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ABSTRACT

This paper presents a solution for first order fuzzy differential equation by rational extrapolation method based on
standard Euler method and modified midpoint method that increases the order of accuracy of the solution. This method
is discussed in detail and is followed by a complete error analysis. The accuracy and efficiency of the proposed method
is illustrated by solving some fuzzy initial value problem.
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1. INTRODUCTION

Fuzzy Differential Equation (FDE) models have wide range of applications in many branches of engineering and in the
field of medicine. The concept of fuzzy derivative was first introduced by S.L.Change and L.A.Zadeh in [5].D.Dubois
and Prade in [7] discussed differentiation with fuzzy features. M.L.Puri and D.A.Ralesec in [14] and R.Goetschel and
W.Voxman in [8] contributed towards the differential of fuzzy functions. The fuzzy differential equation and initial
value problems were extensively studied by O.Kaleva in [9,10] and by S.Seikkala in [15].Recently many research
papers are focused on numerical solution of fuzzy initial value problems (FIVPS).Numerical Solution of fuzzy
differential equations has been introduced by M.Ma, M. Friedman, A. Kandel in [12] through Euler method and authors
in [2,13]by Runge — Kutta methods.S.Abbasbandy and T.Allah Viranloo tried to improve the solution of fuzzy initial
value problems by Polynomial Extrapolation in[1].

This paper is organised as follows: In section 2, some basic results on fuzzy numbers and definition of fuzzy derivative
are given. The Rational Extrapolation method and Modified Midpoint method are discussed in section3. Section 4
contains fuzzy Cauchy problem whose numerical solution is the main interest of this paper. The proposed method is
illustrated by some solved numerical example in section 5 and compared with Euler’s method ,Runge Kutta method
and with Polynomial Extrapolation. The conclusion is in section 6.

2. PRELIMINARIES

Definition 2.1: A fuzzy number u is a fuzzy subset of R (ie) u: R — [0,1] satisfying the following conditions:
1.uis normal (ie) 3 x, € R with u(x,) = 1.

2.u is convex fuzzy set (ie) u(tx + (1 — t)y) = min{u(x), u(y)}, vt € [0,1],x,y € R.

3.u is upper semi continuous on R. 4.{x € R, u(x) > 0} is compact.

Let E be the class of all fuzzy subsets of R. Then E is called the space of fuzzy numbers [9].

Clearly, RcE and RcE is understood asR = {X,: X is usual real number}.
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An arbitrary fuzzy number is represented by an ordered pair of functions (u(r),u(r)),0 < r <1 that satisfies the
following requirements.

1. u(r)is a bounded left continous non-decreasing function over [0,1],with respect to any ‘r’.

2.u(r) is a bounded right continuous non-increasing function over [0,1] with respect to any ‘r’.

ou(r) <u(r),0<r<1.

Then the r-level setis [u], = {x \u(x) =r},0 <r < 1isa closed and bounded interval,
denoted by[u], = [u(r), u(r)].
And clearly, [u]y = {x \u(x) > 0} is compact.

Definition 2.2: A triangular fuzzy number u is a fuzzy set in E that is characterised by an ordered triple
(u;, ug,u,) € R® with u; < u, < u, such that [u], = [u;u,] and[u]; = {u.}.

The membership function of the triangular fuzzy number u is given by

xX—uj

, U S X S U
Uc—U

u(x) = 1,x =u,
Up—X

u.<x<u
ur—ug’ (4 T

We will write (i) u > 0,if u; > 0. (ii)u=0,if u;, =2 0. (lii)u<0,if u. <0. (IVu<0,ifu. <0.
Let I be a real interval. A mapping y: I — E is called a fuzzy process, and its a — level set is denoted by

y(®)]a = [X(t,y)i(t,y)],t €L0<a<l.
The seikkala derivative y'(t) of a fuzzy process is defined by
[y (], = [X'(t, W, (¢ y)] ,t €1,0 < a < 1, provided that this equation defines a fuzzy number, as in [15].

Lemma 2.1: Let u,v € E and s scalar, then for r € (0,1]

[u+v], =[ul) +v@)ul) +v()]

[u—v], =[ul) —v@),ul) —v)]

[w.v], = [min{u(®).v(r), u(@). (), u(r). v(r), u(@).v(r)},
maxif(r). v(r), w(r). 50, 7). v(r), 7). 5},

[su], = s [u],.
3. RATIONAL EXTRAPOLATION METHOD:

Consider the initial value problem

{ Y© =f(ty®)to<t<b (3.1)

y(to) = o

We assume that
1. f(t,y(t)) is defined and continuous in the stripty <t < b,—o < y < o0 with ¢t and b finite.

2. There exists a constant L such that for any t in [t,, b] and any two numbersy and y*,
lf(t,y) — f(t,y)| < Lly —y*|. These conditions are sufficient to prove that there exists on[ty, b], a unique
continuous, differentiable function y(t) satisfying (3.1)

In many situations in numerical analysis we wish to evaluate a number Ag,but are able to compute only an

approximation A(h),where % is a positive discretization parameter (typically step length) and where A(h) — 4,
ash = 0.
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Let us suppose that, for any fixed N, A(h) possesses an asymptotic expansion of the form

A(h) = Ag + Ath + Ajh? + oo ooevee v ee £ ANBN 4+ Ry (h), Ry (h) = O(hN*1) ash - 0.

Where the co-efficients Ay, Ay, Ay, +++++++++ -+ --+, Ay are independent of h.

(i.e) A(h)~Ag+ Ajh+ Ah% 4 ooeeieieeen (3.2)
From a general sequence hg, hy, hy, - -+ -+ - -~ of values of %,

where hy > hy > hy > cooveeeeevee s > R0 > O, (3.3)

for each value of hy ,we compute A(h) and denote the result by ago).The rational extrapolation algorithm is defined by
the following tableau

ho a(()())
hy | a® | afV
)
b | o® [ a® | @
ArArArArs
Where  a® = A(hy), at™ =0,
(m-1)__(m-1)
(m) _ _(m-1) ag —ag
asm - asTl + + m-1)__(m-1) y
( hs )2[ (“s+1 as )]_1
hm +s (ang_l)—ang_z))
m = 1,2’...............,5=0,1,2, ......... (35)

Then a{™ = A, + 0(h2™*2).
3.1 Application to initial value problem in ordinary differential equations:

Let y(t; h) be the approximation at ¢, given by the numerical method with step length h, to the theoretical solution y(t)
of the initial value problem (3.1).

We intend to use Rational Extrapolation to furnish approximations to y(t) at the basic points ty + jH,j = 0,1,2, -,
where H is the basic step length.

We first choose a step length hy, = Ni where N is a positive integer, and apply the numerical method N, times starting
0

from t = t, to obtain an approximation y(t, + H; hy)to the theoretical solution y(t, + H).A second step length
hy = Ni N;- a positive integer greater thanNy, is chosen, and the method applied N; times, again starting from t,,to
1

yield the approximation y(t, + H; hy). Proceeding in this fashion for the sequence of step lengths{h,},

where hy = H/N,{N; /s=10,12, .................... S, beging an increasing sequence of +ve integers},we obtain the
sequence of approximations {y(t, + H; h,) / s = 0,1,2,3 .......S} to y(¢t, + H).

Provided that there exists, for the given numerical method, an asymptotic expansion of the form
A(h)~y(t)+A1h+A2h2 o, (3.1.1)
(0NA(h)~y(t) + Ayh? + Ayh% + o) (3.1.2)

Then we can set aﬁo) = y(ty, + H; hy) in (3.4) and apply the process of repeated Rational Extrapolation using (3.5).
© 2012, IIMA. All Rights Reserved 1233
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We then take the last entry in the main diagonal of the tableau given in (3.4) as our final approximation to y(t, + H) ,
and denote itby y*(to + H; H).

To obtain a numerical solution at the next basic point t, + 2H, we apply the whole of the above procedure to the new
initial value problem

Y =ty vyt + H) = y*(to + H; H).

3.2 Modified Midpoint Method:

Leth, = N%,NS is even (3.2.1)
and let y, = y(ty). (3.2.2)
By Euler’s method we find the first approximation as

Y1 = Yo + hsf (to, o). (3.2.3)

The other approximations are given by

VYmaz = Ym + 2hsf (bpsts YVima1)M = 0,1,2,3 c+e e eevveeie i No — 1, (3.2.4)
And the end point correction is given by

y(xo + H; hy) = %YNS+1 + %J’Ns + %VNS—1 (3.2.5)
This is called the Modified Midpoint method.

If (3.2.1) to (3.2.5) is repeated for an increasing sequence N, s = 0,1, -+ oo ... S 0Of even integers, then
Rational extrapolation, using (3.4) and (3.5), can be applied as described in section (3).

4. AFUZZY CAUCHY PROBLEM

Consider the fuzzy initial value problem

y(® =f(ty®),tel=[0T].
{ y(0) = y,. “.1)

Where f is a continuous mapping from R, X R into R and y, € E with r-level sets.
Dol- = [y©,n).50.1].r € 011
The extension principle of Zadeh leads to the following definition of f(t, y) when y = y(t) is a fuzzy number,
f(&y)(s) = sup{y(D\s = f(t,»)},s €R.

It follows that [£(t, )], = [£(t.y; "), F(t,y;1)].r € (0.1],
Where i(t, y;7) = min {f(t, u)\u € [X(r)j(r)]},

F(tyir) = max{f (e, W\ € [y), 5]}
Theorem 4.1: Let f satisfy |[f(t,v) — f(t,v)| < g(¢t, lv —7I),t = 0,v, T €R, (4.2)

where g: R, X R, is a continuous mapping such that r — g(t, r) is nondecreasing,the initial value problem

u'(t) = g(t,u(@®),u(0) = uy, (4.3)
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has a solution on R, for uy, > 0 and that u(t) = 0 is the only solution of (4.3) for u, = 0. Then the fuzzy initial value

problem (3.1) has a unique fuzzy solution.
Proof: see [15].

In this paper we suppose (4.1) satisfies the hypothesis of theorem4.1, also.
Let the exact solution [Y ()], = [Y.(t;7), Y (¢t; )] is approximated by some
b®l = [yE&m,567).
From (3.2.1) to (3.2.5), we have
Yo(r) = y(to; 1),
Y1) = yo(r) + hef (to, Yo (1)),
M(r) = y_m(r) + Zhsf(tm+1;ym+1(7’)),m = 0,1'2’3 ...NS — 1’
y(to + Hihir) = L yna (1) + 50, (1) + 57,11
Vo(r) = ¥(toi7)
yi(r) = ¥o(r) + hsf (to, Yo (1)),
V2 () = (1) + 2R f (st Y a1 () = 0,1,2,3 w5 e vevvenweeve e N, — 1,
Fto + H; hyi 1) = 29, 1) +59y () + 37y 1 (@)
The exact and approximate solutions at t,,,0 < n < N, — 1 are denoted by
Y (&)l = [Y(t0; 7, ¥ (65 7] and [y(6a)], = [y(6a57), 5(6; )] respectively.
Define,F[t,y(t,1r)] = f&y@),
Glt,y(t, "] = f(t,y (1)),

= By (4.4),(4.6),(4.8)&(4.9),

Y(tmi1;7) = Y(tm; 1) + 2RsF [t Y ()]

Y(tm137) = Y (s ) + 2hG Ly, Y (1)]
We define,

Y(tms1;7) = Y (tmi ) + 2hF [t Y (1]

y(tm+1; T') = Y(m: T) + ZhsG[tm' Ym (‘I”)]

The following lemmas will be applied to show the convergences of theses approximates.

i.e., lim,_,q X(t’ r) =Y(t,r)and, lim,_oy(t,r) = Y(t, 7).

(4.4)

(4.5)

(4.6)

(4.7)

4.8)

(4.9)

(4.10)

(4.12)

(4.12)

(4.13)

Lemma: 4.1 Let the sequence of numbers {W,}N_, satisfy |W,,,| < A|W,|+B, 0<n <N —1, for some given

positive constants A and B, then

Wyl < AM Wl +BEZ20<n < N,
Proof: see [12]
© 2012, IIMA. All Rights Reserved

1235



V. Nirmala* & S. Chenthur Pandian/ A Method to Improve the Numerical Solution of Fuzzy Initial Value Problems / IIMA- 3(3),
Mar.-2012, Page: 1231-1240

Lemma: 4.2 Let the sequence of numbers (W, }V_,, {(V,3N_, satisfy |W, 1| < [W,| + Amax{{W,|,|V,|} + B, [V,41| <
[V,| + Amax{|W,|, |V,,|} + B, for some given positive constants A and B, and denote U, = |W,| + |V},|,0 <n < N.

Then U, < AnU, +§%,0 <n<N,whereA=1+2AandB = 2B.
Proof: see [12]
By replacing y(t,r) = [u,v] in Eq. (4.8) and (4.9), we have

Flt,u,v] = f(t’ u,v), (4.14)
Glt,u,v] = f(t,u,v), (4.15)

+ The domain where F and G are defind is givenby K = {(t,u,v)/ 0 <t <T,—wo <u < v}

Theorem 4.1: let F(t,u,v) and G(t,u, v) belong to C? (K) and let the partial derivatives of F and G be bounded over
K.Then, for arbitrary fixed r,0 < r <1, the approximate solutions (4.12 & 4.13) converge to the exact solutions
Y(t;r) and Y(t;7) uniformly in t.

Proof: see [12].

Now, in a general sequence hg > hy > hy > «ooceeeeeveeeee > o > 0., , for each value of hg, we compute A(hy)
and denote the result byago).

The Rational Extrapolation algorithm is defined by the following tableau

hg aéo)

hs (0) 1) @ | q 83)

Where  al® = A(hy), a ™ =0,

S

agT{l)—agm -1)

a™ =gl 4

- (L)z 1—4:—%?1_1)7“?”_1)) _1’
Pmtsd |7 (e V-l ?)

M= 1,2, e weeveeeennee,§ = 0,1,2, 00 enevee (4.6)

Then a{™ = Ay + 0(h2"™+2).

Now, for each value of h, , we compute A(h;) and denote the result byago).

The Rational Extrapolation algorithm is defined by the following tableau

ho | o©

h | a® | a® | 4@

FORBOEONNG)
h3 al ao
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Where  a® =4(ny),al™ =0,

ey (m-1)_,(m-1)
m) _ ,m=D) agyy e

s T Ys4l _ _ '
R
(=) |- )—1

(a (m-1)__ (m-2)

a

s+1 s+1

M =12, e eevvevenee, § = 0,1,2, 00 eeoee @)

Then a™ =4, + 0(hZm+2).
5. NUMERICAL EXAMPLE

Example 1: Consider the fuzzy initial value problem,

{ y'(©) =y(),t €[01],
y(0) = (0.75 4 0.25r,1.125 — 0.125r),0 < r < 1.

The exact solution is given byY (t;7) = y(t;r)et, Y(t; 1) = y(t; r)et

Which att = 1,Y(1;7) = [(0.75 + 0.25r)e, (1.125 — 0.125r)e],0 < r < 1.

By the repeated application of (4.4),(4.5),(4.6)&(4.7), for different values of ‘h” we have Tables 1 to 12.Here, RA EXT
represents the approximations by Rational Extrapolations method and POL EXT represents the approximations by
Polynomial Extrapolations given in[1].

From Table:1 to Table:12,we may find the superiority of the Rational Extrapolation method over the Polynomial
Extrapolation method.

Table: 1

h y(t;0) RAEXT POL EXT RAEXT POL EXT RAEXT POL EXT RAEXT POL EXT

172 1.96875

1/4 | 2.0185547 | 2.0357210 | 2.0351563

1/8 | 2.0334724 | 2.0384941 | 2.0384450 | 2.0387112 | 2.0386642

1/16 | 2.0373885 | 2.0386972 | 2.0386939 | 2.0387113 | 2.0387105 | 2.0387113 | 2.0387112

1/32 | 2.0383798 | 2.0387104 | 2.0387102 | 2.0387113 | 2.0387113 | 2.0387113 | 2.0387113 | 2.0387113 | 2.0387113

Table: 2

h y(t;0.2) RAEXT POLEXT | RAEXT POLEXT | RAEXT POLEXT | RAEXT POL EXT

172 2.1

1/4 2.153125 2.1714357 | 2.1708333

1/8 2.1690372 | 2.1743937 | 2.1743413 | 2.1746253 | 2.1745752

1/16 | 2.1732144 | 2.1746104 | 2.1746068 | 2.1746255 | 2.1746245 | 2.1746255 | 2.1746253

1/32 | 2.1742718 | 2.1746245 | 2.1746243 | 2.1746255 | 2.1746255 | 2.1746255 | 2.1746255 | 2.1746255 | 2.1746255

Table: 3

h y(t;0.4) RAEXT POLEXT | RAEXT POLEXT | RAEXT POLEXT | RAEXT POL EXT

1/2 | 2.23125
1/4 | 2.2876953 | 2.3071504 | 2.3065104
1/8 | 2.3046021 | 2.3102934 | 2.3102377 | 2.3105394 | 2.3104862
1/16 | 2.3090403 | 2.3105235 | 2.3105197 | 2.3105395 | 2.3105385 | 2.3105395 | 2.3105393
1/32 | 2.3101638 | 2.3105385 | 2.3105383 | 2.3105395 | 2.3105395 | 2.3105395 | 2.3105395 | 2.3105395 | 2.3105395
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Table: 4

h y(t;06) | RAEXT | POLEXT | RAEXT [ POLEXT | RAEXT | POLEXT | RAEXT [ POLEXT

12 | 2.3625

1/4 | 2.4222656 | 2.4428651 | 2.4421875

1/8 | 2.4401669 | 2.4461929 | 2.4461340 | 2.4464534 | 2.4463971

1/16 | 2.4448662 | 2.4464367 | 2.4464326 | 2.4464537 | 2.4464525 | 2.4464537 | 2.4464534

1/32 | 2.4460558 | 2.4464526 | 2.4464523 | 2.4464537 | 2.4464536 | 2.4464537 | 2.4464536 | 2.4464537 | 2.4464536
Table: 5

h y(t;08) | RAEXT | POLEXT | RAEXT [ POLEXT | RAEXT | POLEXT | RAEXT [ POLEXT

1/2 | 2.49375

1/4 | 2.5568359 | 2.5785799 | 2.5778876

1/8 | 2.5757317 | 2.5820925 | 2.5820303 | 2.5823675 | 2.5823065

1/16 | 2.5806921 | 2.5823499 | 2.5823456 | 2.5823678 | 2.5823456 | 2.5823678 | 2.5823462

1/32 | 2.5819478 | 2.5823666 | 2.5823664 | 2.5823677 | 2.5823678 | 2.5823677 | 2.5823682 | 2.5823677 | 2.5823683
Table: 6

h y(t; 1) RAEXT | POLEXT | RAEXT | POLEXT | RAEXT | POLEXT | RAEXT | POLEXT

12 | 2.625

1/4 | 2.6914062 | 2.7142946 | 2.7135416

1/8 | 2.7112966 | 2.7179922 | 2.7179267 | 2.7182816 | 2.7182190

1/16 | 2.716518 | 2.7182629 | 2.7182585 | 2.7182817 | 2.7182806 | 2.7182817 | 2.7182816

1/32 | 2.7178398 | 2.7182807 | 2.7182804 | 2.7182819 | 2.7182819 | 2.7182819 | 2.7182819 | 2.7182819 | 2.7182819
Table: 7

h G RAEXT | POLEXT | RAEXT | POLEXT [ RAEXT | POLEXT | RAEXT | POLEXT

1/2 | 2.953125

1/4 | 3.027832 | 3.0535814 | 3.0527343

1/8 | 3.0502086 | 3.0577411 | 3.0576675 | 3.0580667 | 3.0579964

1/16 | 3.0560828 | 3.0580459 | 3.0580409 | 3.0580671 | 3.0580658 | 3.0580671 | 3.0580669

1/32 | 3.0575697 | 3.0580657 | 3.0580653 | 3.0580670 | 3.0580669 | 3.0580670 | 3.0580669 | 3.0580670 | 3.0580669
Table: 8

h y(t;02) | RAEXT | POLEXT | RAEXT [ POLEXT | RAEXT | POLEXT | RAEXT [ POLEXT

1/2 | 2.8875

1/4 | 2.9605469 | 2.9857241 | 2.9848959

1/8 | 2.9824262 | 2.9897913 | 2.9897193 | 2.9901097 | 2.9900409

1/16 | 2.9881698 | 2.9900893 | 2.9900843 | 2.9901100 | 2.9901086 | 2.9901100 | 2.9901097

1/32 | 2.9896237 | 2.9901086 | 2.9901083 | 2.9901099 | 2.9901099 | 2.9901099 | 2.9901099 | 2.9901099 | 2.9901099
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Table: 9

h y(t;04) | RAEXT | POLEXT | RAEXT [ POLEXT | RAEXT | POLEXT | RAEXT [ POLEXT

1/2 | 2.821875

1/4 | 2.8932617 | 2.9178667 | 2.9170573

1/8 | 2.9146438 | 2.9218416 | 2.9217712 | 2.9221528 | 2.9220855

1/16 | 2.9202569 | 2.9221327 | 2.9221279 | 2.9221529 | 2.9221517 | 2.9221529 | 2.9221528

1/32 | 2.9216778 | 2.9221517 | 2.9221514 | 2.9221530 | 2.9221530 | 2.9221530 | 2.9221530 | 2.9221530 | 2.9221530
Table: 10

h y(t;06) | RAEXT [ POLEXT [ RAEXT | POLEXT [ RAEXT [ POLEXT | RAEXT [ POLEXT

1/2 | 2.75625

1/4 | 2.8259766 | 2.8500094 | 2.8492188

1/8 | 2.8468614 | 2.8538918 | 2.8538230 | 2.8541957 | 2.8541299

1/16 | 2.8523439 | 2.8541761 | 2.8541714 | 2.8541959 | 2.8541946 | 2.8541959 | 2.8541956

1/32 | 2.8537318 | 2.8541947 | 2.8541944 | 2.8541960 | 2.8541959 | 2.8541960 | 2.8541959 | 2.8541960 | 2.8541959
Table: 11

h y(t;0.8) | RAEXT [ POLEXT [ RAEXT | POLEXT | RAEXT [ POLEXT | RAEXT [ POLEXT

1/2 | 2.690625

1/4 | 2.7586914 | 2.7821520 | 2.7813802

1/8 | 2.779079 | 2.7859420 | 2.7858749 | 2.7862387 | 2.7861745

1/16 | 2.784431 | 2.7862196 | 2.7862150 | 2.7862389 | 2.7862377 | 2.7862389 | 2.7862387

1/32 | 2.7857858 | 2.7862377 | 2.7862374 | 2.7862389 | 2.7862389 | 2.7862389 | 2.7862389 | 2.7862389 | 2.7862389
Table: 12

h y(t; 1) RAEXT | POLEXT | RAEXT | POLEXT | RAEXT | POLEXT | RAEXT | POLEXT

12 | 2.625

1/4 | 2.6914062 | 2.7142946 | 2.7135416

1/8 | 2.7112966 | 2.7179922 | 2.7179267 | 2.7182816 | 2.7182190

1/16 | 2.716518 | 2.7182629 | 2.7182585 | 2.7182817 | 2.7182806 | 2.7182817 | 2.7182816

1/32 | 2.7178398 | 2.7182807 | 2.7182804 | 2.7182819 | 2.7182819 | 2.7182819 | 2.7182819 | 2.7182819 | 2.7182819

The Exact and Approximate solutions by Rational Extrapolation, Polynomial Extrapolation, Runge-Kutta method of
order 4 with h=0.01and by Euler’s Approximation with h=0.01 are given in Table: 13.

Table: 13
Exact solution Rational Polynomial RungeKutta method Euler’s
Extrapolation Extrapolation of order 4 with Approximation
h=0.01 h=0.01
2.0387113,3.0580670 | 2.0387113,3.0580670 | 2.0387113,3.0580669 | 2.0370216,3.0555324 | 2.0286104,3.0429156
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0.2

2.1746254,2.9901100

2.1746255,2.9901099

2.1746255,2.9901099

2.172823,2.9876314

2.1638511,2.9752952

0.4

2.3105395,2.9221529

2.3105395,2.9221530

2.3105395,2.9221530

2.3086245,2.9197309

2.2990918,2.9076749

06

2.4464536,2.8541959

2.4464537,2.8541960

2.4464536,2.8541959

2.4444259,2.8518302

2.4343324,2.8400545

0.8

2.5823677,2.7862388

2.5823677,2.7862389

2.5823683,2.7862389

2.5802273,2.7839295

2.5695731,2.7724342

2.7182818,2.7182818

2.7182819,2.7182819

2.7182819,2.7182819

2.7160288,2.7160288

2.7048138,2.7048138

6. CONCLUSIONS

In this work, we have used the proposed rational extrapolation method to find a numerical solution of fuzzy differential
equations. Taking into account the convergence order of the Euler method is O (h) and that of Runge-Kutta method of
order 4 as 0(h*) a higher order of convergence 0 (h®™*?)is obtained by the proposed method. Comparison of the
solutions of example 5.1 shows that the proposed method gives a better solution than the Euler method and the Runge-
Kutta method of order 4.The comparison also shows the efficiency of the Rational Extrapolation method over
Polynomial Extrapolation method.
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