ||   and an inner product 〈. , . 〉. Let C(H)  denote the family of all nonempty 
compact subsets of H and H(. , .) denote the Hausdorff metric on C(H) defined by  
 
             H(A, B)= max{supa∈ A d(a, B), supb∈ B d(A, b) } , ∀ A, B ∈ C(H),  
 
where d(a,B)= infb∈ B || a-b ||  and  d(A,b)= inf a∈ A ||a-b ||.  
 
We now consider the following parametric generalized nonlinear quasi-variational inclusion problem. To this end, let  
Ω  be a nonempty open subset of H in which the parameter Ω takes the values,  N:H ×H× Ω → H and f, m: H×  Ω → H  
be a single valued mappings and  A, B, C, D, E, G: H × Ω→ C(H) be multi-valued mappings. Let  M: H × H × Ω → 2H   
be a multi-valued mappings such that for each given  (z, λ)∈ H× Ω, M(.,z, λ):H→2H  is a maximal monotone mappings 
with  ( G(H, λ) - m(H, λ )) ∩ dom M(. , z, λ) ≠φ . Throughout in this paper, unless otherwise stated, we will consider 
the following parametric generalized nonlinear quasi-variational inclusion problem (In short, PGNQVIP): 
 
For each fixed λ ∈ Ω, find  x(λ) ∈ H, u(λ) ∈ A(x(λ), λ), v(λ) ∈ B(x(λ), λ),  w(λ) ∈ C(x(λ), λ),   z(λ) ∈ D(x(λ), λ),   t(λ) 
∈ E(x(λ), λ),  s(λ) ∈ G(x(λ), λ)  such that  
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                    0∈  M( s(λ) - m(w(λ),  λ), z(λ),  λ)  - N(u(λ), v(λ), λ) +  f(t(λ),  λ )                                                         ( 2.1 )                                 
 
Special Cases: 
 
(1) If  f (t(λ), λ) = 0, then the PGNQVIP(2.1) is equivalent to the following parametric generalized nonlinear implicit 
quasi-variational inclusion problem: for each λ∈ Ω, find x(λ) ∈ H, u(λ) ∈ A(x(λ), λ),  v(λ) ∈ B(x(λ),  λ),    
w(λ) ∈ C(x(λ), λ),  z(λ) ∈ D(x(λ),  λ), s(λ) ∈  G(x(λ),  λ)  such that 
 
0∈  M(s(λ)-  (w(λ), λ), z(λ), λ  ) + N(u(λ), v(λ), λ).                                                                                                       (2.2) 
 
(2)  If G = g: H × Ω → H is a single valued mapping, then the PGNQVIP (2.1) is equivalent to the following parametric 
generalized nonlinear implicit quasi-variational inclusion problem: for each λ∈ Ω, find  x(λ) ∈ H, u(λ) ∈ A(x(λ), 
λ),v(λ) ∈   B(x(λ), λ),  w(λ) ∈ C(x(λ), λ), z(λ) ∈  D(x(λ), λ),  t(λ) ∈   E(x(λ), λ)  such that  
 
0∈  M(g(x(λ), λ) - m(w(λ), λ),z(λ), λ )-  N(u(λ),v(λ), λ ) + f(t(λ), λ).                                                                            (2.3)     
 
(3)  If  m(x, λ) = 0  for all  (x, λ) ∈  H× Ω, then problem(2.3) reduces to the following parametric problem: for each λ∈ 
Ω, find  x(λ) ∈ H, u(λ) ∈ A(x(λ), λ), v(λ) ∈ B(x(λ), λ), z(λ) ∈ D(x(λ), λ),  t(λ) ∈E(x(λ), λ)  such that  
 
0∈M(g(x(λ), λ), z(λ), λ) - N(u(λ), v(λ),  λ ) + f(t(λ), λ).                                                           (2.4) 
 
(4)  Let φ : H × H ×  Ω → R∪ { + ∞ }  be such that for each fixed  (z, λ) ∈ H× Ω,  φ(., z, λ ) is a proper convex lower 
semi-continuous functional satisfying 
 
G(H, λ) -m(H, λ )∩dom∂φ (.,z, λ ) ≠ Φ,  where ∂φ (.,z, λ )  is the sub differential of  φ(.,z, λ). By [27], ∂φ (.  , λ): H× 2H    

is a maximal monotone mapping. Let M (. λ) = ∂φ (., z, λ),   ∀ (z, λ) ∈ H× Ω.  for g iven  (z, λ) ∈ H×Ω, b y the 
definition of the sub differential of  φ(.,z, λ), it is easy to see that problem (2.1) reduces to the following. 
  
parametric problem:   for each λ ∈ Ω,  find  x(λ) ∈H, u(λ) ∈A(x(λ), λ),   v(λ) ∈ B(x(λ), λ),w(λ) ∈ C(x(λ), λ),  z(λ) 
∈D(x(λ), λ),  t(λ) ∈E(x(λ), λ),  s(λ) ∈ G(x(λ), λ)  such that 
 
〈  f(t(λ), λ )  - N(u(λ),v(λ), λ ), y - s(λ) 〉  ≥  φ( s(λ) - m(w(λ),v), z(λ), λ )  - φ (y, z(λ), λ),    ∀  y∈ H.                          (2.5) 
 
(5)  If  G = g: H ×  Ω  → H  is a single valued mapping and  m(x, λ) = 0  for all (x, λ) ∈ H× Ω,  then problem (2.5) 
reduces to the following parametric : for each λ∈ Ω,  find  x(λ) ∈ H, u(λ) ∈A(x(λ), λ), v(λ) ∈ B(x(λ), λ), λ),  z(λ) ∈ 
D(x(λ), λ), t(λ) ∈ E(x(λ), λ)  such that  
 
 〈 f(t(λ), λ )-  N(u(λ),v(λ), λ ), y - g(x(λ), λ) 〉   ≥  φ (g(x(λ), λ ), z(λ), λ ) -  φ (y, z(λ), λ),  ∀  y∈  H.                           (2.6) 
 
(6)  If  K: H ×  Ω  → 2H is a multi-valued mapping such that for each (x, λ) ∈  H× Ω,           
K(x, λ)  is a closed convex subset of  H and for each fixed (z, λ) ∈  H×  Ω , φ (.,z, λ) = IK(z, λ)(.)  is the indicator 
function of K(z, λ),  

                        IK(z, λ)(x) =       




∞+
∈
otherwise

xKifx
,

),(,0 λ
    

                                                
then problem (2.6) reduces to the following parametric generalized strongly nonlinear implicit quasi-variational 
inequality problem: 
 
for each λ ∈ Ω, find x(λ) ∈  H, u(λ) ∈  A(x(λ), λ), v(λ) ∈ B(x(λ), λ), z(λ) ∈  D(x(λ), λ), t(λ) ∈  E(x(λ), λ)  such that   
 
g(x(λ), λ ) ∈ K(z(λ), λ)  and  〈 f(t(λ), λ )- N(u(λ),v(λ), λ ),y -g(x(λ), λ) 〉 ≥  0, ∀ y∈ K(z(λ), λ).                (2.7) 
 
In brief, for appropriate and suitable choices of A, B, C, D, E, G, N, m, f and M, it is easy to see that the PGNQVIP 
(2.1) includes a number of (parametric) quasi-variational inclusions, (parametric) generalized quasi-variational 
inclusions, (parametric) quasi-variational inequalities, (parametric) generalized implicit quasi-variational inequalities 
studied by many authors as special cases, for example, see [1-5, 11-13] and the references therein. Furthermore, these 
types of (parametric) generalized quasi-variational inclusions can enable us to study the behavior and sensitivity 
analysis of the solution sets of many important nonlinear problems arising in mechanics, physics, optimization and 
control, nonlinear programming, economics, finance, regional structural, transportation, elasticity, and various applied 
science in a general and unified framework. 
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Now for each fixed λ∈ Ω, the solution set S (λ) of the PGNQVIP(2.1) is denoted as S(λ) = { x(λ) ∈ H : there exists u(λ) 
∈ A(x(λ), λ), v(λ) ∈ B(x(λ), λ), w(λ) ∈ C(x(λ), λ), z(λ) ∈ D(x(λ), λ),  t(λ) ∈ E(x(λ), λ), s(λ) ∈ G(x(λ), λ)  such that 
 
 0∈ M(s(λ) - m(w(λ), λ), z(λ), λ ) - N(u(λ), v(λ), λ ) + f (t(λ), λ) } 
  
In this paper, our main aim is to study the behavior of the solution set S(λ), and the conditions on these mappings A, B, 
C, D, E, G, M, N, f and m under which  the function  S(λ)  is continuous or Lipschitz continuous with respect to the 
parameter  λ ∈  Ω . 
 
Now, we give the following concepts and known results. 
 
Definition 2.1: (See [27].) Let   H be a Hilbert space and let M: H  → 2H be a maximal monotone mapping. For any 
fixed   ρ > 0, the mapping MJ ρ : H→  H, defined by                                                 
 

MJ ρ (x) =  (I+ρM)-1 x),  ∀ x∈ H,  is said to be the resolvent operator of M where I is the identity mapping on H. 
 
Lemma 2.1: (See [27].) Let M: H  →  2H be a maximal monotone mapping. Then the resolvent operator JM

ρ: H →  H 
of M  is  non expansive, i.e.,  
                   || MJ ρ (x)- MJ ρ (y) || ≤ || x – y ||,   ∀ x, y∈ H.   
 
Lemma 2.2: (See [17].) Let (X, d)  be a complete metric space and  T1, T2: X  → C(X) be two multi-valued contractive 
mappings with same contractive constant θ ∈ (0,1), i.e.,       
 
                H (Ti(x), Ti(y)) ≤ θ d(x, y), ∀ x, y ∈ X, i= 1, 2. Then 

H (F (T1), F (T2)) ≤  
θ−1

1
 supx∈ X H (T1(x), T2(x)), 

                        
Where F (T1) and F(T2)  are fixed point sets of T1 and T2, respectively.      
 
Definition 2.2: A multi-valued mapping G: H× Ω  → C(H)  is said to be  
 (i) δ - strongly monotone  if there exists a constant δ > 0 such that  
      〈 s1 -s2, x – y  〉 ≥ δ ||x – y|| 2,   ∀ (x, y, λ) ∈  H× H× Ω, s1∈G(x, λ),s2 ∈ G(y, λ). 
 
 (ii) λG- Lipschitz continuous if there exists a constant λG > 0  such that  
 
       H(G(x, λ), G(y, λ)) ≤  λG ||x-  y||    ∀ (x, y, λ) ∈ H × H × Ω. 
 
Definition 2.3: A: H× Ω →  C(H)  be a multi-valued mapping and   N: H × H × Ω  →  H  be a single valued mapping:  
(i)  N(u, v, λ ) is said to be α - strongly monotone  with respect to A such that 
 
              〈 s1 - s2, x- y〉 ≥ α || x - y ||2,  ∀ (x, y, λ) ∈ H× H× Ω, s1∈ G(x, λ), s2 ∈ G(y, λ). 
 
(ii)  N(u, v, λ)  is said to be β -  Lipschitz continuous  in the first argument if there  exists a constant β > 0 such that 
 
               || N(u1, v, λ) - N(u2, v, λ) ||  ≤  β || u1 - u2 || , ∀ (u1, u2, v, λ) ∈ H× H × H× Ω . 
 
In a similar way, we can define the ξ-   Lipschitz continuity of N(u, v, λ)  in the second argument. 
 
3.1 SENSITIVITY ANALYSIS OF SOLUTION SET 
 
We first transfer the PGNQVIP (2.1) into a parametric fixed point problem. 
 
Theorem 3.1:  For each fixed   λ∈ Ω  x(λ) ∈ S(λ)  is a solution of the PGNQVIP(2.1) if and only if there exists  u(λ) ∈ 
A(x(λ), λ), v(λ) ∈ B(x(λ), λ), w(λ) ∈ C(x(λ), λ),  z(λ) ∈ D(x(λ), λ),  t(λ) ∈ E(x(λ), λ),  s(λ) ∈ G(x(λ), λ)  such that the 
following relation holds:  
 

 s(λ) =  m(w(λ), λ) + )),((., λλ
ρ

ZMJ (s(λ) - m(w(λ), λ)- ρ N(u(λ), v(λ), λ ) + f(t(λ), λ)), 
where ρ  > 0  is a constant.   
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Proof: For each fixed λ ∈  Ω,  by the definition of the resolvent operator  )),((., λλ
ρ

zMJ  of  M(.,z(λ), λ), we have that 

there exists  x(λ) ∈  H,  u(λ) ∈ A(x(λ), λ),  v(λ) ∈ B(x(λ), λ), 
w(λ) ∈ C(x(λ), λ),  z(λ) ∈ D(x(λ), λ),  t(λ) ∈ E(x(λ), λ), and  s(λ) ∈ G(x(λ), λ)  such that(3.1) holds if and only if  
 

s(λ) - m(w(λ), λ) – ρN(u(λ),v(λ), λ) + f(t(λ), λ) ∈ s(λ) - m(w(λ), λ) )+ ρ M( s(λ)- m(w(λ), λ), z(λ), λ.          (3.1) 
 
The above relation holds if and only if  
 

 0∈ M( s(λ) - m(w(λ), λ), z(λ), λ) - N(u(λ), v(λ), λ ) + f(t(λ), λ ). 
 

By the definition of  S(λ),  we obtain that  x(λ) ∈ S(λ)  is a solution of the PGNQVIP(2.1) if and only if there exist  x(λ) 
∈ H , u(λ) ∈ A(x(λ), λ),  v(λ) ∈ B(x(λ), λ), w(λ) ∈ C(x(λ), λ), z(λ) ∈ D(x(λ), λ), t(λ) ∈ E(x(λ), λ), s(λ) ∈ G(x(λ), λ)  
such that(3.1) holds. 
 
Theorem 3.2: Let  A, B, C, D, E, G : H× Ω →C(H) be multi-valued mappings such that  A, B, C, D, E, and G  are  λA - 
Lipschitz continuous, λB - Lipschitz continuous, λC- Lipschitz continuous, λD - Lipschitz continuous, λE - Lipschitz 
continuous and  λG- Lipschitz continuous, respectively;  and  G: H× Ω→ C(H)  be -δ strongly monotone. Let N: H× H 
× Ω→ H  b e  α - strongly monotone with respect to A and β  - Lipschitz continuous in the first argument and ξ- 
Lipschitz continuous in the second argument. Let m: H× Ω →H be η- Lipschitz continuous and f: H × Ω → H be ε- 
Lipschitz continuous. Let M: H× Ω → 2H  be such that for each fixed (z, λ) ∈ H×Ω, M(.,z, λ):H→ 2H is a maximal 
monotone mapping satisfying G(H, λ) - m(H, λ)∩dom M(.,z, λ) ≠Φ. Suppose that for any (x, y, z, λ) ∈ H× H× H× Ω, 
 

|| ),(., λ
ρ

xMJ (z) - ),(., λ
ρ

yMJ  (z) || ≤ μ || x – y ||                                             (3.2) 
 

  and there exists a constant ρ > 0 such that 
 

=k 2 ,221 2
ECDG εληλµλλδ ++++−    k+ ρ ξ λB < 1, ξλB < α  ≤ λAβ, 

 

    α > (1-k) ξ λB +
22222 )2)(( kkBA −− λξβλ ,                                            (3.3) 

 

  | 2222

)1(

BA

Bk
λξβλ
ξλα

ρ
−
−−

− | < 2222

22222 )2)(()1(

BA

BAB kkk
λξβλ

λξβλξλα
−

−−−−−
. 

 
Then, for each λ∈ Ω,   we have the following 
 
(1) The solution set S(λ) of the PGNQVIP(2.1) is nonempty. 
(2)  S (λ) is a closed subset in H. 
 
Proof: Define a multi-valued mapping F: H× Ω → 2H by  
F(x, λ) = ∪u∈ A(x, λ),  v∈ B(x, λ), w∈ C(x, λ), z∈ D(x, λ), t∈ E(x, λ), s∈ G(x, λ) [x-s + m(w, λ) + J (.,.)M

ρ (s - m(w, λ) - 

ρN(u, v, λ) + f(t, λ))], ∀ (x, λ) ∈H × Ω. 
 
For any (x, λ) ∈ H × Ω,  since A(x, λ), B(x, λ), C(x, λ), D(x, λ), E(x, λ), G(x, λ) ∈ C(H), and  m,f  and  JM(.,z, λ) are 
continuous, we have F(x, λ) ∈ C(H). Now for each fixed λ ∈ Ω, we prove that F(x, λ)  is a multi-valued contractive 
mapping. For any (x, λ), (y, λ) ∈ H× Ω and a∈ F(x, λ), there exist   
 
u1 ∈ A(x, λ), v1∈ B(x, λ), w1 ∈ C(x, λ), z1 ∈ D(x, λ), t1 ∈ E(x, λ), s1 ∈ G(x, λ)  such that 
a = x-s1 + m(w1, λ)+ J (.,.)M

ρ  (s1- m(w1, λ)- ρN( u1, v1, λ)+ f(t1, λ)). 
 
Note that  A(y, λ), B(y, λ), C(y, λ), D(y, λ), E(y, λ), G(y, λ) ∈ C(H),  there exists  u2 ∈ A(y, λ), v2 ∈ B(y, λ),  
w2 ∈ C(y, λ),  z2 ∈ D(y, λ), t2 ∈ E(y, λ ) and s2∈ G(y, λ)  such that 
 

|| u1 - u2 || ≤ H (A(x, λ), A(y, λ)),  
|| v1 - v2 || ≤ H (B(x, λ), B(y, λ)),  
|| w1 - w2 || ≤ H(C(x, λ), C(y, λ)),                                             (3.4) 
|| z1 - z2 || ≤ H (D(x, λ), D(y, λ)),  
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|| t1 - t2 || ≤ H (E(x, λ), E(y, λ)),  
 
|| s1 - s2 || ≤ H (G(x, λ), G(y, λ)). 

 
Let  b =  y - s2 +  m(w2,  λ )+ J (.,.)M

ρ (s2 -  m(w2 , λ) - ρN(u2, v2,  λ)+ f(t2, λ)), then we have  b∈ F(y, λ). It follows that 
 
|| a – b|| = ||x- s1 + m(w1, λ) + J 1(. , )M z λ

ρ (s1 - m(w1, λ) - ρN(u1, v1, λ) +  f(t1, λ)) - [y - s2 +  m(w2, λ)  

                      + J ),(. 2 λ
ρ

zM (s2 - m(w2, λ) - ρN(u2, v2, λ)+ f(t2, λ)) ] ||  
 
             ≤  || x - y -(s1 - s2) || + || m(w1, λ) -  m(w2, λ) || +  || J M(., z

1
, λ)

ρ(s1 - m(w1, λ) - ρN(u1, v1, λ) +  f(t1, λ))  
 
          - J ),(. 2 λ

ρ
zM (s2 -  m(w2, λ)- ρN(u2, v2, λ) + f(t2, λ)) ||.                                              (3.5) 

 
Since G is δ - strongly monotone and λG- Lipschitz continuous, we have  
 
|| x - y - (s1 -s2) ||2 = || x – y||2 - 2 〈 x - y, s1 - s2 〉 + ||s1 - s2||2 

 
                  ≤ || x - y ||2 -2δ || x -y ||2 + [H (G(x, λ), G(y, λ))] 2 

 
                 ≤ || x – y||2 -2δ || x –y||2 + λG

2 || x – y||2 
and hence, 

  || x - y - (s1 -s2)|| ≤   221 Gλδ +−  || x -y ||.                                                           (3.6) 
 
By Lemma 2.1 and condition (3.2), we have 
 
|| JM(., z

1
, λ)

ρ(s1 - m(w1, λ ) - ρN(u1, v1, λ) + f(t1, λ))- JM(., z2, λ)
ρ(s2 - m(w2, λ) - ρN(u2, v2, λ) + f(t2, λ)) || 

 
                               ≤ || JM(., z1, λ)

ρ (s1 - m(w1, λ) - ρN(u1, v1, λ) + f(t1, λ)) - JM(. , z1,  λ)
ρ(s2 - m(w2, λ) -ρN(u2, v2,  λ) + f(t2,λ))||   

                               + ||JM(., z1, λ) ρ(s2 - m(w2,  λ) -ρN(u2, v2, λ) + f(t2, λ)) - JM(. , z2, λ)
ρ(s2 - m(w2, λ) - ρN(u2, v2, λ) + f(t2,λ)) ||  

 
                               ≤   || s1 - m(w1, λ)- ρN(u1, v1, λ ) + f(t1, λ) - [ s2 - m(w2 , λ) - ρN(u2, v2, λ) + f(t2, λ) ] || + μ|| z1 - z2 ||  
 
                               ≤ || x - y - (s1 - s2) || + || x - y - ρ(N(u1, v1, λ) - N(u2, v1, λ)) || + ρ||N(u2, v1, λ)- N(u2, v2, λ) || 
                                  + || m (w1, λ) - m(w2, λ) ||+ || f(t1, λ) - f(t2, λ) || + μ || z1 - z2 ||.               (3.7) 
 
Since N(u, v, λ) is  α- strongly monotone with respect to A and  β- Lipschitz continuous in the first argument and A is 
λA -  Lipschitz continuous , we have 
 
|| x - y  - ρ( N(u1, v1, λ) - N(u2, v1, λ)) ||2 = || x – y||2  - 2ρ N(u1, v1, λ)  -  N(u2, v1, λ),  x - y   
                                                                         + ρ2|| N(u1, v1, λ) - N(u2, v1, λ) ||2 

 
                                                                ≤ || x – y ||2 - 2ρα ||x – y ||2 + ρ2β2 [H (A(x, λ), A(y, λ))] 2  
 
                                                                ≤ (1-2 ρα + ρ2 β2 λA

2) || x – y||2.                                           (3.8) 
 
 Using   ξ- Lipschitz continuity of  N(u, v, λ) in the second argument and λB- Lipschitz continuity of B, we have 
 

|| N(u2, v1, λ) - N(u2, v2, λ) ||  ≤  ξ || v1 - v2 || ≤ ξ H(B(x, λ), B(y, λ)) 
 
                                                                                    ≤ ξ λB || x – y||.                (3.9) 
 
Using ε- Lipschitz continuity of f(t, λ)  and λE -Lipschitz continuity of E, we have  
 

|| f(t1, λ) - f(t2 , λ) ||  ≤ ε||t1 - t2 || ≤ ε H(E(x, λ),E(y, λ))  
 

               ≤ ελE || x – y ||.                                           (3.10) 
      
By the λD - Lipschitz continuity of D, we have 
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|| z1 - z2 || ≤ H (D(x, λ), D(y, λ))  
 

≤ λD || x - y||.                                                          (3.11) 
 
By the η-Lipschitz continuity of m and λC- Lipschitz continuity of C, we have  
 
                            || m (w1, λ) - m(w2, λ)  || ≤ η|| w1  - w2 ||  
 

                       ≤ ηH(C(x, λ), C(y, λ)) 
 
                       ≤ ηλC || x – y ||.                              (3.12) 

 
By (3.5) - (3.12), we have 
 

|| a - b || ≤ [2 221 Gλδ +−  +  22221 Aλβρρα +−   + ρξλB + (μλD + 2ηλC +ελE)] || x - y ||  
 

               = (k + t(ρ))|| x – y||  
 
                           = θ ||x – y ||.                                              (3.13) 

 

where  k = 2 ,221 2
ECDG εληλµλλδ ++++−    t(ρ) = 22221 Aλβρρα +−  + ρξλB   and  θ  = k + t(ρ). 

 
It follows from the condition (3.3) that θ  < 1. Hence, we have  
 
  d(a, F(y, λ)) = inf b∈F(y, λ) || a -b || ≤ θ || x – y ||.  
 
Since a∈ F(x, λ) is arbitrary, we have 
 

 Sup a∈F(x, λ) d (a, F(y, λ)) ≤ θ || x – y ||. 
 
By using the same argument, we can prove   
 

Sup b∈F(y, λ) d (F(x, λ), b) ≤ θ || x – y ||. 
 
By the definition of Hausdorff metric H on C (H), we obtain that for all (x, y, λ) ∈ H × H× Ω, 
 

H (F(x, λ), F(y, λ)) ≤ θ || x - y ||, 
 
i.e., F(x, λ) is a multi-valued contractive mapping which is uniform with respect to λ ∈Ω.  By a fixed point theorem of 
Nadler[20], for each λ ∈ Ω,  F(x, λ)  has a fixed point x(λ)∈H , that is, x(λ) ∈F(x(λ), λ).  By the definition of F, there 
exists  u(λ)∈A(x(λ), λ),  v(λ)∈B(x(λ), λ), w(λ)∈ C(x(λ), λ), z(λ) ∈D(x(λ), λ),  t(λ) ∈ E(x(λ), λ), s(λ) ∈G(x(λ), λ)  such 
that 
 

x(λ) = x(λ) - s(λ) + m(w(λ), λ) + J ( )(. , )M z λ λ
ρ (s(λ) - m(w(λ), λ) - ρN(u(λ) ,v(λ), λ)+ f(t(λ), λ)), and so 

 

s(λ)  =   m(w(λ), λ) + J ( )(. , )M z λ λ
ρ (s(λ) - m(w(λ), λ) - ρN(u(λ), v(λ), λ )+ f(t(λ), λ)). 

 
By Theorem 3.1; x (λ) ∈S (λ) is a solution of the PGNQVIP (2.1) and so S (λ) ≠φ  for each λ ∈ Ω. 
 
(2) For each λ∈ Ω, let xn ⊂ S(λ) and xn→x0  as n→∞.  Then we have xn∈F (xn, λ) for all n = 1, 2 ...By the proof of the 
conclusion 1, we have  
 

H (F (xn, λ), F(x0, λ)) ≤  θ  || xn - x0 ||  
 

It follows that  
   d(x0, F(x0, λ)) ≤ || x0 - xn || + d(xn, F(xn, λ)) + H(F(xn, λ), F(x0 , λ)) 
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              ≤ (1+θ ) || xn - x0 || → 0, as   n→∞. 
 
Hence, we have x0∈F(x0, λ) and x0 ∈S (λ). 
 
Therefore, S (λ) is a nonempty closed subset of H. 
 
Theorem 3.3: Under the hypothesis of Theorem 3.2, further assume  
(i) for any x ∈H,  λ  A(x, λ),  λ  B(x, λ),  λ  C(x, λ),  λ  D(x, λ),  λ  E(x, λ),    λ  G(x, λ), λ 
 m(x, λ) are Lipschitz continuous (or  continuous) with Lipschitz constants lA, lB, lC, lD, lE, lG and lm, respectively; 
 
(ii) for any u, v, z, w, t ∈H, λ N(u, v, λ) and λ  JM(.,z, λ)

ρ(w) are Lipschitz continuous (or continuous) with 
Lipschitz constants  lN and lj, respectively. 
 
Then the solution set S(λ) of the PGNQVIP(2.1) is a Lipschitz continuous (or continuous) mapping from Ω to H . 
 
Proof: For each λ,λ ∈Ω,  by Theorem 3.2, S(λ) and} S(λ )  are both nonempty closed subset. By the proof of 

Theorem 3.2, F(x, λ) and F(x, λ ) are both multi-valued contractive mappings with same contraction constant  
θ  ∈ (0, 1).  By Lemma 2.2, we have 

H(S (λ), S (λ )) ≤ 
θ−1

1
supx∈H  H(F(x, λ), F(x, λ )).                                           (3.14) 

 
Taking any a ∈ F(x, λ), there exists u(λ) ∈A(x, λ), v(λ) ∈ B(x, λ), w(λ) ∈C(x, λ), z(λ) ∈D(x, λ), t(λ) ∈E(x, λ), and s(λ) 
∈G(x, λ) such that 
 

(., ( ), )( ) ( ( ), ) ( ( ) ( ( ), ) ( ( ), ( ), ) ( ( ), )).M za x s m w J s m w N u v f tλ λ
ρλ λ λ λ λ λ ρ λ λ λ λ λ= − + + − − << << +  

Since A(x, λ)∈ C (H) and A(x, λ ) ∈ C(H) there exists u(λ )∈A(x, λ ) such that 
 

|| u(λ) – u(λ )|| ≤ H(A(x, λ), A(x, λ )). 
 

Similarly there exists v(λ ) ∈ B(x, λ ), w(λ ) ∈C(x, λ ), z(λ ) ∈D(x, λ ), t(λ ) ∈E(x, λ ), and s(λ ) ∈G(x, λ ) such 
that 

|| v(λ) – v(λ )|| ≤ H(B(x, λ), B(x, λ )), 

|| w(λ) – w( λ )|| ≤ H(C(x, λ), C(x, λ )), 

|| z(λ) – z(λ )|| ≤ H(D(x, λ), D(x, λ )), 

|| t(λ) – t(λ )|| ≤ H(E(x, λ), E(x, λ )), 

|| s(λ) – s(λ )|| ≤ H(G(x, λ), G(x, λ )). 
 

Let ))),(()),(),(()),(()(()),(()( )),((., λλλλλρλλλλλλ λλ
ρ tfvuNwmsJwmsxb zM +−−++−= , 

 
Then it follows that 

|| a- b || ≤ ||  s(λ)- s(λ )|| +  || m(w(λ), λ) - m(w(λ ),λ )|| +|| )),(,(., λλ
ρ

ZMj (s(λ)-m(w(λ),λ)- ρ N(u(λ),v(λ), λ)+ f(t(λ), λ )) 

                    - )),((., λλ
ρ

ZMj (s(λ ) - m(w(λ ),λ ) - ρ  N(u(λ ),v(λ ),λ ) +  f(t(λ ),λ ))|| ≤ ||s(λ) - s(λ )||  

                    + ||m(w(λ), λ) - m(w(λ ),λ )||+|| )),(,(., λλ
ρ

ZMj (s(λ)-m(w(λ), λ)- ρ N(u(λ),v(λ), λ) + f(t(λ), λ )) 

                    - )),(,(., λλ
ρ

ZMj (s(λ )-m(w(λ ),λ )- ρ N(u(λ ), v(λ ),λ ) + f(t(λ ),λ )|| 

                    + || )),(,(., λλ
ρ

ZMj  (s(λ )-m(w(λ ),λ )- ρ  N(u(λ ),v(λ ),λ ) + f(t(λ ),λ ))  

                    - )),(,(., λλ
ρ

ZMj (s(λ ) - m(w(λ ),λ )- ρ   N(u(λ ),v(λ ),λ )  

                    +  f(t(λ ),λ  )) +|| )),(,(., λλ
ρ

ZMj (s(λ )-m(w(λ ),λ )- ρ  N(u(λ ),v(λ ),λ )  

                    + f(t(λ ),λ )) - )),(,(., λλ
ρ

ZMj  (s(λ )-m(w(λ ),λ )- ρ N(u(λ ),v(λ ),λ )  +  f(t(λ ),λ )||. 
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            ≤  2 ||s(λ)-s(λ ) ||+ 2 ||m(w(λ), λ)- m(w(λ ),λ )|| + ρ || N(u(λ),v(λ), λ) - N(u(λ ), v(λ ),λ )||  

                   + ||f(t(λ), λ)- f(t(λ ),λ )|| + µ || Z(λ)- Z(λ ) ||  +  lj || λ -λ  ||.                                                      (3.15)  
 
By the Lipschitz continuity of G in λ, we have 
 

|| s(λ)- s(λ ) ||  ≤  H(G(x, λ),G(x, λ )) ≤ lG || λ - λ  ||.                                         (3.16)  
 
By the Lipschitz continuity of m and C in λ∈ Ω, we have 
 

 | |m(w λ), λ) - m(w(λ ),λ ) || ≤ || m(w(λ), λ) - m(w(λ ), λ) || + || m(w(λ ),  λ) - m(w(λ ),λ )||   
 

                                                 ≤ η ||w (λ) - w (λ ) || +lm || λ -λ  || 
 

                                  ≤ η  H(C(x, λ), C(x, λ)) +lm|| λ -λ  ||≤  (η lC+ lm) || λ - λ ||.                          (3.17) 
 
By the Lipschitz continuity of N (u, v, λ), we have 
 

|| N(u(λ),v(λ), λ) -   N(u(λ ),v(λ ),λ )|| ≤ || N(u(λ), v(λ), λ) - N(u(λ ),v(λ), λ)|| 
 

                                                                ≤ || N (u(λ ),v(λ), λ) -N(u(λ ),v(λ ), λ)||  
 
                                                                ≤ ||N (u(λ ),v(λ ), λ) - N(u(λ ),v(λ ),λ )||   
 

      ≤ β ||u(λ) - u(λ )||+ ξ || v(λ) - v(λ )|| +lN || λ - λ  ||  
 

                                                                ≤ (β λAlA + ξ λBlB +lN ) || λ - λ ||.                                        (3.18) 
 
By the Lipschitz continuity of f and E in λ ∈Ω  , we have 
 

|| f(t(λ), λ) - f(t(λ ),λ ) || ≤ ||f(t(λ), λ) - f(t(λ ), λ) ||  
 

                                         ≤ ||f(t(λ ), λ) - f(t(λ ),λ ) ||  
 
               ≤ ε || t(λ) - t(λ )|| + lf|| λ - λ  ||  
 

                                         ≤ ε H(E(x, λ), E(x, λ )) + lf || λ - λ  ||  
 

                                         ≤ (ε lE + lf) || λ - λ  ||.                                           (3.19) 
 
By the Lipschitz continuity of D, we have 
 

|| z(λ) - z(λ ) ||  ≤ H(D(x, λ), D(x, λ )) ≤  lD|| λ - λ  ||.                                          (3.20) 
 
It follows from (3.15)-(3.20) that 
 

  || a - b || ≤ [2(lG +η lC + lm)+ ρ (β λAlA + ξ λBlB + lN) + µ lD +  lJ+ ε lE+  lf]|| λ - λ || = M || λ - λ ||, 
 
where M = 2(lG +η lC + lm) + ρ ( β λAlA + ξ λBlB + lN) + µ lD+  lJ+ ε lE+  lf  
 
Hence, we obtain  

supa∈F(x, λ)d(a,F(x, λ )) ≤  M || λ -λ ||. 
 



Tirth Ram*/ PARAMETRIC GENERALIZED NONLINEAR QUASI -VARIATIONAL INCLUSION PROBLEMS/ IJMA- 3(3), Mar.-2012,  
Page: 1273-1282 

© 2012, IJMA. All Rights Reserved                                                                                                                                                  1281  

By using a similar argument as above, we obtain 
 

   Sup b∈F(x, λ ) d(F(x, λ), b) ≤ M || λ -λ ||.  
 
 
It follows that 

    H(F(x, λ), F(x, λ )) ≤ M || λ - λ ||.  
 
By Lemma 2.2, we obtain 

   H(S(λ), S(λ )) ≤  
θ−1

1
|| λ - λ  ||. 

                                                  
This proves that S(λ) is Lipschitz continuous in λ ∈ Ω. If, each mapping in conditions (i) and (ii) is assumed to be 
continuous in λ ∈ Ω, then by similar argument as above, we can show that S(λ) is also continuous in λ ∈ Ω.  
 
Remark.3.4: Since the PGNQVIP(2.1)includes many parametric(generalized) quasi-variational inclusions and 
parametric(generalized) nonlinear implicit quasi-variational inequalities as special cases, Theorem 3.2 and 3.3 improve 
and generalize the known results in [2 ,3, 9, 13, 17, 19, 22, 25, 27, 28, 29]. 
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