International Journal of Mathematical Archive-3(3), 2012, Page: 1098-1210

(cas $)$ MA Available online through www.ijma.info ISSN 2229-5046

SOME FIXED POINT THEOREMS FOR MULTIVALUED MAPPINGS IN GENERALIZED B-METRIC SPACES
Renu Chugh, Vivek kumar* and Tamanna Kadian
*Department of Mathematics, M. D. University, Rohtak-124001(INDIA) E-mail: ratheevivek15@yahoo.com

(Received on: 12-03-12; Accepted on: 28-03-12)

Abstract

The aim of this paper is two fold, first we define the concept of generalized b-metric spaces and then we prove the existence of fixed points for multivalued contraction mappings in generalized b-metric spaces using Picard iteration and also Jungck iteration. Our results extend, improve and unify a multitude of classical results in fixed point theory of single and multivalued contraction mappings. We obtain more general results than those of Nadler[23],Berinde and Berinde[10], M.O. Olatinwo and C.O. Imoru[24] and Daffer and Kaneko[16].

Keywords: Multivalued weak contraction, fixed point, b-metric space.
(2000) Mathematics Subject Classification: 47H06, 47H10

1. INTRODUCTION

Metric fixed point theory is an important mathematical discipline because of its applications in areas such as variational and linear inequalities, optimization and approximation theory.

The concept of b-metric space appeared in some works, such as N. Bourbaki, I. A. Bakhtin, S. Czerwik , J. Heinonen, ect. Several papers deal with the fixed point theory for singlevalued and multivalued operators in b-metric spaces (see[3],[12],[13]). Generalizations of metric spaces were proposed by Gahler[31],(called 2-metric spaces) and Dhage[2],(called D-metric spaces). Unfortunately, it was shown that certain theorems involving Dhage's D-metric spaces are flawed, and most of the results claimed by Dhage and others are invalid. In 2005, Mustafa and Sims[35] introduced a new structure of generalized metric spaces, which are called G-metric spaces as generalization of metric space (X, d), to develop and introduce a new fixed point theory for various mappings in this new structure. The study of fixed point theorems for multivalued mappings has been initiated by Markin[21] and Nadler[23]. We introduce the concept of generalized b-metric spaces in the sequel. Presently, let (X, G) be a generalized metric space and CB(X) denote the family of all non-empty closed and bounded subsets of X . For $\mathrm{A}, \mathrm{B}, \mathrm{C} \subset \mathrm{X}$, define the distance between A, B and C by $D_{G}(A, B, C)=\inf \{G(a, b, c): a \in A, b \in B, c \in C\}$, the diameter of A, B and C by $\delta_{G}(A, B, C)=\sup \{G(a, b, c)$: $\mathrm{a} \in \mathrm{A}, \mathrm{b} \in \mathrm{B}, \mathrm{c} \in \mathrm{C}\}$ and the Hausdorff-Pompeiu metric on $\mathrm{CB}(\mathrm{X})$ by
$H_{G}(A, B, C)=\max \{\sup \{G(a, b, C): a \in A, b \in B\}, \sup \{G(b, c, A): b \in B, c \in C\}, \sup \{G(c, a, B): c \in C, a \in A\}\}$
$H_{G}(A, B, C)$ is induced by G.
Let $P(X)$ be the family of all non-empty subsets of X and $T: X \rightarrow P(X)$ a multivalued mapping. Then an element $x \in X$ such that $x \in T(x)$ is called a fixed point of T. Denote the set of all fixed point of T by Fix(T), that is,
$\operatorname{Fix}(T)=\{x \in X: x \in T(x)\}$.
The following definitions shall be required in the sequel.
Definition 1.1: Let (X, d) be a metric space and $T: X \rightarrow P(X)$ a multivalued operator. T is said to be a multivalued weakly Picard -operator iff for each $x \in X$ and any $y \in T(x)$, their exist a sequence $\left\{X_{n}\right\}_{n=0}^{\infty}$ such that
(i) $\mathrm{x}_{0}=\mathrm{x}, \mathrm{x}_{1}=\mathrm{y}$;
(ii) $\mathrm{x}_{\mathrm{n}+1} \in \mathrm{~T}\left(\mathrm{x}_{\mathrm{n}}\right)$ for all $\mathrm{n}=0,1, \ldots \ldots$;
(iii) the sequence $\left\{X_{n}\right\}_{n=0}^{\infty}$ is convergent and its limit is a fixed point of T

Renu Chugh, Vivek kumar* and Tamanna Kadian / Some fixed point theorems for multivalued mappings in generalized b-metric spaces / IJMA- 3(3), Mar.-2012, Page: 1198-1210

Definition 1.2: Let (X, d) be a metric space and $S, T: X \rightarrow P(X)$ multivalued operator . The pair (S, T) will be called multivalued weakly Jungck operator iff for each $x \in X$ and any $y \in T(x)$, their exist a sequence $\left\{S x_{n}\right\}_{n=0}^{\infty} \subset P(X)$ such that
(iv) $\mathrm{Sx}_{0}=\mathrm{x}, \mathrm{Sx}_{1}=\mathrm{y}$;
(v) $S x_{n+1} \in T\left(x_{n}\right)$ for all $n=0,1$
(vi) the sequence $\left\{S x_{n}\right\}_{n=0}^{\infty}$ converges to $S z$ for some $z \in X$ and $S z \in T z$, that is, S and T have a coincidence at z.

Let $\mathrm{C}(\mathrm{S}, \mathrm{T})$ be the set of coincidence points of S and T .
Definition 1.3: A function ϕ : $\mathrm{R}_{+} \rightarrow \mathrm{R}_{+}$is called (c)-comparison if it satisfies
(i) ϕ is monotonic increasing;
(ii) $\phi^{\mathrm{n}}(\mathrm{t}) \rightarrow 0$ as $\mathrm{n} \rightarrow \infty, \forall \mathrm{t}>0$ (ϕ^{n} stands for the nth iterate of ϕ);
(iii) $\sum_{\mathrm{n}=0}^{\infty} \phi^{\mathrm{n}}(\mathrm{t})<\infty$ for all $\mathrm{t}>0$.

We say that ϕ is a comparison function if it satisfies (i) and (ii) only. See [6] and [30] for detail.
Remark 1.3: Every comparison function $\phi: \mathrm{R}_{+} \rightarrow \mathrm{R}_{+}$satisfies $\phi(\mathrm{t})<\mathrm{t}$.
Theorem 1.1[23]: Let (X, d) be a complete metric space and $T: X \rightarrow C B(X)$ a set valued α-contraction ,that is, a mapping for which there exist a constant $\alpha \in(0,1)$, such that

$$
\mathrm{H}(\mathrm{Tx}, \mathrm{Ty}) \leq \alpha \mathrm{d}(\mathrm{x}, \mathrm{y})
$$

Theorem 1.2: (Berinde and Berinde
[10]):-Let (X, d) be a complete metric space and $\mathrm{T}: \mathrm{X} \rightarrow \mathrm{CB}(\mathrm{X})$ a generalized multivalued (θ, L) - contraction. Then, (i) Fix $(\mathrm{T}) \neq \phi$
(ii) for any $\mathrm{x}_{0} \in \mathrm{X}$, there exists an orbit $\left\{\mathrm{X}_{\mathrm{n}}\right\}_{\mathrm{n}=0}^{\infty}$ of T at the point x_{0} that converges to a fixed point u of T for which the following estimates hold:

$$
\begin{aligned}
& d\left(x_{n}, u\right) \leq \frac{h^{n}}{1-h} d\left(x_{1}, x_{0}\right), n=0,1,2,3, \ldots \\
& d\left(x_{n}, u\right) \leq \frac{h}{1-h} d\left(x_{n}, x_{n-1}\right), n=1,2,3 \ldots
\end{aligned}
$$

for a certain constant $\mathrm{h}<1$.
Theorem 1.3: (Berinde and Berinde[10]):- Let (X, d) be a complete metric space and $T: X \rightarrow C B(X)$ a generalized multivalued (α, L) - weak contraction. that is, a mapping for which there exist a function

$$
\alpha:[0, \infty) \rightarrow[0,1) \text { satisfying } \lim _{r \rightarrow t^{+}} \sup \alpha(r)<1 \text {, for every } t \in[0, \infty) \text {, such that }
$$

$$
\mathrm{H}(\mathrm{Tx}, \mathrm{Ty}) \leq \alpha(\mathrm{d}(\mathrm{x}, \mathrm{y})) \mathrm{d}(\mathrm{x}, \mathrm{y})+\mathrm{LD}(\mathrm{y}, \mathrm{Tx}) \forall \mathrm{x}, \mathrm{y} \in \mathrm{X}
$$

Then T has a fixed point.
The following definitions shall be required in the sequel .
Definition 1.4: Let X be a nonempty set and $s \geq 1$ a real number. A function $G: X \times X \times X \rightarrow R^{+} U\{0\}$ is said to be a generalized b-metric space if it satisfy the following properties :
(G1) $\quad G(x, y, z)=0$ iff $x=y=z$
(G2) $0<G(x, x, y) \forall x, y \in X$, with $x \neq y$.
(G3) $\quad G(x, x, y) \leq G(x, y, z)$, for all $x, y, z \in X$ with $z \neq y$
(G4) $\mathrm{G}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{G}(\mathrm{x}, \mathrm{z}, \mathrm{y})=\mathrm{G}(\mathrm{y}, \mathrm{z}, \mathrm{x})=\ldots \ldots$. (symmetry in all the three variables)
(G5) $\mathrm{G}(\mathrm{x}, \mathrm{y}, \mathrm{z}) \leq \mathrm{s}[\mathrm{G}(\mathrm{x}, \mathrm{a}, \mathrm{a})+\mathrm{G}(\mathrm{a}, \mathrm{y}, \mathrm{z})] \forall \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}, \mathrm{a} \in \mathrm{X}$ and $\mathrm{s} \geq 1$ (rectangle inequality)
The pair (X, G) is called a generalized b -metric space.
Example of definition 1.4: Let $\mathrm{X}=\left\{\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \mathrm{x}_{4}\right\}, \mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{2}\right)=\mathrm{k} \geq 2$ and $\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{3}\right)=\mathrm{d}\left(\mathrm{x}_{1}, \mathrm{x}_{4}\right)=\mathrm{d}\left(\mathrm{x}_{2}, \mathrm{x}_{3}\right)=\mathrm{d}\left(\mathrm{x}_{2}, \mathrm{x}_{4}\right)=$ $\mathrm{d}\left(\mathrm{X}_{3}, \mathrm{x}_{4}\right)=1$,

$$
\mathrm{d}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}\right)=\mathrm{d}\left(\mathrm{x}_{\mathrm{j}}, \mathrm{x}_{\mathrm{i}}\right) \text { for all } \mathrm{i}, \mathrm{j}=1,2,3,4
$$

and

$$
\mathrm{d}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}}\right)=0, \mathrm{i}=1,2,3,4 .
$$

If we define generalized metric by $G(x, y, z)=d(x, y)+d(y, z)+d(z, x)$ then

$$
G(x, y, z) \leq \frac{k}{2}[G(x, a, a)+G(a, y, z)] \forall x, y, z, a \in X
$$

So, (X, G) will be a generalized b-metric space.
Definition 1.5: Let (X, G) be a generalized b-metric space and $T: X \rightarrow P(X)$ a multivalued operator. T is said to be a generalized multivalued (ψ, ϕ) weak contraction iff there exists a continuous monotonic increasing function $\phi: \mathrm{R}_{+} \rightarrow \mathrm{R}_{+}$ with $\phi(0)=0$ and a continuous comparison function $\psi: \mathrm{R}_{+} \rightarrow \mathrm{R}_{+}$such that

$$
\begin{equation*}
H_{G}(T x, T x, T y) \leq q^{-1}\left[\psi(G(x, x, y))+\phi\left(D_{G}(y, T x, T x)\right)\right], q>1, \forall x, y \in X \tag{*}
\end{equation*}
$$

Definition 1.6: We say that T is a generalized multivalued ϕ-weak contraction iff there exists a function $\alpha:[0, \infty) \rightarrow$ $[0,1)$ and two continuous monotonic increasing functions $\phi_{1}, \phi_{2}: R_{+} \rightarrow R_{+}$with $\phi_{1}(0)=1$ and $\phi_{2}(0)=0$ such that

$$
\begin{equation*}
H_{G}(T x, T x, T y) \leq[\alpha(G(x, x, y)) G(x, x, y)]^{q_{1}\left(D_{G}(y, T x, T x)\right)}+\phi_{2}\left(D_{G}(y, T x, T x)\right), \forall x, y \in X \tag{}
\end{equation*}
$$

where $\lim _{+} \sup \alpha(r)<1$, for every $t \in[0, \infty)$.
$r \rightarrow \mathrm{t}^{+}$
Definition 1.7: Let (X, G) be a generalized b-metric space and $\mathrm{S}, \mathrm{T}: \mathrm{X} \rightarrow \mathrm{P}(\mathrm{X})$ multivalued operators. Then the pair (S, T) will be called a multivalued (θ, ϕ) weak J -contraction iff there exists a constant $\theta \in(0,1)$ and a continuous monotonic increasing function $\phi: \mathrm{R}_{+} \rightarrow \mathrm{R}_{+}$with $\phi(0)=0$ such that

$$
\begin{equation*}
\mathrm{H}_{\mathrm{G}}(\mathrm{Tx}, \mathrm{Tx}, \mathrm{Ty}) \leq \theta \mathrm{G}(\mathrm{Sx}, \mathrm{Sx}, \mathrm{Sy})+\phi\left(\mathrm{D}_{\mathrm{G}}(\mathrm{Sy}, \mathrm{Tx}, \mathrm{Tx})\right) \quad \mathrm{q}>1, \forall \mathrm{x}, \mathrm{y} \in \mathrm{X} \tag{}
\end{equation*}
$$

The contractive condition (***) can be modified to the following form: The pair (S, T) will be called a generalized multi-valued (α, ϕ)-weak J- contraction iff there exist a function $\alpha:[0, \infty) \rightarrow[0,1)$ and a continuous monotonic increasing function $\phi: \mathrm{R}_{+} \rightarrow \mathrm{R}_{+}$with $\phi(0)=0$ such that
$\left.H_{G}(T x, T x, T y) \leq \alpha(G(S x, S x, S y)) G(S x, S x, S y)+\phi\left(D_{G}(S y, T x, T x)\right)\right] q>1, \forall x, y \in X$
(****)
where $\lim _{\mathrm{r} \rightarrow \mathrm{t}^{+}} \sup \alpha(\mathrm{r})<1$, for every $\mathrm{t} \in[0, \infty)$.
We shall require the following lemmas in the sequel.
Lemma 1.1: Let (X, G) be a generalized metric space. Let $A, B \subset X$ and $q>1$. Then for every $a \in A$, there exists $b \in B$ such that

$$
\begin{equation*}
\mathrm{G}(\mathrm{a}, \mathrm{a}, \mathrm{~b}) \leq \mathrm{q} \mathrm{H}_{\mathrm{G}}(\mathrm{~A}, \mathrm{~A}, \mathrm{~B}) \tag{1.1}
\end{equation*}
$$

Proof: If $\mathrm{H}_{\mathrm{G}}(\mathrm{A}, \mathrm{A}, \mathrm{B})=0$ then $\mathrm{a} \in \mathrm{B}$ and (1.1) holds for $\mathrm{b}=\mathrm{a}$.
If $\mathrm{H}_{\mathrm{G}}(\mathrm{A}, \mathrm{A}, \mathrm{B})>0$, then let us denote

$$
\begin{equation*}
\epsilon=\left(\mathrm{h}^{-1}-1\right) \mathrm{H}_{\mathrm{G}}(\mathrm{~A}, \mathrm{~A}, \mathrm{~B})>0 \tag{1.2}
\end{equation*}
$$

Using the definition of $D_{G}(a, a, B)$ and $H_{G}(A, A, B)$, it follows that, for any $\in>0$, there exists $b \in B$ such that

$$
\begin{equation*}
\mathrm{G}(\mathrm{a}, \mathrm{a}, \mathrm{~b}) \leq \mathrm{D}_{\mathrm{G}}(\mathrm{a}, \mathrm{a}, \mathrm{~B})+\epsilon \leq \mathrm{H}_{\mathrm{G}}(\mathrm{~A}, \mathrm{~A}, \mathrm{~B})+\epsilon \tag{1.3}
\end{equation*}
$$

Renu Chugh, Vivek kumar* and Tamanna Kadian / Some fixed point theorems for multivalued mappings in generalized b-metric spaces / IJMA- 3(3), Mar.-2012, Page: 1198-1210

Now, by inserting (1.2) in (1.3), we get

$$
\begin{aligned}
\mathrm{G}(\mathrm{a}, \mathrm{a}, \mathrm{~b}) & \leq \mathrm{H}_{\mathrm{G}}(\mathrm{~A}, \mathrm{~A}, \mathrm{~B})+\mathrm{h}^{-1} \mathrm{H}_{\mathrm{G}}(\mathrm{~A}, \mathrm{~A}, \mathrm{~B})-\mathrm{H}_{\mathrm{G}}(\mathrm{~A}, \mathrm{~A}, \mathrm{~B}) \\
& \leq \frac{1}{\mathrm{~h}} \mathrm{H}_{\mathrm{G}}(\mathrm{~A}, \mathrm{~A}, \mathrm{~B}) \\
& \leq \mathrm{q} \mathrm{H}_{\mathrm{G}}(\mathrm{~A}, \mathrm{~A}, \mathrm{~B}), \text { where } \frac{1}{\mathrm{~h}}=\mathrm{q} .
\end{aligned}
$$

Lemma 1.2: Let $A, B \subseteq C B(X)$ and let $a \in A$. Then, there exists $b \in B$ such that

$$
\mathrm{G}(\mathrm{a}, \mathrm{a}, \mathrm{~b}) \leq \mathrm{H}_{\mathrm{G}}(\mathrm{~A}, \mathrm{~A}, \mathrm{~B})+\eta \text {, where } \eta>0 \text {. }
$$

Lemma 1.2 is a simple consequence of the definition of $H_{G}(A, B, C)$.

2. MAIN RESULTS

Theorem 2.1: Let (X, G) be a complete generalized b-metric space with continuous generalized b-metric and T : $X \rightarrow \mathrm{CB}(\mathrm{X})$ a generalized multivalued (ψ, ϕ) - weak contraction. Suppose that $\psi: \mathrm{R}_{+} \rightarrow \mathrm{R}_{+}$is continuous (c)-comparison function and $\phi: \mathrm{R}_{+} \rightarrow \mathrm{R}_{+}$is a continuous monotonic increasing function such that $\phi(0)=0$. Then,
(i) Fix $\mathrm{T} \neq \phi$
(ii) for any $\mathrm{x}_{0} \in \mathrm{X}$, there exists an orbit $\left\{\mathrm{X}_{\mathrm{n}}\right\}_{\mathrm{n}=0}^{\infty}$ of T at the point x_{0} that converges to a fixed point x^{*} of T
(iii) the a priori and a posteriori error estimates are given by
$G\left(x_{n}, x_{n}, x^{*}\right) \leq s \sum_{k=0}^{\infty} \psi^{k+n}\left(G\left(x_{0}, x_{0}, x_{1}\right)\right), s \geq 1, n=1,2,3, \ldots \quad \ldots$
$G\left(x_{n}, x_{n}, x^{*}\right) \leq s \sum_{k=0}^{\infty} \psi^{k}\left(G\left(x_{n-1}, x_{n-1}, x_{n}\right)\right), s \geq 1, n=1,2,3 \ldots \ldots$
respectively.
Proof: Let $x_{0} \in X$ and $x_{1} \in T x_{0}$. If $H_{G}\left(T x_{0}, T x_{0}, T x_{1}\right)=0$, then $\mathrm{Tx}_{0}=T x_{1}$, that is $x_{1} \in T x_{1}$, which implies Fix $T \neq \phi$.
Let $H_{G}\left(\mathrm{Tx}_{0}, \mathrm{Tx}_{0}, \mathrm{Tx}_{1}\right) \neq 0$. Then, we have by lemma 1.1 that there exists $\mathrm{x}_{2} \in \mathrm{Tx}_{1}$ such that

$$
\mathrm{G}\left(\mathrm{x}_{1}, \mathrm{x}_{1}, \mathrm{x}_{2}\right) \leq \mathrm{q} \mathrm{H} \mathrm{H}_{\mathrm{G}}\left(\mathrm{Tx}_{0}, \mathrm{Tx}_{0}, \mathrm{Tx}_{1}\right), \mathrm{q}>1
$$

so that by (*) we have

$$
\begin{aligned}
\mathrm{G}\left(\mathrm{x}_{1}, \mathrm{x}_{1}, \mathrm{x}_{2}\right) \leq \mathrm{qq}^{-1} & {\left[\psi\left(\mathrm{G}\left(\mathrm{x}_{0}, \mathrm{x}_{0}, \mathrm{x}_{1}\right)\right)+\phi\left(\mathrm{D}_{\mathrm{G}}\left(\mathrm{x}_{1}, \mathrm{Tx}_{0}, \mathrm{Tx}_{0}\right)\right)\right] } \\
& =\psi\left(\mathrm{G}\left(\mathrm{x}_{0}, \mathrm{x}_{0}, \mathrm{x}_{1}\right)\right)+\phi\left(\mathrm{D}_{\mathrm{G}}\left(\mathrm{x}_{1}, \mathrm{x}_{1}, \mathrm{x}_{1}\right)\right) \\
& =\psi\left(\mathrm{G}\left(\mathrm{x}_{0}, \mathrm{x}_{0}, \mathrm{x}_{1}\right)\right)
\end{aligned}
$$

If $H_{G}\left(T x_{1}, T x_{1}, T x_{2}\right)=0$, then $T x_{1}=T x_{2}$, that is $x_{2} \in T x_{2}$.
Let $H_{G}\left(\mathrm{Tx}_{1}, \mathrm{Tx}_{1}, \mathrm{Tx}_{2}\right) \neq 0$. Again by lemma 1.1, there exists $\mathrm{x}_{3} \in \mathrm{Tx}_{2}$ such that $\mathrm{G}\left(\mathrm{x}_{2}, \mathrm{x}_{2}, \mathrm{x}_{3}\right) \leq \mathrm{qH} \mathrm{H}_{\mathrm{G}}\left(\mathrm{Tx}_{1}, \mathrm{Tx}_{1}, \mathrm{Tx}_{2}\right)$
$\leq \mathrm{qq}^{-1}\left[\psi\left(\mathrm{G}\left(\mathrm{x}_{1}, \mathrm{x}_{1}, \mathrm{x}_{2}\right)\right)+\phi\left(\mathrm{D}_{\mathrm{G}}\left(\mathrm{x}_{2}, \mathrm{Tx}_{1}, \mathrm{Tx}_{1}\right)\right)\right]$
$=\psi\left(\mathrm{G}\left(\mathrm{x}_{1}, \mathrm{x}_{1}, \mathrm{x}_{2}\right)\right)+\phi\left(\mathrm{D}_{\mathrm{G}}\left(\mathrm{x}_{2}, \mathrm{x}_{2}, \mathrm{x}_{2}\right)\right)$
$=\psi\left(G\left(x_{1}, x_{1}, x_{2}\right)\right) \leq \psi^{2}\left(G\left(x_{0}, x_{0}, x_{1}\right)\right.$.
By induction, we obtain

$$
\begin{equation*}
\mathrm{G}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+1}\right) \leq \psi^{\mathrm{n}}\left(\mathrm{G}\left(\mathrm{x}_{0}, \mathrm{x}_{0}, \mathrm{x}_{1}\right)\right) \tag{2.1.4}
\end{equation*}
$$

Renu Chugh, Vivek kumar* and Tamanna Kadian / Some fixed point theorems for multivalued mappings in generalized b-metric spaces / IJMA- 3(3), Mar.-2012, Page: 1198-1210

Therefore by the property (G5) of definition 1.4, we have

$$
\begin{align*}
G\left(x_{n}, x_{n}, x_{n+p}\right) & \leq s\left[G\left(x_{n}, x_{n}, x_{n+1}\right)+G\left(x_{n+1}, x_{n+1}, x_{n+2}\right)+\ldots \ldots+G\left(x_{n+p-1}, x_{n+p-1}, x_{n+p}\right)\right] \\
& \leq s\left[\psi^{n}\left(G\left(x_{0}, x_{0}, x_{1}\right)\right)+\psi^{n+1}\left(G\left(x_{0}, x_{0}, x_{1}\right)\right)+\ldots \ldots+\psi^{n+p-1}\left(G\left(x_{0}, x_{0}, x_{1}\right)\right)\right] \tag{2.1.5}\\
G\left(x_{n}, x_{n}, x_{n+p}\right) & \leq s \sum_{k=n}^{n+p-1} \psi^{k}\left(G\left(x_{0}, x_{0}, x_{1}\right)\right) \tag{2.1.6}
\end{align*}
$$

From (2.1.6), we have

$$
\begin{align*}
G\left(x_{n}, x_{n}, x_{n+p}\right) \leq s & \sum_{k=n}^{n+p-1} \psi^{k}\left(G\left(x_{0}, x_{0}, x_{1}\right)\right) \\
& =s\left[\sum_{k=0}^{n+p^{-1}} \psi^{k}\left(G\left(x_{0}, x_{0}, x_{1}\right)-\sum_{k=0}^{n-1} \psi^{k}\left(G\left(x_{0}, x_{0}, x_{1}\right)\right)\right] \rightarrow 0 \text { as } n \rightarrow \infty\right. \tag{2.1.7}
\end{align*}
$$

We therefore have from (2.1.7), that for any $x_{0} \in X,\left\{X_{n}\right\}_{n=0}^{\infty}$ is a Cauchy sequence in X. Since (X, G) is a complete generalized b-metric space, then $\left\{X_{n}\right\}_{n=0}^{\infty}$ converges to some $x^{*} \in X$. that is

$$
\begin{equation*}
\lim _{n \rightarrow \infty} x_{n}=x^{*} \tag{2.1.8}
\end{equation*}
$$

Therefore by (*) we have that

$$
\begin{align*}
D_{G}\left(x^{*}, x^{*}, T x^{*}\right) & \leq s\left[G\left(x^{*}, x^{*}, x_{n+1}\right)+G\left(x_{n+1}, X_{n+1}, T x^{*}\right)\right] \\
& \leq s\left[G\left(x^{*}, x^{*}, x_{n+1}\right)+H_{G}\left(T x_{n}, T X_{n}, T X^{*}\right)\right] \\
& \leq s G\left(x^{*}, x^{*}, x_{n+1}\right)+\operatorname{sq}^{-1}\left[\psi\left(G\left(x_{n}, X_{n}, X^{*}\right)\right)+\phi\left(D_{G}\left(x^{*}, T X_{n}, T x_{n}\right)\right)\right] \tag{2.1.9}
\end{align*}
$$

By using (2.1.8), the continuity of the functions ψ, ϕ and the fact that $\mathrm{x}_{\mathrm{n}+1} \in \operatorname{Tx}_{\mathrm{n}}$, then $\phi\left(\mathrm{D}_{\mathrm{G}}\left(\mathrm{x}^{*}, \mathrm{TX}_{\mathrm{n}} \mathrm{Tx}_{\mathrm{n}}\right)\right) \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$ and $\psi\left(\mathrm{G}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}, \mathrm{x}^{*}\right)\right) \rightarrow 0$ as $\mathrm{n} \rightarrow \infty$.

It follows from (2.1.9) that $D_{G}\left(x^{*}, x^{*}, T x^{*}\right)=0$ as $n \rightarrow \infty$. Since $T x^{*}$ is closed then $x^{*} \in T x^{*}$.
To prove a priori error estimate in (2.1.1), we have from (2.1.6) that

$$
\begin{aligned}
G\left(x_{n}, x_{n}, x_{n+p}\right) & \leq s \sum_{k=n}^{n+p-1} \psi^{k}\left(G\left(x_{0}, x_{0}, x_{1}\right)\right) \\
& =s \sum_{k=0}^{p-1} \psi^{n+k}\left(G\left(x_{0}, x_{0}, x_{1}\right)\right)
\end{aligned}
$$

from which it follows by the continuity of the generalized b-metric that

$$
\begin{aligned}
G\left(x_{n}, x_{n}, x^{*}\right) & =\lim _{\mathrm{p} \rightarrow \infty} \mathrm{G}\left(\mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}}, \mathrm{x}_{\mathrm{n}+\mathrm{p}}\right) \\
& \leq \mathrm{s} \sum_{\mathrm{k}=0}^{\infty} \psi^{\mathrm{n}+\mathrm{k}}\left(\mathrm{G}\left(\mathrm{x}_{0}, \mathrm{x}_{0}, \mathrm{x}_{1}\right)\right)
\end{aligned}
$$

which gives the result in (2.1.1).
To prove result in (2.1.2), we get by condition (*) and lemma 1.1 that

$$
G\left(x_{n}, x_{n}, x_{n+1}\right) \leq q H_{G}\left(T x_{n-1}, T x_{n-1}, T x_{n}\right)
$$

$$
\begin{aligned}
& \leq q q^{-1}\left[\psi\left(G\left(x_{n-1}, x_{n-1}, x_{n}\right)\right)+\phi\left(D_{G}\left(x_{n}, \mathrm{Tx}_{n-1}, \mathrm{Tx}_{n-1}\right)\right)\right] \\
& =\psi\left(G\left(x_{n-1}, x_{n-1}, x_{n}\right)\right)+\phi\left(D_{G}\left(x_{n}, x_{n}, x_{n}\right)\right) \\
& =\psi\left(G\left(x_{n-1}, x_{n-1}, x_{n}\right)\right)
\end{aligned}
$$

Also, we have

$$
\begin{aligned}
G\left(x_{n+1}, x_{n+1}, x_{n+2}\right) & \leq \psi\left(G\left(x_{n}, x_{n}, x_{n+1}\right)\right) \\
& \leq \psi^{2}\left(G\left(x_{n-1}, x_{n-1}, x_{n}\right)\right)
\end{aligned}
$$

so that in general we obtain

$$
\begin{aligned}
& \text { (2.1.10) } G\left(x_{n+k}, x_{n+k}, x_{n+k+1}\right) \leq \psi^{k+1}\left(G\left(x_{n-1}, x_{n-1}, x_{n}\right)\right), k=0,1,2, \ldots ~
\end{aligned}
$$

Using (2.1.10) in (2.1.5) yields

$$
\begin{gather*}
G\left(x_{n}, x_{n}, x_{n+p}\right) \leq s\left[\psi\left(G\left(x_{n-1}, x_{n-1}, x_{n}\right)\right)+\psi^{2}\left(G\left(x_{n-1}, x_{n-1}, x_{n}\right)\right)+\ldots .+\psi^{p-1}\left(G\left(x_{n-1}, x_{n-1}, x_{n}\right)\right)\right] \\
= \tag{2.1.11}\\
=s \sum_{k=0}^{p-1} \psi^{k}\left(G\left(x_{n-1}, x_{n-1}, x_{n}\right)\right)
\end{gather*}
$$

Again taking limit in (2.1.11) as $\mathrm{p} \rightarrow \infty$ and using the continuity of the generalized b -metric, we have

$$
\begin{aligned}
G\left(x_{n}, x_{n}, x^{*}\right) & =\lim _{p \rightarrow \infty} G\left(x_{n}, x_{n}, x_{n+p}\right) \\
& \leq s \sum_{k=0}^{\infty} \psi^{k}\left(G\left(x_{n-1}, x_{n-1}, x_{n}\right)\right), \text { giving the result in (2.1.2). }
\end{aligned}
$$

Remark 2.1: Theorem 2.1 is a generalization of theorem 1.2 as well as theorem 5 of Nadler [29] .
Theorem 2.2:- Let (X, G) be a complete generalized b-metric space with continuous generalized b-metric and T : $\mathrm{X} \rightarrow \mathrm{CB}(\mathrm{X})$ a generalized multi-valued ϕ-weak contraction. Suppose that there exists a function $\alpha:[0, \infty) \rightarrow[0,1)$ satisfying $\lim _{r \rightarrow t^{+}} \sup \alpha(r)<1$, for every $t \in[0, \infty)$ and two continuous monotone increasing functions ϕ_{1} and $\phi_{2}: R_{+} \rightarrow R_{+}$such that $\phi_{1}(0)=1$ and $\phi_{2}(0)=0$. Then, T has at least one fixed point.

Proof: Suppose $\mathrm{x}_{0} \in \mathrm{X}$ and $\mathrm{x}_{1} \in \mathrm{Tx}_{0}$. We choose a positive integer N_{1} such that

$$
\begin{equation*}
\alpha^{N_{1}}\left(G\left(x_{0}, x_{0}, x_{1}\right)\right) \leq\left[1-\alpha\left(G\left(x_{0}, x_{0}, x_{1}\right)\right] G\left(x_{0}, x_{0}, x_{1}\right)\right. \tag{2.2.1}
\end{equation*}
$$

By lemma 1.2, there exists $\mathrm{x}_{2} \in \mathrm{Tx}_{1}$ such that

$$
\begin{equation*}
\mathrm{G}\left(\mathrm{x}_{1}, \mathrm{x}_{1}, \mathrm{x}_{2}\right) \leq \mathrm{H}_{\mathrm{G}}\left(\mathrm{Tx}_{0}, \mathrm{Tx}_{0}, \mathrm{Tx}_{1}\right)+\alpha^{\mathrm{N}_{1}}\left(\mathrm{G}\left(\mathrm{x}_{0}, \mathrm{x}_{0}, \mathrm{x}_{1}\right)\right) \tag{2.2.2}
\end{equation*}
$$

Using (**) and (2.2.1) in (2.2.2), then we have

$$
\begin{aligned}
\mathrm{G}\left(\mathrm{x}_{1}, \mathrm{x}_{1}, \mathrm{x}_{2}\right) & \leq\left[\alpha\left(\mathrm{G}\left(\mathrm{x}_{0}, \mathrm{x}_{0}, \mathrm{x}_{1}\right)\right) \mathrm{G}\left(\mathrm{x}_{0}, \mathrm{x}_{0}, \mathrm{x}_{1}\right)\right]^{\phi_{1}\left(\mathrm{D}_{G}\left(x_{1}, T x_{0}, T x_{0}\right)\right)}+\phi_{2}\left(\mathrm{D}_{\mathrm{G}}\left(\mathrm{x}_{1}, T \mathrm{x}_{0}, T \mathrm{x}_{0}\right)\right)+\alpha^{\mathrm{N}_{1}}\left(\mathrm{G}\left(\mathrm{x}_{0}, \mathrm{x}_{0}, \mathrm{x}_{1}\right)\right) \\
& =\alpha\left(\mathrm{G}\left(\mathrm{x}_{0}, \mathrm{x}_{0}, \mathrm{x}_{1}\right)\right) \mathrm{G}\left(\mathrm{x}_{0}, \mathrm{x}_{0}, \mathrm{x}_{1}\right)+\alpha^{\mathrm{N}_{1}}\left(\mathrm{G}\left(\mathrm{x}_{0}, \mathrm{x}_{0}, \mathrm{x}_{1}\right)\right) \leq \mathrm{G}\left(\mathrm{x}_{0}, \mathrm{x}_{0}, \mathrm{x}_{1}\right)
\end{aligned}
$$

Now, we choose again a positive integer $\mathrm{N}_{2}, \mathrm{~N}_{2}>\mathrm{N}_{1}$ such that

$$
\begin{equation*}
\alpha^{N_{2}}\left(G\left(x_{1}, x_{1}, x_{2}\right)\right) \leq\left[1-\alpha\left(G\left(x_{1}, x_{1}, x_{2}\right)\right)\right] G\left(x_{1}, x_{1}, x_{2}\right) \tag{2.2.3}
\end{equation*}
$$

Since $\mathrm{Tx}_{2} \in \mathrm{CB}(\mathrm{X})$, by lemma 1.2 again, we can select $\mathrm{x}_{3} \in \mathrm{Tx}_{2}$ such that

$$
\begin{equation*}
G\left(x_{2}, x_{2}, x_{3}\right) \leq H_{G}\left(\mathrm{Tx}_{1}, T x_{1}, T x_{2}\right)+\alpha^{N_{2}}\left(G\left(x_{1}, x_{1}, x_{2}\right)\right) \tag{2.2.4}
\end{equation*}
$$

Again using ($* *$) and (2.2.3) in (2.2.4), then we get

$$
G\left(x_{2}, x_{2}, x_{3}\right) \leq\left[\alpha\left(G\left(x_{1}, x_{1}, x_{2}\right)\right) G\left(x_{1}, x_{1}, x_{2}\right)\right]^{\phi_{1}\left(D_{G}\left(x_{2}, T x_{1}, T x_{1}\right)\right)}+\phi_{2}\left(D_{G}\left(x_{2}, T x_{1}, T x_{1}\right)\right)+\alpha^{N_{2}}\left(G\left(x_{1}, x_{1}, x_{2}\right)\right)
$$

By induction, since $T x_{k} \in C B(X)$, for each k, we may choose a positive integer N_{k} such that
$\alpha^{N_{k}}\left(G\left(x_{k-1}, x_{k-1}, x_{k}\right)\right) \leq\left[1-\alpha\left(G\left(x_{k-1}, x_{k-1}, x_{k}\right)\right)\right] G\left(x_{k-1}, x_{k-1}, x_{k}\right)$
By selecting $\mathrm{x}_{\mathrm{k}+1} \in \mathrm{Tx}_{\mathrm{k}}$ such that
$G\left(x_{k}, x_{k}, x_{k+1}\right) \leq H_{G}\left(\mathrm{Tx}_{k-1}, T x_{k-1}, T x_{k}\right)+\alpha^{N_{k}}\left(G\left(x_{k-1}, x_{k-1}, x_{k}\right)\right)$
so that using (**) and (2.2.5) in (2.2.6) yield

$$
\begin{equation*}
G\left(x_{k}, x_{k}, x_{k+1}\right) \leq G\left(x_{k-1}, x_{k-1}, x_{k}\right) \tag{2.2.7}
\end{equation*}
$$

Let $G_{k}=G\left(x_{k-1}, x_{k-1}, x_{k}\right), k=1,2, \ldots$.
The inequality relation (2.2.7) shows that the sequence $\left\{\mathrm{G}_{\mathrm{k}}\right\}$ of non-negative numbers is decreasing. Therefore, $\lim _{k \rightarrow \infty} G_{k}$ exists. Thus, set $\lim _{k \rightarrow \infty} G_{k}=c \geq 0$.

We now prove that the Picard iteration or $\operatorname{orbit}\left\{\mathrm{X}_{\mathrm{k}}\right\} \subset \mathrm{X}$ so generated is a Cauchy sequence. By condition on α, for $\mathrm{t}=$ c we have

$$
\lim _{t \rightarrow c^{+}} \alpha(t)<1
$$

For $\mathrm{k} \geq \mathrm{k}_{0}$, let $\alpha\left(\mathrm{G}_{\mathrm{k}}\right)<\mathrm{h}$, where $\lim _{\mathrm{t} \rightarrow \mathrm{c}^{+}} \sup \alpha(\mathrm{t})<\mathrm{h}<1$.
Using (2.2.6), we have by deduction that $\left\{\mathrm{G}_{\mathrm{k}}\right\}$ satisfies the recurrence inequality:

$$
\begin{equation*}
\mathrm{G}_{\mathrm{k}+1} \leq \mathrm{G}_{\mathrm{k}} \alpha\left(\mathrm{G}_{\mathrm{k}}\right)+\alpha^{\mathrm{N}_{\mathrm{k}}}\left(\mathrm{G}_{\mathrm{k}}\right), \mathrm{k}=1,2, \ldots \tag{2.2.8}
\end{equation*}
$$

Using induction in (2.2.8) leads to
$\mathrm{G}_{\mathrm{k}+1} \leq \prod_{\mathrm{j}=1}^{\mathrm{k}} \alpha\left(\mathrm{G}_{\mathrm{j}}\right) \mathrm{G}_{1}+\sum_{\mathrm{m}=1}^{\mathrm{k}-1} \prod_{\mathrm{J}=\mathrm{m}+1}^{\mathrm{k}} \alpha\left(\mathrm{G}_{\mathrm{j}}\right) \alpha^{\mathrm{N}_{\mathrm{m}}}\left(\mathrm{G}_{\mathrm{m}}\right)+\alpha^{\mathrm{N}_{\mathrm{k}}}\left(\mathrm{G}_{\mathrm{k}}\right), \mathrm{k} \geq 1$
We now find a suitable upper bound for the right hand side of (2.2.9), using the fact that $\alpha<1$ as follows:

$$
\begin{align*}
& G_{k+1} \leq \prod_{j=1}^{k} \alpha\left(G_{j}\right) G_{1}+\sum_{m=1}^{k-1} \prod_{J=m+1}^{k} \alpha\left(G_{j}\right) \alpha^{N_{m}}\left(G_{m}\right)+\alpha^{N_{k}}\left(G_{k}\right) \\
& <\mathrm{G}_{1} \mathrm{~h}^{\mathrm{k}}+\sum_{\mathrm{m}=1}^{\mathrm{k}-1} \mathrm{~h}^{\mathrm{k}-\mathrm{m}} \mathrm{~h}^{\mathrm{N}_{\mathrm{m}}}+\mathrm{h}^{\mathrm{N}_{\mathrm{k}}}=\mathrm{G}_{1} \mathrm{~h}^{\mathrm{k}}+\mathrm{h}^{\mathrm{k}} \sum_{\mathrm{m}=1}^{\mathrm{k}-1} \mathrm{~h}^{\mathrm{N}_{\mathrm{m}}-\mathrm{m}}+\mathrm{h}^{\mathrm{N}_{\mathrm{k}}} \\
& \leq \mathrm{C}_{1} \mathrm{~h}^{\mathrm{k}}+\mathrm{C}_{2} \mathrm{~h}^{\mathrm{k}}+\mathrm{C}_{3} \mathrm{~h}^{\mathrm{k}}=\mathrm{C}_{4} \mathrm{~h}^{\mathrm{k}} \text {, where } \mathrm{C}_{4}=\mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3} \text { and } \mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4} \text { are constants. } \tag{2.2.10}
\end{align*}
$$

Now, for $k \geq k_{0}$, and $p \in N$, we have by using (2.2.10) and the repeated application of the rectangle inequality that
$G\left(x_{k}, x_{k}, x_{k+p}\right) \leq s\left[G\left(x_{k}, x_{k}, x_{k+1}\right)+G\left(x_{k+1}, x_{k+1}, x_{k+2}\right)+\ldots .+G\left(x_{k+p-1}, x_{k+p-1}, x_{k+p}\right)\right]$

$$
\begin{align*}
& =s\left[G_{k+1}+G_{+2}+\ldots .+G_{k+p}\right] \\
& \leq s\left[C_{4}\left(h^{k}+h^{k+1}+\ldots . .+h^{k+p-1}\right)\right] \\
& =C_{4}\left(\frac{1-h^{p}}{1-h}\right) h^{k} s=C_{5} h^{k} s \tag{2.2.11}
\end{align*}
$$

where C_{5} is a constant
Since $0<h<1$, the right hand side of (2.2.11) tends to 0 as $k \rightarrow \infty$, showing that $\left\{\mathrm{x}_{\mathrm{k}}\right\}$ is a Cauchy sequence. Therefore, $\mathrm{x}_{\mathrm{k}} \rightarrow \mathrm{u} \in \mathrm{X}$ as $\mathrm{k} \rightarrow \infty$ since X is complete generalized b-metric space. So,

```
\(D_{G}(u, u, T u) \leq s\left[G\left(u, u, x_{k}\right)+G\left(x_{k}, x_{k}, T u\right)\right]\)
    \(\leq \mathrm{s}\left[\mathrm{G}\left(\mathrm{u}, \mathrm{u}, \mathrm{x}_{\mathrm{k}}\right)+\mathrm{H}_{\mathrm{G}}\left(\mathrm{Tx}_{\mathrm{k}-1}, \mathrm{Tx}_{\mathrm{k}-1}, \mathrm{Tu}\right)\right]\)
    \(\leq s G\left(u, u, x_{k}\right)+s\left[\alpha\left(G\left(x_{k-1}, x_{k-1}, u\right)\right) G\left(x_{k-1}, x_{k-1}, u\right)\right]^{\phi_{1}\left(D_{G}\left(u, T x_{k-1}, T x_{k-1}\right)\right)}+s \phi_{2}\left(D_{G}\left(u, \mathrm{Tx}_{k-1}, T x_{k-1}\right)\right)\)
    \(<s \mathrm{G}\left(\mathrm{u}, \mathrm{u}, \mathrm{x}_{\mathrm{k}}\right)+\mathrm{s}\left[\mathrm{hG}\left(\mathrm{x}_{\mathrm{k}-1}, \mathrm{x}_{\mathrm{k}-1}, \mathrm{u}\right)\right]^{\phi_{1}\left(\mathrm{D}_{\mathrm{G}}\left(\mathrm{u}, \mathrm{Tx}_{\mathrm{k}-1}, \mathrm{Tx}_{\mathrm{k}-1}\right)\right)}+\mathrm{s} \phi_{2}\left(\mathrm{D}_{\mathrm{G}}\left(\mathrm{u}, \mathrm{Tx}_{\mathrm{k}-1}, T \mathrm{x}_{\mathrm{k}-1}\right)\right), \mathrm{s} \geq 1\).

By using the fact that \(\mathrm{x}_{\mathrm{k}} \in \mathrm{Tx}_{\mathrm{k}-1}\) and \(\mathrm{x}_{\mathrm{k}} \rightarrow \mathrm{u}\) as \(\mathrm{k} \rightarrow \infty\), we have \(\mathrm{D}_{\mathrm{G}}\left(\mathrm{u}, \mathrm{Tx}_{\mathrm{k}-1}, \mathrm{Tx}_{\mathrm{k}-1}\right) \rightarrow 0\) as \(\mathrm{k} \rightarrow \infty\). We therefore, have by continuity of \(\phi_{j}(\mathrm{j}=1,2)\) that \(\phi_{1}\left(\mathrm{D}_{\mathrm{G}}\left(\mathrm{u}, \mathrm{Tx}_{\mathrm{k}-1}, \mathrm{Tx}_{\mathrm{k}-1}\right)\right) \rightarrow 1\) as \(\mathrm{k} \rightarrow \infty\) and \(\phi_{2}\left(\mathrm{D}_{\mathrm{G}}\left(\mathrm{u}, \mathrm{Tx}_{\mathrm{k}-1}, \mathrm{Tx}_{\mathrm{k}-1}\right)\right) \rightarrow 0\) as \(\mathrm{k} \rightarrow \infty\). Hence, since the right hand side terms of (2.2.12) tends to zero as \(\mathrm{k} \rightarrow \infty\), we have \(\mathrm{u} \in \mathrm{Tu}\). Using the continuity of the generalized b-metric in (2.2.11) as \(p \rightarrow \infty\), we obtain an error estimate \(G\left(x_{k}, x_{k}, u\right)=\lim _{p \rightarrow \infty} G\left(x_{k}, x_{k}, x_{k+p}\right) \leq C_{5} h^{k} s, k \geq k_{0}\), \(s \geq 1\) for the Picard iteration process under condition ( \(* *\) ).

Remark 2.2: Theorem 2.2 is a generalization of theorem 1.3 , Nadler fixed point theorem [23] as well as theorem 2.1 of Daffer and Kaneko[16] .

Theorem 2.3: Let ( \(\mathrm{X}, \mathrm{G}\) ) be a complete generalized b-metric space with continuous generalized b-metric and \(\mathrm{S}, \mathrm{T}\) : \(X \rightarrow C B(X)\) a generalized multivalued \((\theta, \phi)\) - weak j-contraction such that \(S\) is continuous and \(T(X) \subseteq S(X), S(X)\) a complete subspace of \(\mathrm{CB}(\mathrm{X})\). Suppose that \(\phi: \mathrm{R}_{+} \rightarrow \mathrm{R}_{+}\)is a continuous monotonic increasing function such that \(\phi(0)=\) 0 . Then,
(i) \(\mathrm{C}(\mathrm{S}, \mathrm{T}) \neq \phi\), where \(\mathrm{C}(\mathrm{S}, \mathrm{T})\) is the set of coincidence points of S and T .
(ii) for any \(\mathrm{x}_{0} \in \mathrm{X}\), there exists a Jungck orbit \(\left\{\mathrm{SX} \mathrm{X}_{\mathrm{n}}\right\}_{\mathrm{n}=0}^{\infty}\) of the pair (S,T) at the point \(\mathrm{x}_{0}\) that converges to Sz for some \(z \in X\), and \(S z \in T z\), that is \(z \in C(S, T)\)
(iii) the a priori and a posteriori error estimates are given by
\(G\left(S x_{n}, S x_{n}, S z\right) \leq \frac{\operatorname{sh}^{n}}{1-h} G\left(S x_{0}, S x_{0}, S x_{1}\right), s \geq 1, n=1,2,3, \ldots\)
\(G\left(S x_{n}, S x_{n}, S z\right) \leq \frac{S h}{1-h} G\left(S x_{n-1}, S x_{n-1}, S x_{n}\right), s \geq 1, n=1,2,3 \ldots\)
respectively for a certain constant \(\mathrm{h}<1\).
Proof: Let \(\mathrm{x}_{0} \in \mathrm{X}\) and \(S \mathrm{x}_{1} \in T \mathrm{x}_{0}\). If \(\mathrm{H}_{\mathrm{G}}\left(\mathrm{Tx}_{0}, T \mathrm{x}_{0}, T \mathrm{x}_{1}\right)=0\), then \(\mathrm{Tx}_{0}=T \mathrm{x}_{1}\), that is \(\mathrm{Sx}_{1} \in \mathrm{Tx}_{1}\), which implies that \(\mathrm{C}(\mathrm{S}, \mathrm{T}) \neq\) \(\phi\).

Let \(\mathrm{H}_{\mathrm{G}}\left(\mathrm{Tx}_{0}, \mathrm{Tx}_{0}, \mathrm{Tx}_{1}\right) \neq 0\). Then, we have by lemma 1.1 that there exists \(\mathrm{x}_{2} \in \mathrm{X}\) so that \(\mathrm{Sx}_{2} \in \mathrm{Tx}_{1}\) such that
\[
G\left(S x_{1}, S x_{1}, S x_{2}\right) \leq q H_{G}\left(T x_{0}, T x_{0}, T x_{1}\right), q>1
\]
so that by (***) we have
\[
\begin{aligned}
& \mathrm{G}\left(\mathrm{Sx}_{1}, \mathrm{Sx}_{1}, \mathrm{Sx}_{2}\right) \leq \mathrm{q} \theta\left[\mathrm{G}\left(\mathrm{Sx}_{0}, \mathrm{Sx}_{0}, \mathrm{Sx}_{1}\right)+\phi\left(\mathrm{D}_{\mathrm{G}}\left(\mathrm{Sx}_{1}, \mathrm{Tx}_{0}, \mathrm{Tx}_{0}\right)\right)\right] \\
& =\mathrm{q} \theta \mathrm{G}\left(\mathrm{Sx}_{0}, \mathrm{Sx}_{0}, \mathrm{Sx}_{1}\right) \\
& =h \mathrm{G}\left(\mathrm{Sx}_{0}, S \mathrm{x}_{0}, S \mathrm{x}_{1}\right) \text {, }
\end{aligned}
\]
where \(\mathrm{h}=\mathrm{q} \boldsymbol{\theta}<1\).
If \(H_{G}\left(T x_{1}, T x_{1}, T x_{2}\right)=0\), then \(T x_{1}=T x_{2}\), that is \(S x_{2} \in T x_{2}\).
Let \(H_{G}\left(\mathrm{Tx}_{1}, \mathrm{Tx}_{1}, \mathrm{Tx}_{2}\right) \neq 0\). Again by lemma 1.1, there exists \(\mathrm{x}_{3} \in \mathrm{X}\) so that \(\mathrm{Sx}_{3} \in \mathrm{Tx}_{2}\) such that \(\mathrm{G}\left(\mathrm{Sx}_{2}, \mathrm{Sx}_{2}, \mathrm{Sx}_{3}\right) \leq \mathrm{q} \mathrm{H}_{\mathrm{G}}\left(\mathrm{Tx}_{1}, \mathrm{Tx}_{1}, \mathrm{Tx}_{2}\right)\)
\[
\leq \mathrm{q}\left[\theta \mathrm{G}\left(\mathrm{Sx}_{1}, \mathrm{Sx}_{1}, \mathrm{Sx}_{2}\right)+\phi\left(\mathrm{D}_{\mathrm{G}}\left(\mathrm{Sx}_{2}, \mathrm{Tx}_{1}, \mathrm{Tx}_{1}\right)\right)\right]
\]

\section*{Renu Chugh, Vivek kumar* and Tamanna Kadian / Some fixed point theorems for multivalued mappings in generalized b-metric} spaces / IJMA- 3(3), Mar.-2012, Page: 1198-1210
\[
=\mathrm{q} \theta \mathrm{G}\left(\mathrm{Sx}_{1}, \mathrm{Sx}_{1}, \mathrm{Sx}_{2}\right)
\]
from which it follows that
\[
\begin{equation*}
\mathrm{G}\left(\mathrm{Sx}_{2}, \mathrm{Sx}_{2}, \mathrm{Sx}_{3}\right) \leq \mathrm{hG}\left(\mathrm{Sx}_{1}, \mathrm{Sx}_{1}, S \mathrm{Sx}_{2}\right) \leq \mathrm{h}^{2} \mathrm{G}\left(\mathrm{Sx}_{0}, \mathrm{Sx}_{0}, \mathrm{Sx}_{1}\right) \tag{2.3.3}
\end{equation*}
\]

By induction, we obtain
\[
\begin{equation*}
G\left(S x_{n}, S x_{n}, S x_{n+1}\right) \leq h^{n}\left(G\left(S x_{0}, S x_{0}, S x_{1}\right)\right) \tag{2.3.4}
\end{equation*}
\]

Therefore from (2.3.4) and property (G5) of definition 1.4, we have
\[
\begin{align*}
G\left(S x_{n}, S x_{n}, S x_{n+p}\right) & \leq s\left[G\left(S x_{n}, S x_{n}, S x_{n+1}\right)+G\left(S x_{n+1}, S x_{n+1}, S x_{n+2}\right)+\ldots \ldots+G\left(S x_{n+p-1}, S x_{n+p-1}, S x_{n+p}\right)\right] \\
& \leq s\left[h^{n} G\left(S x_{0}, S x_{0}, S x_{1}\right)+h^{n+1} G\left(S x_{0}, S x_{0}, S x_{1}\right)+\ldots . .+h^{n+p-1} G\left(S x_{0}, S x_{0}, S x_{1}\right)\right]  \tag{2.3.5}\\
& =\frac{S h^{n}\left(1-h^{p}\right)}{1-h} G\left(S x_{0}, S x_{0}, S x_{1}\right) \tag{2.3.6}
\end{align*}
\]

From (2.3.6), we have
\[
\mathrm{G}\left(\mathrm{Sx}_{\mathrm{n}}, \mathrm{Sx} x_{\mathrm{n}}, \mathrm{Sx} \mathrm{x}_{\mathrm{n}+\mathrm{p}}\right) \rightarrow 0 \text { as } \mathrm{n} \rightarrow \infty .
\]

We therefore have that for any \(x_{0} \in X,\left\{S X_{n}\right\}_{n=0}^{\infty}\) is a Cauchy sequence in \(X\). Since \((X, G)\) is a complete generalized b-metric space, there exist a sequence \(\left\{\mathrm{X}_{\mathrm{n}}\right\}_{\mathrm{n}=0}^{\infty} \subset \mathrm{X}\) converging to some \(\mathrm{z} \in \mathrm{X}\). Therefore, by the continuity of S , \(\left\{\mathrm{Sx}_{n}\right\}_{n=0}^{\infty}\) converges to some \(\mathrm{Sz} \in \mathrm{X}\). That is
\[
\begin{equation*}
\lim _{\mathrm{n} \rightarrow \infty} \mathrm{Sx} \mathrm{X}_{\mathrm{n}}=\mathrm{Sz}=\mathrm{w} \tag{2.3.7}
\end{equation*}
\]

Therefore, by \(\left({ }^{* * *}\right)\), we have that
\(D_{G}(S z, S z, T z)=D_{G}(w, w, T z) \leq s\left[G\left(w, w, S x_{n+1}\right)+G\left(S x_{n+1}, S x_{n+1}, T z\right)\right]\)
\[
\begin{align*}
& \leq s\left[G\left(w, w, S x_{n+1}\right)+H_{G}\left(T x_{n}, T X_{n}, T z\right)\right] \\
& \leq s G\left(w, w, S x_{n+1}\right)+s\left[\theta G\left(S x_{n}, S x_{n}, S z\right)+\phi\left(D_{G}\left(S z, T X_{n}, T x_{n}\right)\right)\right] \\
& =s G\left(w, w, S x_{n+1}\right)+s\left[\theta G\left(S x_{n}, S x_{n}, w\right)+\phi\left(D_{G}\left(w, T X_{n}, T x_{n}\right)\right)\right] \tag{2.3.8}
\end{align*}
\]

By using (2.3.7), the continuity of the functions \(\phi\) and the fact that
\(S x_{n+1} \in \operatorname{Tx}_{n}\), then \(\phi\left(D_{G}\left(w, T X_{n} T x_{n}\right)\right) \rightarrow 0\) as \(n \rightarrow \infty\) and \(G\left(\mathrm{Sx}_{\mathrm{n}}, S \mathrm{X}_{\mathrm{n}}, \mathrm{w}\right) \rightarrow 0\) as \(\mathrm{n} \rightarrow \infty\).
It follows from (2.3.8) that \(\mathrm{D}_{\mathrm{G}}(\mathrm{Sz}, \mathrm{Sz}, \mathrm{Tz})=0\) as \(\mathrm{n} \rightarrow \infty\). Since Tz is closed, then \(\mathrm{Sz} \in \mathrm{Tz}, \mathrm{z} \in \mathrm{C}(\mathrm{S}, \mathrm{T})\)
To prove a priori error estimate in (2.3.1), we have from (2.3.6) by the continuity of the generalized b- metric that
\[
G\left(S x_{n}, S x_{n}, S z\right)=\lim _{p \rightarrow \infty} G\left(S x_{n}, S x_{n}, S x_{n+p}\right) \leq \frac{\operatorname{sh}^{n}}{1-h} G\left(S x_{0}, S x_{0}, S x_{1}\right)
\]
which gives the result in (2.3.1).
To prove result in (2.3.2), we get by condition ( \({ }^{* * *}\) ) and lemma 1.1 that
\[
\begin{aligned}
\mathrm{G}\left(\mathrm{Sx}_{\mathrm{n}}, \mathrm{Sx}_{\mathrm{n}}, \mathrm{Sx}_{\mathrm{n}+1}\right) & \leq \mathrm{qH} \mathrm{H}_{\mathrm{G}}\left(\mathrm{Tx}_{\mathrm{n}-1}, \mathrm{Tx}_{\mathrm{n}-1}, \mathrm{Tx}_{\mathrm{n}}\right) \\
& \leq \mathrm{q}\left[\theta \mathrm{G}\left(\mathrm{Sx}_{\mathrm{n}-1}, \mathrm{Sx}_{\mathrm{n}-1}, \mathrm{Sx}_{\mathrm{n}}\right)+\phi\left(\mathrm{D}_{\mathrm{G}}\left(\mathrm{Sx}_{\mathrm{n}}, \mathrm{Tx}_{\mathrm{n}-1}, \mathrm{Tx}_{\mathrm{n}-1}\right)\right)\right]
\end{aligned}
\]
\[
\begin{aligned}
& =\mathrm{q} \theta \mathrm{G}\left(\mathrm{Sx}_{\mathrm{n}-1}, \mathrm{Sx}_{\mathrm{n}-1}, \mathrm{Sx}_{\mathrm{n}}\right) \\
& =\mathrm{hG}\left(\mathrm{Sx}_{\mathrm{n}-1}, \mathrm{Sx}_{\mathrm{n}-1}, \mathrm{Sx}_{\mathrm{n}}\right)
\end{aligned}
\]

Also, we have
\[
\begin{aligned}
G\left(S x_{n+1}, S x_{n+1}, S x_{n+2}\right) & \leq h G\left(S x_{n}, S x_{n}, S x_{n+1}\right) \\
& \leq h^{2} G\left(S x_{n-1}, S x_{n-1}, S x_{n}\right)
\end{aligned}
\]
so that in general we obtain
\[
\begin{equation*}
G\left(S x_{n+k}, S x_{n+k}, S x_{n+k+1}\right) \leq h^{k+1} G\left(S x_{n-1}, S x_{n-1}, S x_{n}\right), k=0,1,2, \ldots \tag{2.3.9}
\end{equation*}
\]

Using (2.3.9) in (2.3.5) yields
\[
\begin{align*}
G\left(S x_{n}, S x_{n}, S x_{n+p}\right) & \leq s\left[h G\left(S x_{n-1}, S x_{n-1}, S x_{n}\right)+h^{2} G\left(S x_{n-1}, S x_{n-1}, S x_{n}\right)+\ldots . .+h^{p} G\left(S x_{n-1}, S x_{n-1}, S x_{n}\right)\right] \\
& =\frac{\operatorname{sh}\left(1-h^{p}\right)}{1-h} G\left(S x_{n-1}, S x_{n-1}, S x_{n}\right) \tag{2.3.10}
\end{align*}
\]

Again taking limit in (2.3.10) as \(\mathrm{p} \rightarrow \infty\) and using the continuity of the generalized b-metric, we have
\[
\begin{aligned}
G\left(S x_{n}, S x_{n}, S z\right) & =\lim _{p \rightarrow \infty} G\left(S x_{n}, S x_{n}, S x_{n+p}\right) \\
& \leq \frac{S h}{1-h} G\left(S x_{n-1}, S x_{n-1}, S x_{n}\right), \text { giving the result in (2.3.2). }
\end{aligned}
\]

Remark 2.4: Theorem 2.3 is a generalization of Theorem 1.2.
Theorem 2.4: Let \((X, G)\) be a complete generalized b-metric space with continuous generalized b-metric and \(S, T: X \rightarrow C B(X)\) a generalized multi-valued \((\alpha, \phi)\)-weak j-contraction such that \(S\) is continuous and \(T(X) \subseteq S(X), S(X)\) a complete subspace of \(\mathrm{CB}(\mathrm{X})\). Suppose that there exists a function \(\alpha:[0, \infty) \rightarrow[0,1)\) satisfying \(\lim _{r \rightarrow \mathrm{t}^{+}} \sup \alpha(\mathrm{r})<1\), for every \(t \in[0, \infty)\) and a continuous monotone increasing function \(\phi: R_{+} \rightarrow R_{+}\)such that \(\phi(0)=0\). Then, T and \(S\) have at least one coincidence point.

Proof: Suppose \(\mathrm{x}_{0} \in \mathrm{X}\) with \(\mathrm{Sx}_{1} \in \mathrm{Tx}_{0}\). We choose a positive integer \(\mathrm{N}_{1}\) such that
\(\alpha^{N_{1}}\left(G\left(S x_{0}, S x_{0}, S x_{1}\right)\right) \leq\left[1-\alpha\left(G\left(S x_{0}, S x_{0}, S x_{1}\right)\right)\right] G\left(S x_{0}, S x_{0}, S x_{1}\right)\)
By lemma 1.2, there exists \(\mathrm{x}_{2} \in \mathrm{X}\) with \(\mathrm{Sx}_{2} \in \mathrm{Tx}_{1}\) such that
\[
\begin{equation*}
\mathrm{G}\left(\mathrm{Sx}_{1}, \mathrm{Sx}_{1}, \mathrm{Sx}_{2}\right) \leq \mathrm{H}_{\mathrm{G}}\left(\mathrm{Tx}_{0}, \mathrm{Tx}_{0}, \mathrm{Tx}_{1}\right)+\alpha^{\mathrm{N}_{1}}\left(\mathrm{G}\left(\mathrm{Sx}_{0}, \mathrm{Sx}_{0}, \mathrm{Sx}_{1}\right)\right) \tag{2.4.2}
\end{equation*}
\]

Using ( \({ }^{* * * *}\) ) and (2.4.1) in (2.4.2), we have
\[
\begin{aligned}
\mathrm{G}\left(\mathrm{Sx}_{1}, \mathrm{Sx}_{1}, S x_{2}\right) & \leq\left[\alpha\left(\mathrm{G}\left(\mathrm{Sx}_{0}, S x_{0}, S x_{1}\right)\right) \mathrm{G}\left(\mathrm{Sx}_{0}, \mathrm{Sx}_{0}, S x_{1}\right)+\phi\left(\mathrm{D}_{\mathrm{G}}\left(\mathrm{Sx}_{1}, \mathrm{Tx}_{0}, \mathrm{Tx}_{0}\right)\right)+\alpha^{\mathrm{N}_{1}}\left(\mathrm{G}\left(\mathrm{Sx}_{0}, S x_{0}, S x_{1}\right)\right)\right. \\
& =\alpha\left(\mathrm{G}\left(\mathrm{Sx}_{0}, S x_{0}, S x_{1}\right)\right) \mathrm{G}\left(\mathrm{Sx}_{0}, S x_{0}, S x_{1}\right)+\alpha^{N_{1}}\left(\mathrm{G}\left(\mathrm{Sx}_{0}, S x_{0}, S x_{1}\right)\right) \leq \mathrm{G}\left(\mathrm{Sx}_{0}, S x_{0}, S x_{1}\right)
\end{aligned}
\]

Now, we choose again a positive integer \(\mathrm{N}_{2}, \mathrm{~N}_{2}>\mathrm{N}_{1}\) such that
\[
\begin{equation*}
\alpha^{N_{2}}\left(G\left(S x_{1}, S x_{1}, S x_{2}\right)\right) \leq\left[1-\alpha\left(G\left(S x_{1}, S x_{1}, S x_{2}\right)\right)\right] G\left(S x_{1}, S x_{1}, S x_{2}\right) \tag{2.4.3}
\end{equation*}
\]

Since \(T x_{2} \in C B(X)\), by lemma 1.2 again, we can select \(x_{3} \in X\) with \(S x_{3} \in T x_{2}\) such that
\[
\begin{equation*}
\mathrm{G}\left(\mathrm{Sx}_{2}, \mathrm{Sx}_{2}, \mathrm{Sx}_{3}\right) \leq \mathrm{H}_{\mathrm{G}}\left(\mathrm{Tx}_{1}, \mathrm{Tx}_{1}, T x_{2}\right)+\alpha^{\mathrm{N}_{2}}\left(\mathrm{G}\left(\mathrm{Sx}_{1}, S x_{1}, S x_{2}\right)\right) \tag{2.4.4}
\end{equation*}
\]

Again using ( \({ }^{* * * * *)}\) and (2.4.3) in (2.4.4), we get
\[
\mathrm{G}\left(\mathrm{Sx}_{2}, \mathrm{Sx}_{2}, \mathrm{Sx}_{3}\right) \leq \alpha\left(\mathrm{G}\left(\mathrm{Sx}_{1}, \mathrm{Sx}_{1}, S x_{2}\right)\right) \mathrm{G}\left(\mathrm{Sx}_{1}, \mathrm{Sx}_{1}, S x_{2}\right)+\phi\left(\mathrm{D}_{\mathrm{G}}\left(\mathrm{Sx}_{2}, \mathrm{Tx}_{1}, \mathrm{Tx}_{1}\right)\right)+\alpha^{\mathrm{N}_{2}}\left(\mathrm{G}\left(\mathrm{Sx}_{1}, S \mathrm{x}_{1}, S x_{2}\right)\right)
\]
\[
=G\left(S x_{1}, S x_{1}, S x_{2}\right)
\]

By induction, since \(\mathrm{Tx}_{\mathrm{k}} \in \mathrm{CB}(\mathrm{X})\), for each \(k\), we may choose a positive integer \(\mathrm{N}_{\mathrm{k}}\) such that
\(\alpha^{N_{k}}\left(G\left(\mathrm{Sx}_{\mathrm{k}-1}, \mathrm{Sx}_{\mathrm{k}-1}, S \mathrm{X}_{\mathrm{k}}\right)\right) \leq\left[1-\alpha\left(\mathrm{G}\left(\mathrm{Sx}_{\mathrm{k}-1}, \mathrm{Sx}_{\mathrm{k}-1}, S \mathrm{X}_{\mathrm{k}}\right)\right)\right] \mathrm{G}\left(\mathrm{Sx}_{\mathrm{k}-1}, \mathrm{Sx}_{\mathrm{k}-1}, \mathrm{Sx}_{\mathrm{k}}\right)\)
By selecting \(x_{k+1} \in X\) with \(S x_{k+1} \in T x_{k}\) such that
\(G\left(S x_{k}, S x_{k}, S x_{k+1}\right) \leq H_{G}\left(T x_{k-1}, T x_{k-1}, T x_{k}\right)+\alpha^{N_{k}}\left(G\left(S x_{k-1}, S x_{k-1}, S x_{k}\right)\right)\)
so that using \(\left({ }^{* * * *}\right)\) and (2.4.5) in (2.4.6) yield
\[
\begin{equation*}
G\left(S x_{k}, S x_{k}, S x_{k+1}\right) \leq G\left(S x_{k-1}, S x_{k-1}, S x_{k}\right) \tag{2.4.7}
\end{equation*}
\]

Let \(\mathrm{G}_{\mathrm{k}}=\mathrm{G}\left(\mathrm{Sx}_{\mathrm{k}-1}, \mathrm{Sx}_{\mathrm{k}-1}, \mathrm{~S} \mathrm{x}_{\mathrm{k}}\right), \mathrm{k}=1,2, \ldots\).
The inequality relation (2.4.7) shows that the sequence \(\left\{\mathrm{G}_{\mathrm{k}}\right\}\) of non-negative numbers is decreasing. Therefore,
\(\lim _{\mathrm{k} \rightarrow \infty} \mathrm{G}_{\mathrm{k}}\) exists. Thus, let \(\lim _{\mathrm{k} \rightarrow \infty} \mathrm{G}_{\mathrm{k}}=\mathrm{c} \geq 0\).

We now prove that the Jungck iteration or \(\operatorname{orbit}\left\{\mathrm{Sx}_{\mathrm{k}}\right\} \subset \mathrm{X}\) so generated is a Cauchy sequence.
By condition on \(\alpha\), for \(\mathrm{t}=\mathrm{c}\) we have \(\lim _{\mathrm{t} \rightarrow \mathrm{c}^{+}} \sup \alpha(\mathrm{t})<1\).
For \(k \geq k_{0}\), let \(\alpha\left(G_{k}\right)<h\), where \(\lim _{t \rightarrow c^{+}} \sup \alpha(t)<h<1\).
Using (2.4.6), we have by deduction that \(\left\{\mathrm{G}_{\mathrm{k}}\right\}\) satisfies the recurrence inequality:
\[
\begin{equation*}
\mathrm{G}_{\mathrm{k}+1} \leq \mathrm{G}_{\mathrm{k}} \alpha\left(\mathrm{G}_{\mathrm{k}}\right)+\alpha^{\mathrm{N}_{\mathrm{k}}}\left(\mathrm{G}_{\mathrm{k}}\right), \mathrm{k}=1,2, \ldots \tag{2.4.8}
\end{equation*}
\]

Using induction in (2.4.8) leads to
\(G_{k+1} \leq \prod_{j=1}^{k} \alpha\left(G_{j}\right) G_{j}+\sum_{m=1}^{k-1} \prod_{J=m+1}^{k} \alpha\left(G_{j}\right) \alpha^{N_{m}}\left(G_{m}\right)+\alpha^{N_{k}}\left(G_{k}\right), k \geq 1\)

We now find a suitable upper bound for the right hand side of (2.5.9), using the fact that \(\alpha<1\) as follows :
\[
\begin{align*}
\mathrm{G}_{\mathrm{k}+1} & \leq \prod_{\mathrm{j}=1}^{\mathrm{k}} \alpha\left(\mathrm{G}_{\mathrm{j}}\right) \mathrm{G}_{\mathrm{j}}+\sum_{\mathrm{m}=1}^{\mathrm{k}-1} \prod_{\mathrm{J}=\mathrm{m}+1}^{\mathrm{k}} \alpha\left(\mathrm{G}_{\mathrm{j}}\right) \alpha^{\mathrm{N}_{\mathrm{m}}}\left(\mathrm{G}_{\mathrm{m}}\right)+\alpha^{\mathrm{N}_{\mathrm{k}}}\left(\mathrm{G}_{\mathrm{k}}\right) \\
& <\mathrm{G}_{1} \mathrm{~h}^{\mathrm{k}}+\sum_{\mathrm{m}=1}^{\mathrm{k}-1} h^{\mathrm{k}-\mathrm{m}} h^{\mathrm{N}_{\mathrm{m}}}+h^{\mathrm{N}_{\mathrm{k}}}=\mathrm{G}_{1} h^{\mathrm{k}}+h^{\mathrm{k}} \sum_{\mathrm{m}=1}^{\mathrm{k}-1} h^{\mathrm{N}_{\mathrm{m}}-\mathrm{m}}+\mathrm{h}^{\mathrm{N}_{\mathrm{k}}}  \tag{2.4.10}\\
& \leq \mathrm{C}_{1} \mathrm{~h}^{\mathrm{k}}+\mathrm{C}_{2} \mathrm{~h}^{\mathrm{k}}+\mathrm{C}_{3} \mathrm{~h}^{\mathrm{k}}=\mathrm{C}_{4} \mathrm{~h}^{\mathrm{k}} \text {, where } \mathrm{C}_{4}=\mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3} \text { and } \mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4} \text { are constants. }
\end{align*}
\]

Now, for \(k \geq k_{0}\), and \(p \in N\), we have by using (2.4.10) and the repeated application of the rectangle inequality that
\(G\left(S x_{k}, S x_{k}, S x_{k+p}\right) \leq s\left[G\left(S x_{k}, S x_{k}, S x_{k+1}\right)+G\left(S x_{k+1}, S x_{k+1}, S x_{k+2}\right)+\ldots+G\left(S x_{k+p-1}, S x_{k+p-1}, S x_{k+p}\right)\right]\)
\[
\begin{align*}
& =s\left[G_{k+1}+G_{k+2}+\ldots .+G_{k+p}\right] \\
& \leq s\left[C_{4}\left(h^{k}+h^{k+1}+\ldots .+h^{k+p-1}\right)\right] \\
& =C_{4}\left(\frac{1-h^{p}}{1-h}\right) h^{k} s=C_{5} h^{k} S \tag{2.4.11}
\end{align*}
\]
where \(\mathrm{C}_{5}\) is a constant

Since \(0<h<1\), the right hand side of (2.4.11) tends to 0 as \(k \rightarrow \infty\), showing that \(\left\{S x_{k}\right\}\) is a Cauchy sequence. Since \(X\) is complete generalized b-metric space there exist a sequence \(\left\{\mathrm{X}_{\mathrm{k}}\right\}_{k=1}^{\infty} \subset \mathrm{X}\) converging to some \(\mathrm{u} \in \mathrm{X}\). Therefore, by the continuity of \(S,\left\{\mathrm{SX}_{\mathrm{k}}\right\}_{k=1}^{\infty}\) converges to some \(\mathrm{Su} \in \mathrm{X}\). , that is
\[
\begin{equation*}
\lim _{\mathrm{k} \rightarrow \infty} S \mathrm{x}_{\mathrm{k}}=\mathrm{Su}=\mathrm{w} \tag{2.4.12}
\end{equation*}
\]

So
\(D_{G}(S u, S u, T u)=D_{G}(w, w, T u) \leq s\left[G\left(w, w, S x_{k}\right)+G\left(S x_{k}, S x_{k}, T u\right)\right]\)
\[
\begin{align*}
& \leq s\left[G\left(w, w, S x_{k}\right)+H_{G}\left(T x_{k-1}, T x_{k-1}, T u\right)\right] \\
& \leq s G\left(w, w, S x_{k}\right)+s \alpha\left(G\left(S x_{k-1}, S x_{k-1}, S u\right)\right) G\left(S x_{k-1}, S x_{k-1}, S u\right) \\
& \quad+s \phi_{2}\left(D_{G}\left(u, T x_{k-1}, T x_{k-1}\right)\right)  \tag{2.4.13}\\
& <
\end{align*}
\]

By using(2.4.12) and the fact that \(S x_{k} \in \mathrm{Tx}_{\mathrm{k}-1}\) we have \(\mathrm{D}_{\mathrm{G}}\left(\mathrm{Su}, \mathrm{Tx}_{\mathrm{k}-1}, \mathrm{Tx}_{\mathrm{k}-1}\right) \rightarrow 0\) as \(\mathrm{k} \rightarrow \infty\). We therefore, have by the continuity of \(\phi\) that \(\phi\left(\mathrm{D}_{\mathrm{G}}\left(\mathrm{Su}, \mathrm{Tx}_{\mathrm{k}-1}, \mathrm{Tx}_{\mathrm{k}-1}\right)\right) \rightarrow 0\) as \(\mathrm{k} \rightarrow \infty\). Hence, since the right hand side terms of (2.5.13) tends to zero as \(\mathrm{k} \rightarrow \infty\), we have \(\mathrm{D}_{\mathrm{G}}(\mathrm{Su}, \mathrm{Su}, \mathrm{Tu})=0\). Since Tu is closed ,then \(\mathrm{Su} \in \mathrm{Tu}, \mathrm{u} \in \mathrm{C}(\mathrm{S}, \mathrm{T})\). Using (2.4.12) and the continuity of the generalized b-metric in (2.4.11) as \(\mathrm{p} \rightarrow \infty\), we obtain an error estimate
\(G\left(S x_{k}, S x_{k}, S u\right)=\lim _{p \rightarrow \infty} G\left(S x_{k}, S x_{k}, S x_{k+p}\right) \leq C_{5} h^{k} s, k \geq k_{0}, s \geq 1\) for the Jungck iteration process under condition (****).

Remark 2.4: Theorem 2.4 is a generalization of theorem 2.2.

\section*{REFERENCES}
[1] Agarwal R.P., Meehan M., O’Regan D., Fixed point theory and applications, Cambridge University Press, Cambridge, 2001.
[2] B. C. Dhage, Generalized metric space and mapping with fixed point, Bulletin of the Calcutta Mathematical Society, vol. 84, pp. 329-336, 1992.
[3] Bakhtin I. A., The contraction mapping principle in almost metric spaces, Funct. Anal.,Gos. Ped. Inst. Unianowsk, 1989, 30, 26-37.
[4] Berinde V., Generalized contractions in quasimetric spaces, Seminar on Fixed Point Theory, 1993, 3-9
[5] Berinde V., A priori and a posteriori error estimates for a class of \(\phi\)-contractions, Bulletins for Applied \& Computing Math., 1999, 183-192
[6] Berinde V., Iterative approximation of fixed points, Editura Efemeride, Baia Mare, 2002
[7] Berinde V., On the approximation of fixed points of weak- contractive operators, Fixed Point Theory, 2003, 4, 131142
[8] Berinde V., On the approximation of fixed points of weak contractive mappings, Carpathian J. Math., 2003, 19, 722
[9] Berinde V., Approximating fixed points of weak contractions using the Picard iteration, Nonlinear Anal. Forum, 2004,9, 43-53
[10] Berinde M., Berinde V., On a general class of multi-valued weakly Picard mappings, J. Math. Anal. Appl., 2007, 326,772-782
[11] Browder F., Nonexpansive nonlinear operators in a Banach space, Proc. Nat. Acad. Sci. U.S.A., 1965, 54, 10411044
[12] Czerwik S., Contraction mappings in \(b\)-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1993, 1, 5-11

Renu Chugh, Vivek kumar* and Tamanna Kadian / Some fixed point theorems for multivalued mappings in generalized b-metric spaces / IJMA- 3(3), Mar.-2012, Page: 1198-1210
[13] Czerwik S.,Nonlinear set-valued contraction mappings in b-metric spaces, Atti Sem. Mat. Fis. Univ. Modena, 1998, 46, 263-276
[14] Ciric L.B., Fixed point theory, contraction mapping principle, FME Press, Beograd, 2003
[15] Ciric L.B., Ume J.S.,On the convergence of Ishikawa iterates to a common fixed point of multi-valued mappings, Demonstratio Math., 2003, 36, 951-956
[16] Daffer P.Z., Kaneko H., Fixed points of generalized contractive multi-valued mappings, J. Math. Anal. Appl., 1995,192, 655-666.
[17] Itoh S., Multivalued generalized contractions and fixed point theorems, Comment. Math. Univ. Carolinae, 1977, 18, 247-258.
[18] Joshi M.C., Bose R.K., Some topics in nonlinear functional analysis, John Wiley \& Sons, Inc., New York, 1985
[19] Kaneko H., Generalized contractive multivalued mappingsand their fixed points, Math. Japon., 1988, 33, 57-64
[20] Khamsi M.A., Kirk W.A., An introduction to metric spaces and fixed point theory, Wiley-Interscience, New York, 2001
[21] Markins J.T., A fixed point theorem for set-valued mappings,Bull. Amer. Math. Soc., 1968, 74, 639-640
[22] Mizoguchi M., Takahashi W., Fixed point theorems for multi-valued mappings on complete metric spaces, J. Math. Anal. Appl., 1989, 141, 177-188
[23] Nadler S.B., Multi-valued contraction mappings, Pacific J.Math., 1969, 30, 475-488
[24] Olatinwo M. O. , A generalization of some results on multi-valued weakly Picard mappings in b-metric space, Fasciculi Mathematici, 2008.
[25] Olatinwo M.O., Some results on multi-valued weakly Jungck mappings in b-metric space, Cent. Eur. J. Math , 6(4) , 2008, 610-621
[26] Prasad , B. , Singh, B., Sahni, R. , Some Approximate fixed point theorems ,int. Journal of Math. Analysis, Vol. 3, 2009, no. 5, 203- 210.
[27] Rhoades B.E., A fixed point theorem for a multivalued non- self mapping, Comment. Math. Univ. Carolin. , 37 (1996), 401-404
[28] Rhoades B.E., Watson B., Fixed points for set-valued mappings on metric spaces, Math. Japon., 1990, 35, 735743.
[29] Rus I.A., Fixed point theorems for multi-valued mappings in complete metric spaces, Math. Japon., 1975, 20, 2124
[30] Rus I.A., Generalized contractions and applications, Cluj University Press, Cluj Napoca, 2001
[31] S. G"ahler, "2-metrische R"aume und ihre topologische Struktur," Mathematische Nachrichten, vol. 26, pp. 115148, 1963.
[32] Singh S.L., Bhatnagar C., Mishra S.N., Stability of iterative procedures for multivalued maps in metric spaces,
[33] Z. Mustafa and B. Sims, "Some remarks concerning D-metric spaces," in Proceedings of the International Conference on Fixed Point Theory and Applications, pp. 189-198, Valencia, Spain, July 2003.
[34] Z. Mustafa, H. Obiedat, and F. Awawdeh, "Some fixed point theorem for mapping on complete G-metric spaces," Fixed Point Theory and Applications, vol. 2008, Article ID 189870, 12, pages, 2008.
[35] Z. Mustafa, and B. Sims ,A new approach to generalized metric spaces, Journal of Nonlinear and Convex Analysis, vol.7, no 2, 289-297, 2006.
[36] Zeidler E., Nonlinear functional analysis and its Applications to fixed point theorems, Springer-Verlag, New York, Inc., 1986.
© 2012, IJMA. All Rights Reserved```

