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                                                                                       ABSTRACT 
The aim of this paper is two fold, first we define the concept of generalized b-metric spaces and then we prove the 
existence of fixed points for multivalued contraction mappings in generalized b-metric spaces using Picard iteration 
and also Jungck iteration. Our results extend, improve and unify a multitude of classical results in fixed point theory of 
single and multivalued contraction mappings. We obtain more general results than those of Nadler[23],Berinde and 
Berinde[10], M.O. Olatinwo and C.O. Imoru[24] and Daffer  and Kaneko[16]. 
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1. INTRODUCTION 
 
Metric fixed point theory is an important mathematical discipline because of its applications in areas such as variational 
and linear inequalities, optimization and approximation theory.   
 
The concept of b-metric space appeared in some works, such as N. Bourbaki, I. A. Bakhtin , S. Czerwik , J. Heinonen, 
ect. Several papers deal with the fixed point theory for singlevalued and multivalued operators in b-metric spaces 
(see[3],[12],[13]). Generalizations of metric spaces were proposed by Gahler[31],(called 2-metric spaces) and 
Dhage[2],(called D-metric spaces). Unfortunately, it was shown   that certain theorems involving Dhage’s D-metric 
spaces are flawed, and most of the results claimed by Dhage and others are invalid. In 2005, Mustafa and Sims[35] 
introduced a new structure of generalized metric spaces, which are called G-metric spaces as generalization of metric 
space (X, d), to develop and introduce a new fixed point theory for various mappings in this new structure. The study of 
fixed point theorems for multivalued mappings has been initiated by Markin[21] and Nadler[23]. We introduce the 
concept of generalized b-metric spaces in the sequel. Presently, let (X, G) be a generalized metric space and CB(X) 
denote the family of all non-empty closed and bounded subsets of X. For A, B, C ⊂X, define the distance between A, 
B and C by DG(A,B,C) = inf{G(a, b, c) : a∈A, b∈B, c∈C}, the diameter of A, B and C by δG(A ,B ,C)  = sup{G(a, b, c) 
: a∈A, b∈B, c∈C  } and the Hausdorff-Pompeiu metric on CB(X) by 
 
HG(A, B, C) = max{sup{G(a, b, C) : a∈A, b∈B}, sup {G(b, c, A) :b∈B, c∈C},  sup{G(c, a, B) : c∈C, a∈A}} 
  
HG (A, B, C) is induced by G . 
 
Let P(X) be the family of all non-empty subsets of X and T: X →  P(X) a multivalued mapping. Then an element x∈X 
such that x ∈  T(x) is called a fixed point of T. Denote the set of all fixed point of T by Fix(T), that is, 
 
Fix(T) = {x∈X : x∈  T(x)}. 
 
The following definitions shall be required in the sequel.  
 
Definition 1.1: Let (X, d) be a metric space and T: X→P(X) a multivalued operator. T is said to be a multivalued 

weakly Picard -operator iff for each x∈X and any y∈T(x), their exist a sequence ∞
=0nn}x{ such that  

(i) x0 = x, x1= y ; 
(ii) xn+1∈T(xn) for all n = 0,1,…….; 

(iii) the sequence ∞
=0nn}x{  is convergent and its limit is a fixed point of T 
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Definition 1.2: Let (X, d) be a metric space and S, T: X→P(X) multivalued operator . The pair (S, T) will be called 
multivalued weakly Jungck operator iff for each x∈X and any y∈T(x), their exist a sequence n n=0{Sx }∞ ⊂ P(X) such 
that  
 
(iv) Sx0=x , Sx1= y ; 
(v) Sxn+1∈T(xn) for all n = 0,1,…….; 
(vi) the sequence n n=0{Sx }∞   converges to Sz for some z∈X and Sz∈Tz ,that is , S and T have a coincidence at z. 
 
Let C(S, T) be the set of coincidence points of S and T.  
 
Definition 1.3: A function φ: R+ → R+ is called (c)-comparison if it satisfies  

               (i) φ is monotonic increasing ; 
(ii) φn (t) → 0 as n→∞, ∀ t > 0 (φn stands for the nth iterate of φ) ; 

(iii)∑
∞

=
φ

0n

n (t) < ∞ for all t > 0. 

 
We say that φ is a comparison function if it satisfies (i) and (ii) only. See [6] and [30] for detail. 
 
Remark 1.3: Every comparison function φ : R+ → R+ satisfies  φ(t) < t.   
 
Theorem 1.1[23]: Let (X, d) be a complete metric space and T:X→CB(X) a set valued α-contraction ,that is, a 
mapping for which there exist a constant α∈(0,1), such that 
 
                                  H (Tx, Ty) ≤ αd( x, y) 
 
Theorem 1.2: (Berinde and Berinde  
[10]):-Let (X, d) be a complete metric space and T:X→CB(X) a generalized multivalued (θ ,L) – contraction.  Then, 
(i)  Fix (T) ≠ φ 

(ii)  for any x0 ∈X, there exists an orbit ∞
=0nn}x{  of  T at the point x0 that  converges to a fixed point u of T for which 

the following estimates hold:  

        d(xn,u) ≤ 
nh

1 h−
 d(x1, x0) , n = 0, 1, 2, 3, …   

         d(xn,u) ≤ 
h

1 h−
d(xn ,xn-1),  n =1, 2,3… 

for a certain constant h <1. 
 
Theorem 1.3: (Berinde and Berinde[10]):-  Let (X, d) be a complete metric space and T: X→CB(X) a generalized 
multivalued (α,L) – weak contraction.  that is, a mapping for which there exist a function  
 
α: [0, ∞) → [0, 1) satisfying 

+→tr
lim sup α(r) < 1, for every  t∈[0, ∞), such that  

                         H(Tx,Ty) ≤ α(d( x, y))d(x,y) + LD(y,Tx) ∀ x, y ∈X. 
 
Then T has  a fixed point. 
 
The following definitions shall be required in the sequel . 
 
Definition 1.4: Let X be a nonempty set and s ≥ 1 a real number. A function G : X × X × X → R+ U{0} is said to be a 
generalized b-metric space if it satisfy the following properties :  
 
(G1)  G(x, y, z) = 0 iff x = y = z 
(G2)  0 < G(x, x, y)  ∀ x, y ∈X , with x ≠ y.  
(G3) G(x, x, y) ≤ G(x, y, z), for all x, y, z ∈ X with z ≠ y 
(G4)  G(x, y, z) = G(x, z, y) = G(y, z, x) =……, (symmetry in all the three variables) 
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(G5)       G(x, y, z) ≤ s [G(x, a, a) + G(a, y, z)] ∀ x, y, z∈X, a∈X and s ≥1 (rectangle inequality)  

           
The pair (X, G) is called a generalized b-metric space. 
 
Example of definition 1.4: Let X = {x1, x2, x3, x4} , d(x1, x2) = k ≥ 2  and    d(x1, x3) = d(x1, x4) = d(x2, x3) = d(x2, x4) = 
d(x3, x4) = 1, 
 d(xi, xj) = d(xj , xi) for all i, j = 1, 2, 3, 4 
and  
 d(xi, xi)  = 0, i = 1, 2, 3, 4. 
 
If we define generalized metric by G(x, y, z) = d(x, y)+ d(y, z)+ d (z, x) then       

 G(x, y, z) ≤ 
2
k

 [G(x, a, a) + G(a, y, z)] ∀ x, y, z, a ∈X 

So, (X, G) will be a generalized b-metric space. 
 
Definition 1.5: Let (X, G) be a generalized b-metric space and T: X→ P(X) a multivalued operator. T is said to be a 
generalized multivalued (ψ, φ) weak contraction iff there exists a continuous monotonic increasing function φ: R+ → R+ 
with φ(0) = 0 and a continuous comparison function ψ : R+ → R+ such that 
 
 HG (Tx, Tx, Ty) ≤ q−1 [ψ(G(x, x, y)) + φ(DG(y, Tx, Tx))],  q > 1, ∀ x, y ∈X                               (∗) 
 
Definition 1.6: We say that T is a generalized multivalued φ-weak contraction iff there exists a function α : [0, ∞) → 
[0, 1) and two continuous monotonic increasing functions φ1, φ2 : R+ → R+ with φ1(0) = 1 and φ2(0) = 0 such that 
 
 HG(Tx, Tx, Ty) ≤ [α(G(x, x, y)) G(x, x, y) 1 Gφ (D (y,Tx,Tx))]  + φ2(DG(y, Tx, Tx)), ∀ x, y∈X                              (**) 
 
where 

+→tr
lim sup α(r) < 1, for every t∈[0, ∞). 

 
Definition 1.7: Let (X, G) be a generalized b-metric space and S,T : X→ P(X)  multivalued operators. Then the pair 
(S,T)  will  be called a multivalued (θ , φ) weak J-contraction iff there exists a constant θ ∈(0,1) and a continuous 
monotonic increasing function φ : R+ → R+ with φ(0) = 0 such that 
 
HG (Tx, Tx, Ty) ≤θ G(Sx, Sx, Sy)+ φ(DG(Sy,Tx, Tx))    q > 1, ∀ x, y ∈X                                         (***) 
 
The contractive  condition (***) can be modified to the following form:   The pair (S,T)  will  be called a generalized 
multi-valued (α , φ) –weak J- contraction iff there exist a function α : [0, ∞) → [0, 1) and a  continuous monotonic 
increasing function φ : R+ → R+ with φ(0) = 0 such that 
 
HG (Tx, Tx, Ty) ≤  α(G (Sx, Sx, Sy)) G(Sx, Sx, Sy) + φ(DG(Sy, Tx, Tx))] q > 1, ∀ x, y ∈X                                    (****) 
                                                  
where 

+→tr
lim sup α(r) < 1, for every t∈[0, ∞). 

 
We shall require the following lemmas in the sequel. 
 
Lemma 1.1: Let (X, G) be a generalized metric space. Let A, B ⊂ X and q > 1. Then for every a ∈ A , there exists b∈B 
such that               
         G(a, a, b) ≤ q HG (A, A, B)                                                           (1.1) 
 
Proof:  If HG(A, A, B) = 0 then a ∈ B and (1.1) holds for b = a.  
 
If HG(A, A, B) > 0, then let us denote  
 
 ∈ = (h−1 −1) HG(A, A, B ) > 0                                                           (1.2) 
 
Using the definition of DG (a, a, B) and HG(A, A, B), it follows that, for any ∈ > 0, there exists b∈B such that 
 
 G (a, a, b) ≤ DG (a, a, B) + ∈ ≤ HG (A, A, B) + ∈                                                                       (1.3) 
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Now, by inserting   (1.2) in (1.3), we get  
 
 G(a, a, b) ≤ HG(A, A, B) + h−1 HG(A, A, B) − HG(A, A, B) 

    ≤ 
h
1

 HG(A, A, B) 

    ≤  q HG(A, A, B) ,  where .q
h
1
=  

 
Lemma 1.2: Let A, B ⊆ CB(X) and let a∈A. Then, there exists b∈B such that 
 
 G(a, a, b) ≤ HG(A, A, B) + η, where η > 0. 
 
Lemma 1.2 is a simple consequence of the definition of HG (A, B, C). 
 
2.  MAIN RESULTS  
 
Theorem 2.1: Let (X,G) be a complete generalized b-metric space with continuous generalized b-metric and T: 
X→CB(X) a generalized multivalued (ψ,φ) – weak contraction. Suppose thatψ : R+→ R+ is continuous (c)−comparison 
function and φ : R+ → R+ is a continuous  monotonic increasing function such that φ(0) = 0. Then, 
(i)  Fix T ≠ φ 

              (ii)  for any x0 ∈X, there exists an orbit ∞
=0nn}x{  of  T at the point x0 that  converges to a fixed point x* of T 

(iii) the a priori and a posteriori error estimates are given by  

G(xn, xn, x*) ≤ s∑
∞

=

+ψ
0k

nk  (G(x0, x0, x1)) ,s ≥ 1, n = 1, 2, 3, …    …                                                                       (2.1.1) 

G(xn, xn, x*) ≤ s∑
∞

=
ψ

0k

k (G(xn−1, xn−1, xn)), s ≥ 1, n =1, 2,3… …                                                                              (2.1.2)  

respectively. 
 
Proof:  Let x0∈X and x1∈Tx0. If HG(Tx0, Tx0, Tx1) = 0, then Tx0 = Tx1, that is x1∈Tx1, which implies Fix T ≠ φ.                                          
 
Let HG (Tx0,Tx0, Tx1) ≠ 0 .Then, we have by lemma 1.1 that there exists x2∈Tx1 such that  
 
 G(x1, x1, x2) ≤ q HG(Tx0, Tx0, Tx1) , q > 1 
 
so that by (∗) we have   
 G(x1, x1, x2) ≤ q q−1 [ψ(G(x0, x0, x1 )) + φ(DG(x1, Tx0, Tx0))] 
 
   = ψ(G(x0, x0, x1)) + φ(DG(x1, x1, x1)) 
 
   = ψ(G(x0, x0, x1)) 
 
If HG(Tx1, Tx1, Tx2)   = 0, then Tx1 = Tx2, that is x2 ∈Tx2.  
 
Let HG(Tx1, Tx1, Tx2) ≠ 0. Again by lemma 1.1, there exists x3 ∈ Tx2 such that 
          G(x2, x2, x3) ≤ q HG(Tx1, Tx1, Tx2) 
 
                 ≤ qq−1[ψ(G(x1, x1, x2)) + φ(DG(x2, Tx1, Tx1))]                                                                 (2.1.3)   
         
   = ψ(G(x1, x1, x2)) + φ(DG(x2, x2, x2)) 
 
   = ψ(G(x1, x1, x2)) ≤ ψ2(G(x0, x0, x1). 
 
By induction, we obtain   
 
 G(xn , xn, xn+1) ≤ ψn(G(x0, x0, x1))                                                                                                 (2.1.4)                                                                                                                        
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Therefore by the property (G5) of definition 1.4, we have  
 G(xn, xn, xn+p) ≤ s[G(xn, xn, xn+1) + G(xn+1, xn+1, xn+2) +……+ G(xn+p−1, xn+p−1, xn+p)]  
         
           ≤ s[ψn(G(x0, x0, x1)) + ψn+1 (G(x0, x0, x1)) +……+ ψn+p−1 (G(x0, x0, x1))]                            (2.1.5)     
  

 G(xn, xn, xn+p) ≤ s ∑
−+

=
ψ

1pn

nk

k (G(x0, x0, x1))                                                                                  (2.1.6)           

 
From (2.1.6), we have  

 G(xn, xn, xn+p) ≤ s ∑
−+

=
ψ

1pn

nk

k (G(x0, x0, x1)) 

 

            = s 





ψ−ψ∑ ∑

−+

=

−

=

1pn

0k

1n

0k
100

k
100

k ))x,x,x(G()x,x,x(G( → 0 as n→∞.         (2.1.7) 

 

We therefore have from (2.1.7), that for any x0∈X, ∞
=0nn}x{  is a Cauchy sequence in X. Since (X, G) is a complete 

generalized b-metric space, then ∞
=0nn}x{  converges to some x* ∈X. that is  

                          
∞→n

lim xn = x*                                                                      (2.1.8) 

 
Therefore by (∗) we have that  

 DG(x*, x*, Tx*) ≤ s[G(x*, x*, xn+1) + G(xn+1, n+1x , Tx*)] 
 

              ≤ s[G(x*, x*, xn+1) + HG(Txn, nTx , Tx *)] 
 

              ≤ s G(x*, x*, xn+1) + sq-1 [ψ(G(xn, nx ,x *)) + φ(DG(x*, nTx ,Txn))]                         (2.1.9) 
 

By using (2.1.8), the continuity of the functions ψ, φ and the fact that xn+1 ∈ Txn, then φ(DG(x*, nTx  Txn)) → 0 as 
n→∞ and ψ(G(xn, xn, x*)) →0 as n→∞. 
 
It follows from (2.1.9) that DG(x*, x*, Tx*) = 0 as n→∞. Since Tx* is closed then x* ∈ Tx*.  
 
To prove a priori error estimate in (2.1.1), we have from (2.1.6) that  

 G(xn, xn, xn+p) ≤ s ∑
−+

=
ψ

1pn

nk

k (G(x0, x0, x1)) 

          = s∑
−

=

+ψ
1p

0k

kn (G(x0, x0, x1)) 

 
from which it follows by the continuity of the generalized b-metric that  
 G(xn, xn, x*) = 

∞→p
lim G(xn, xn  , xn+p) 

         ≤ s∑
∞

=

+ψ
0k

kn (G(x0, x0, x1)) 

which gives the result in (2.1.1). 
 
To prove result in (2.1.2), we get by condition (∗) and lemma 1.1 that  
 G(xn, xn, xn+1) ≤ q HG(Txn−1, Txn−1, Txn) 
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           ≤ qq−1[ψ(G(xn−1, xn−1, xn))+ φ(DG(xn,Txn−1, Txn−1))] 
 
           = ψ(G(xn−1, xn−1, xn)) + φ(DG(xn, xn, xn)) 
 
           = ψ(G(xn−1, xn−1, xn)) 
Also, we have  
 G(xn+1, xn+1, xn+2) ≤ ψ(G(xn, xn, xn+1)) 
 
   ≤ ψ2(G(xn−1, xn−1, xn)) 
 
so that in general we obtain  
 G(xn+k, xn+k, xn+k+1) ≤ ψk+1(G(xn−1, xn−1, xn)), k = 0, 1, 2,….                                                                        
(2.1.10) 
 
Using (2.1.10) in (2.1.5) yields  
 G(xn, xn, xn+p) ≤ s[ψ(G(xn−1, xn−1, xn)) + ψ2(G(xn−1, xn−1, xn)) +…..+ ψp−1(G(xn−1, xn−1, xn))] 
 

      = s∑
−

=
ψ

1p

0k

k (G(xn−1, xn−1, xn))                                                                  (2.1.11) 

 
Again taking limit in (2.1.11) as p→∞ and using the continuity of the generalized b-metric, we have  
 G(xn, xn, x*) = 

∞→p
lim G(xn, xn, xn+p) 

         ≤ s∑
∞

=
ψ

0k

k (G(xn−1, xn−1, xn)), giving the result in (2.1.2). 

 
Remark 2.1: Theorem 2.1 is a generalization of theorem 1.2  as well as theorem 5 of  Nadler [29] . 
 
Theorem 2.2:- Let (X, G) be a complete generalized b-metric space with continuous generalized b-metric and T : 
X→CB(X) a generalized multi-valued φ-weak contraction. Suppose that there exists a function    α :[0, ∞) → [0, 1) 
satisfying 

+→tr
lim sup α(r) < 1, for every t∈[0, ∞) and two continuous monotone  

increasing functions φ1 and φ2 : R+ → R+ such that φ1(0) = 1 and φ2(0) = 0. Then, T has at least one fixed point.  
 
Proof:  Suppose x0∈X and x1∈Tx0. We choose a positive integer N1 such that 

 1Nα (G(x0, x0, x1)) ≤ [1−α(G(x0, x0, x1)] G(x0, x0, x1)                                                                                (2.2.1) 
 
By lemma 1.2, there exists x2 ∈ Tx1 such that  

 G(x1, x1, x2) ≤ HG(Tx0, Tx0, Tx1) + 1Nα (G(x0, x0, x1))                                                                              (2.2.2)   
 
Using (∗∗) and (2.2.1) in (2.2.2), then we have  

 G(x1, x1, x2) ≤ [α(G(x0, x0, x1))G(x0, x0, x1) 1 1 0 0( ( , , ))] GD x Tx Txφ + φ2(DG(x1, Tx0, Tx0)) + 1Nα (G(x0, x0, x1)) 
 

        = α(G(x0, x0, x1)) G(x0, x0, x1) + 1Nα (G(x0, x0, x1)) ≤ G(x0, x0, x1) 
 
Now, we choose again a positive integer N2, N2 > N1 such that  

 G(2Nα (x1, x1, x2)) ≤ [1−α(G(x1, x1, x2))] G(x1, x1, x2)                                                                           (2.2.3) 
 
Since Tx2 ∈ CB(X), by lemma 1.2 again, we can select x3 ∈ Tx2 such that  

 G(x2, x2, x3) ≤ HG(Tx1, Tx1, Tx2) + 2Nα (G(x1, x1, x2))                                                                              (2.2.4) 
 
Again using (∗∗) and (2.2.3) in (2.2.4), then we get  

 G(x2, x2, x3) ≤ [α(G(x1, x1, x2)) G(x1, x1, x2) 1 G 2 1 1(D (x ,Tx ,Tx ))]φ  + φ2(DG(x2, Tx1, Tx1)) + 2Nα (G(x1, x1, x2)) 
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By induction, since Txk ∈ CB(X), for each k, we may choose a positive integer Nk such that   

,x(G( 1k
Nk

−α xk−1, xk)) ≤ [1−α(G(xk−1, xk−1, xk))] G(xk−1, xk−1, xk)                                                                      (2.2.5) 
 
By selecting xk+1 ∈ Txk such that  

G(xk, xk, xk+1) ≤ HG(Txk−1, Txk−1, Txk) + kNα (G(xk−1, xk−1, xk))                                                                              (2.2.6) 
 
so that using (∗∗) and (2.2.5) in (2.2.6) yield 
 
 G(xk, xk, xk+1) ≤ G(xk−1, xk−1, xk)                                                                      (2.2.7) 
 
Let Gk = G(xk−1, xk−1, xk) , k = 1, 2,….. 
 
The inequality relation (2.2.7) shows that the sequence {Gk} of non-negative numbers is decreasing. Therefore, 

∞→k
lim Gk exists. Thus, set 

∞→k
lim Gk = c ≥ 0.  

 
We now prove that the Picard iteration or orbit{xk} ⊂ X so generated is a Cauchy sequence. By condition on α, for t = 
c we have  
                                                     

+→ct
lim  α(t) < 1.  

 
For k ≥ k0, let α(Gk) < h, where 

+→ct
lim sup α(t) < h < 1. 

 
Using (2.2.6), we have by deduction that {Gk} satisfies the recurrence inequality: 

 Gk+1 ≤ Gk α(Gk) + kNα (Gk), k = 1, 2, ….                                                                                                (2.2.8) 
 
Using induction in (2.2.8) leads to  
 

Gk+1 ≤  
k

j 1
j=1

α(G )G∏ + m k

k-1 k
N N

j m k
m=1 J=m+1

α(G )α (G )+α (G )∑ ∏ ,  k ≥1                                               (2.2.9) 

 
We now find a suitable upper bound for the right hand side of (2.2.9), using the fact that α < 1 as follows: 

 Gk+1 ≤ m k

k k-1 k
N N

j 1 j m k
j=1 m=1 J=m+1

α(G )G + α(G )α (G )+α (G )∏ ∑ ∏  

         < G1hk + ∑ ∑
−

=

−

=

−− ++=+
1k

1m

1k

1m

NmNkk
1

NNmk kmkm hhhhGhhh  

 
         ≤ C1hk + C2hk + C3hk = C4 hk, where C4 = C1 + C2 + C3 and C1, C2, C3, C4 are constants.                (2.2.10) 
 
Now, for k ≥ k0, and p∈N, we have by using (2.2.10) and the repeated application of the rectangle inequality that  
 G(xk, xk, xk+p) ≤ s[G(xk, xk, xk+1) + G(xk+1, xk+1, xk+2) +….+ G(xk+p−1, xk+p−1, xk+p)] 
 
           = s[Gk+1 + G+2 +….+ Gk+p] 
 
           ≤ s [C4 (hk + hk+1 +…..+ hk+p−1)] 

           = C4 
p

k k
5

1- h h s=C h s
1- h

 
 
 

,                                                                                (2.2.11)    

where C5 is a constant 
 
Since 0 < h < 1, the right hand side of (2.2.11) tends to 0 as k→∞, showing that {xk} is a Cauchy sequence.  Therefore, 
xk →u∈X as k→∞ since X is complete generalized b-metric space. So,  
 



Renu Chugh, Vivek kumar* and Tamanna Kadian / Some fixed point theorems for multivalued mappings in generalized b-metric 
spaces / IJMA- 3(3), Mar.-2012, Page: 1198-1210 

© 2012, IJMA. All Rights Reserved                                                                                                                                                1205 

  
 
DG(u, u,  T u) ≤ s[G(u, u, xk) + G(xk, xk, T u) ]       
                                                
         ≤ s[G(u, u, xk) + HG(Txk−1, Txk−1, Tu)] 

         ≤ s G(u, u , xk) + s[α(G(xk−1, xk−1, u)) G(xk−1, xk−1, u) 1 G k-1 k-1(D (u,Tx ,Tx ))]φ +sφ2(DG(u, Txk−1, T xk−1))  

                       <  s G(u, u , xk) + s[h G(xk−1, xk−1, u) 1 G k-1 k-1(D (u,Tx ,Tx ))]φ +sφ2(DG(u, Txk−1, Txk−1)) , s ≥ 1.          (2.2.12) 
 
By using the fact that xk ∈ Txk−1 and xk→u as k→∞, we have DG(u,Txk−1, Txk−1) → 0 as k→∞. We therefore, have by 
continuity of φj(j = 1, 2) that φ1(DG(u, Txk−1, Txk−1)) → 1 as  k→∞  and φ2(DG(u,Txk−1, Txk−1))→0  as k→∞. Hence, 
since the right hand side terms of (2.2.12) tends to zero as k→∞, we have u∈Tu. Using the continuity of the 
generalized b-metric in (2.2.11) as p→∞, we obtain an error estimate G(xk, xk, u) =

∞→p
lim G(xk, xk, xk+p) ≤ C5 hk s, k ≥ k0,   

s ≥ 1 for the Picard iteration process under condition (∗∗). 
 
Remark 2.2: Theorem 2.2 is a generalization of theorem 1.3 , Nadler fixed point theorem [23] as well as theorem 2.1 
of Daffer and Kaneko[16] .  
 
Theorem 2.3: Let (X, G) be a complete generalized b-metric space with continuous generalized b-metric and S,T : 
X→CB(X) a generalized multivalued (θ , φ) – weak j-contraction such that S is continuous and T(X)⊆ S(X), S(X) a 
complete subspace of CB(X). Suppose that φ : R+ → R+ is a continuous  monotonic increasing function such that φ(0) = 
0. Then, 
(i)    C(S, T)   ≠ φ, where C(S, T)  is the set of coincidence points of S and T.   

(ii)  for any x0 ∈X, there exists a Jungck  orbit n n=0{Sx }∞ of the pair (S,T)  at the point x0  that  converges to Sz for     
       some z∈X, and  Sz∈Tz  ,that is z∈ C(S, T)  
(iii) the a priori and a posteriori error estimates are given by  

 G(Sxn, Sxn, Sz) ≤ 
nsh

1 h−
G(Sx0 , Sx0 , Sx1) ,s ≥ 1, n = 1, 2, 3, …                                                                             (2.3.1) 

 

G(Sxn, Sxn, Sz) ≤ 
sh

1 h−
G(Sxn−1, Sxn−1, Sxn), s ≥ 1, n =1, 2,3…                                                                              (2.3.2)  

respectively for a certain constant h <1. 
 
Proof: Let x0∈X and Sx1∈Tx0. If HG(Tx0, Tx0, Tx1) = 0, then Tx0 = Tx1, that is Sx1∈Tx1, which implies  that C(S, T) ≠ 
φ.                                          
 
Let HG (Tx0,Tx0, Tx1) ≠ 0 .Then, we have by lemma 1.1 that there exists x2 ∈X so that  Sx2∈Tx1 such that  
 
 G(Sx1, Sx1, Sx2) ≤ q HG(Tx0, Tx0, Tx1), q > 1 
 
so that by (***) we have   
 
G(Sx1, Sx1, Sx2) ≤ q θ  [G(Sx0, Sx0, Sx1 )+ φ(DG(Sx1, Tx0,Tx0))] 
             = q θ  G(Sx0, Sx0, Sx1) 
                           = h G(Sx0, Sx0, Sx1),    
 
where  h = qθ  <1 .  
 
If HG(Tx1, Tx1, Tx2)   = 0, then Tx1 = Tx2, that is Sx2 ∈Tx2.  
 
Let HG(Tx1, Tx1, Tx2) ≠ 0. Again by lemma 1.1, there exists x3 ∈X so that Sx3∈Tx2     such that 
 G(Sx2, Sx2, Sx3) ≤ q HG(Tx1, Tx1, Tx2) 
 
               ≤ q[θ G(Sx1,Sx1,Sx2)+φ(DG(Sx2,Tx1,Tx1))]  
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                                          = qθ G(Sx1,Sx1,Sx2)   
 
from which it follows that  
 
    G(Sx2, Sx2, Sx3) ≤ h G(Sx1,Sx1,Sx2) ≤ h2 G(Sx0, Sx0, Sx1)                                                                                     (2.3.3)           
 
By induction, we obtain   
 
 G(Sxn , Sxn, Sxn+1) ≤ hn(G(Sx0, Sx0, Sx1))                                                                                  (2.3.4)                                                                                                                        
 
Therefore from (2.3.4) and  property (G5) of definition 1.4, we have  
  
G(Sxn, Sxn, Sxn+p) ≤ s[G(Sxn, Sxn, Sxn+1) + G(Sxn+1, Sxn+1, Sxn+2) +……+ G(Sxn+p−1, Sxn+p−1, Sxn+p)] 
          
                             ≤ s[hnG(Sx0, Sx0, Sx1)+ hn+1 G(Sx0, Sx0,Sx1) +……+ hn+p−1 G(Sx0, Sx0, Sx1)]                             (2.3.5) 

                =   
( )n psh 1– h
1 h−

G(Sx0, Sx0, Sx1)                                                                                           (2.3.6)           

 
From (2.3.6), we have  
 G(Sxn, Sxn, Sxn+p) → 0 as n→∞.          
 

We therefore have that for any x0∈X, n n=0{Sx }∞  is a Cauchy sequence in X. Since (X, G) is a complete generalized 

b-metric space, there exist a sequence  ∞
=0nn}x{  ⊂X converging to some z ∈X. Therefore, by the continuity of S , 

0{Sx }n n
∞
=  converges to some Sz ∈X. That is   

                          
∞→n

lim Sxn = Sz = w                                                                                   (2.3.7) 

 
Therefore, by (***), we have that  
 
DG(Sz, Sz, Tz)= DG(w, w, Tz) ≤ s[G(w, w, Sxn+1) +G(Sxn+1, Sxn+1 ,Tz)] 
 
         ≤ s[G( w, w, Sxn+1) + HG(Txn, nTx ,Tz )] 

         ≤ s G(w, w, Sxn+1) + s[θ G(Sxn, Sxn,Sz) + φ(DG(Sz, nTx ,Txn))]  

                                                 = s G(w, w, Sxn+1) + s[θ G(Sxn, Sxn ,w) + φ(DG(w, nTx ,Txn))]                            (2.3.8) 
 
By using (2.3.7), the continuity of the functions  φ and the fact that    
        

Sxn+1 ∈ Txn, then φ(DG(w, nTx  Txn)) → 0 as n→∞ and G(Sxn, Sxn, w) →0 as n→∞. 
 
It follows from (2.3.8) that DG(Sz,Sz, Tz) = 0 as n→∞. Since Tz is closed, then Sz ∈ Tz, z ∈C(S,T) 
 
To prove a priori error estimate in (2.3.1), we have from (2.3.6)  by the  continuity of the generalized b- metric that   

 G(Sxn, Sxn, Sz)= 
∞→p

lim  G(Sxn, Sxn, Sxn+p)  ≤ 
nsh

1 h−
 G(Sx0,Sx0, Sx1) 

which gives the result in (2.3.1). 
 
To prove result in (2.3.2), we get by condition (***) and lemma 1.1 that  
 
G(Sxn,Sxn, Sxn+1) ≤ q HG(Txn−1, Txn−1, Txn) 
 
  ≤ q[θ G(Sxn−1, Sxn−1, Sxn)+φ(DG(Sxn,Txn−1, Txn−1))] 
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  = qθ G(Sxn−1, Sxn−1, Sxn) 
 
                             = hG(Sxn−1, Sxn−1, Sxn) 
 
Also, we have  
 G(Sxn+1, Sxn+1, Sxn+2) ≤ h G(Sxn, Sxn, Sxn+1) 
 
          ≤ h2G(Sxn−1, Sxn−1, Sxn) 
 
so that in general we obtain  
 G(Sxn+k, Sxn+k, Sxn+k+1)≤ hk+1 G(Sxn−1, Sxn−1, Sxn), k = 0, 1, 2,….                                                               (2.3.9) 
 
Using (2.3.9) in (2.3.5) yields  
 
G(Sxn, Sxn, Sxn+p) ≤ s[hG(Sxn−1, Sxn−1, Sxn) + h2G(Sxn−1, Sxn−1, Sxn) +…..+ hpG(Sxn−1, Sxn−1, Sxn)] 

   =
( )psh 1 h
1 h
−

−
G(Sxn−1, Sxn−1, Sxn)                                                                                         (2.3.10) 

 
Again taking limit in (2.3.10) as p→∞ and using the continuity of the generalized b-metric, we have  
 
G(Sxn, Sxn, Sz) = 

∞→p
lim G(Sxn, Sxn, Sxn+p) 

            ≤ 
sh

1 h−
 G(Sxn−1, Sxn−1, Sxn), giving the result in (2.3.2). 

 
Remark 2.4:  Theorem 2.3 is a generalization of Theorem 1.2. 
 
Theorem 2.4: Let (X,G) be a complete generalized b-metric space with continuous generalized b-metric and 
S, T:X→CB(X) a generalized multi-valued (α,φ)-weak j-contraction such that S is continuous and T(X) ⊆ S(X), S(X) 

a complete subspace of CB(X). Suppose that there exists a function α :[0, ∞) → [0, 1) satisfying 
+→tr

lim sup α(r) < 1, for 

every t∈[0, ∞) and a continuous monotone increasing function φ : R+ → R+ such that φ(0) = 0. Then, T and S have at 
least one coincidence  point.  
 
Proof: Suppose x0∈X with Sx1∈Tx0. We choose a positive integer N1 such that 

1Nα (G (Sx0, Sx0, Sx1)) ≤ [1−α(G (Sx0, Sx0, Sx1))] G(Sx0, Sx0, Sx1)                                                                       (2.4.1) 
 
By lemma 1.2, there exists x2 ∈X with Sx2 ∈ Tx1 such that  

 G (Sx1,Sx1,Sx2) ≤ HG(Tx0, Tx0, Tx1) + 1Nα (G(Sx0, Sx0, Sx1))                                                                  (2.4.2)   
 
Using (****) and (2.4.1) in (2.4.2), we have  

 G(Sx1, Sx1, Sx2) ≤ [α(G(Sx0,Sx0,Sx1))G(Sx0,Sx0,Sx1) + φ(DG(Sx1, Tx0, Tx0)) + 1Nα (G(Sx0, Sx0, Sx1)) 
 

               = α( G(Sx0,Sx0,Sx1))G(Sx0, Sx0, Sx1) + 1Nα (G(Sx0, Sx0, Sx1)) ≤ G(Sx0,Sx0,Sx1) 
 
Now, we choose again a positive integer N2, N2 > N1 such that  

G(2Nα (Sx1, Sx1, Sx2)) ≤ [1−α(G(Sx1, Sx1, Sx2))] G(Sx1, Sx1, Sx2)                                                                      (2.4.3) 
 
Since Tx2 ∈ CB(X), by lemma 1.2 again, we can select x3 ∈X with Sx3 ∈ Tx2 such that  

 G(Sx2, Sx2, Sx3) ≤ HG(Tx1, Tx1, Tx2) + 2Nα (G(Sx1, Sx1, Sx2))                                                                 (2.4.4) 
 
Again using (*****) and (2.4.3) in (2.4.4), we get  

 G(Sx2, Sx2, Sx3) ≤ α(G(Sx1, Sx1,Sx2)) G(Sx1, Sx1, Sx2) + φ(DG(Sx2, Tx1, Tx1)) + 2Nα (G(Sx1, S x1, Sx2)) 
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                                          = G(Sx1, Sx1, Sx2) 
 
By induction, since Txk ∈ CB(X), for each k, we may choose a positive integer Nk such that   

k-1( (Sx ,kN Gα Sxk−1, Sxk)) ≤ [1−α(G(Sxk−1, Sxk−1, Sxk))] G(Sxk−1, Sxk−1, Sxk)                                                  (2.4.5) 
 
By selecting xk+1 ∈X with Sxk+1∈Txk such that  

G(Sxk, Sxk, Sxk+1) ≤ HG(Txk−1, Txk−1, Txk) + kNα (G(Sxk−1, Sxk−1, Sxk))                                                                 (2.4.6) 
 
so that using (****) and (2.4.5) in (2.4.6) yield 
 
 G(Sxk, Sxk, Sxk+1) ≤ G(Sxk−1 ,Sxk−1, Sxk)                                                                                                (2.4.7) 
 
Let Gk = G(Sxk−1, Sxk−1, Sxk) , k = 1, 2,….. 
 
The inequality relation (2.4.7) shows that the sequence {Gk} of non-negative numbers is decreasing. Therefore,  
 

∞→k
lim Gk exists. Thus, let 

∞→k
lim Gk = c ≥ 0.  

 
We now prove that the Jungck iteration or orbit{Sxk} ⊂ X so generated is a Cauchy sequence. 
 
By condition on α, for t = c we have 

+→ct
lim  sup α(t) < 1.  

 
For k ≥ k0, let α(Gk) < h, where 

+→ct
lim sup α(t) < h < 1. 

 
Using (2.4.6), we have by deduction that {Gk} satisfies the recurrence inequality: 
 

 Gk+1 ≤ Gkα(Gk) + kNα (Gk), k = 1, 2, ….                                                                                                (2.4.8) 
 
Using induction in (2.4.8) leads to  

Gk+1 ≤
k

j j
j=1

α(G )G∏  + m k

k-1 k
N N

j m k
m=1 J=m+1

α(G )α (G )+α (G )∑ ∏ ,  k ≥1                                               (2.4.9) 

 
We now find a suitable upper bound for the right hand side of (2.5.9), using the fact that α < 1 as follows : 

 Gk+1 ≤ m k

k k-1 k
N N

j j j m k
j=1 m=1 J=m+1

α(G )G + α(G )α (G )+α (G )∏ ∑ ∏  

 

         < G1hk + ∑ ∑
−

=

−

=

−− ++=+
1k

1m

1k

1m

NmNkk
1

NNmk kmkm hhhhGhhh                                   (2.4.10) 

 
        ≤ C1hk + C2hk + C3hk = C4 hk, where C4 = C1 + C2 + C3 and C1, C2, C3, C4 are constants.  
  
Now, for k ≥ k0, and p∈N, we have by using (2.4.10) and the repeated application of the rectangle inequality that  
 G(Sxk, Sxk, Sxk+p) ≤ s[G(Sxk, Sxk, Sxk+1) + G(Sxk+1, Sxk+1, Sxk+2) +….+ G(Sxk+p−1, Sxk+p−1, Sxk+p)] 
 
    = s [Gk+1 + Gk+2 +….+ Gk+p] 
 
    ≤ s [C4 (hk + hk+1 +…..+ hk+p−1)] 

   = C4 shCsh
h1

h1 k
5

k
p

=







−
−

,                                                                  (2.4.11)    

where C5 is a constant 
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Since 0< h < 1, the right hand side of (2.4.11) tends to 0 as k→∞, showing that {Sxk} is a Cauchy sequence. Since X is 

complete generalized b-metric space there exist a sequence k 1{x }k
∞
= ⊂X converging to some u∈X. Therefore, by the 

continuity of S , k 1{Sx }k
∞
= converges to some Su∈X. , that is  

                                        
k
lim
→∞

 Sxk = Su=w.                                                                                                             (2.4.12) 

So                               
 

DG(Su, Su,  T u)= DG(w, w,  T u) ≤ s[G(w, w, Sxk) + G(Sxk, Sxk, T u) ]     
                                                  
                                        ≤ s[G(w, w, Sxk) + HG (Txk−1, Txk−1, Tu)] 
 
                                                      ≤ s G(w, w , Sxk) + sα(G(Sxk−1, S xk−1, Su)) G(Sxk−1, Sxk−1, Su)  
                                                                 + sφ2(DG(u, Txk−1, Txk−1))                                                                         (2.4.13) 
 
                                                     < s G(w, w , Sxk) + sh G(Sxk−1, Sxk−1, Su)  + sφ(DG(Su, Txk−1, Txk−1)) , s ≥ 1.  
 
By using(2.4.12) and  the fact that Sxk ∈ Txk−1  we have DG(Su, Txk−1, Txk−1) → 0 as k→∞. We therefore, have by the 
continuity of φ that φ(DG(Su, Txk−1, Txk−1)) → 0 as k→∞ . Hence, since the right hand side terms of (2.5.13) tends to 
zero as k→∞, we have DG(Su, Su,T u)= 0 . Since Tu is closed ,then Su∈Tu, u∈C(S,T). Using (2.4.12) and the 
continuity of the generalized b-metric in (2.4.11) as p→∞, we obtain an error estimate  
 
                        G(Sxk, Sxk,Su) = 

∞→p
lim G(Sxk, Sxk, Sxk+p) ≤ C5 hk s, k ≥ k0 ,s ≥ 1 for the Jungck  iteration process under 

condition (****). 
 
Remark 2.4:  Theorem 2.4 is a generalization of theorem 2.2. 
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