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ABSTRACT
In this paper the Verma modules M,(4) over the quantum group U.(sl(n + 1), C) , where ¢ is a primitive Ith root of 1
and the socle of M,(1) is non-zero are studied. Using this concept we obtained the Steinberg module in Quantum
Groups.

0. INTRODUCTION

Let Uy(g) be the Drinfel’d — Jimbo quantum group associated to a symmetrizable Kac- Moody algebra g. Thus Uy(g) is
a Hopf Algebra the field C(q) of rational functions of an indeterminate g and is defined by certain generators and
relations.

First constructing A = C[q,q"] form U,(), i.e., A — subalgebra Ua(g) of Uq(g ) such that Uq(g ) = UA(g)®C(q). Then
define Ug) = Ua(g) )®a C, via the algebra homomorphism A to C that takes q to &, €% # 1.

In the non-restricted form one takes U(g) to be the A sub algebra of U,(g) generated by the Chevalley generators E;,
Fi, Ki of Uy(g). The finite dimensional representation of the non-restricted U(g) have been studied by De Concini and
Kac in [1].

In [1], De Concini and Kac defined the notion of Verma modules over Uy and U, (where & is a primitive I™ root of 1, |
is an odd integer) analogous to the classical Verma modules.

In [2] the Verma module M,(A) U.(g), where g = sl(n + 1), and in particular prove that the socle of M,(A) over U, is
nonzero. In this paper we obtain the Steinberg modules in quantum groups.

1. PRELIMINARIES

1.1. Letus fix some notations which are standard (see for example, [1]).

Forafixedn € N, let (a;) 1 <i,j <n be the cartan matrix of type A,.
Let q be an indeterminate and let A = C[q,q™*] with the quotient field C(q).

For any integer M >0, we define

-M

M) ==——c A =M M=) ) and ] =gl and forj € N[t

Let U be the C (q) algebra with 1, defined by the generators E;, F;, Kiil (1 <i < n) with the relations:

(@ K; Ki_l = Ki_l Ki =1, KiK; = K|K;,

(b) KE K" =q"E;, KFK;"=q"F,

K, - Ki‘1
q-q°

(C) EiFj - FjEi = 5”
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(d) EiEi = EiEi ,if ajj = 0,

(e) E’E; - (q+ q)EEE; + EE =0, if ;= -1,
(f) FiFi = FiFi if ajj = 0,

(g) FizFi - (q + q_l)FiFiFi + FiFiz =0, if aj; = -1,

Then U, is a Hopf algebra over C( q) which is called the quantum group associated to the matrix(a;), with
comultiplication A, antipode S and counit v defined by

AEi:Ei®1+Ki®Ei, AFi:Fi® Ki71+l®Fi, AKi:Ki®Ki,

SEi=- K, 'Ej, SFi = -FiK;, SKi= K™
VE;i=0,VvF =0, vK; = 1.

Also introduce the elements

n_ ‘—1 -n
[K;;n] _ (K K_'lq )ian.
q-9

1.2 Itis well known that one can introduce a root system associated to the matrix (a;;). We briefly describe the
construction here. For details refer to [1, 5].

Let P be a free abelian group with basis @;, i =1, 2, ...,n (P is usually called the lattice of weights). Let P* denote the

subgroup of non-negative integral combinations of @,, @, , ..., @, and any element of P" is called a dominant
weight. Define the following elements in P:

,():Za)i . a :Zaija)i (j=1,....n)
i=1 i=L
let Q =Z:Zozi : Q, =Z:Z+ozi .

Define a bilinear pairing P xQ — Z by
(1.2.1) (o |a;)=6;.

Then (@; | @;) = a;, so that we get a symmetric Z-valued bilinear form on Q such that (« | @ ) € 2Z.

Define automorphisms r; of Pby rie; = o; —5ijai (ij=1,2,...,n).

Then ria; = o— ajjoi. Let W be the (finite) subgroup of GL(P) generated by ry 1y, ...,r, . Then Q is W-invariant and the
pairing P x Q — Z is W-invariant.

Let Il = {ay, 0p,...,0n}, R = W[ and denote RNQ. by R*. Then R is a root system corresponding to the cartan matrix

(a;) with Weyl group W and R* the system of positive roots. Clearly p is half the sum of positive roots. We introduce a
partial ordering of P by A >

if - 1 € Q. . Let w,be the unique element of W such that w, (R*) = - R".

1.3. Let Ux be the A-subalgebra of U, generated by the elements E;, F;, Kiﬂ, [Ki;0] i=1,2,...,n). LetUp*

(respectively Ux™ ) be the A-subalgebra of U, generated by the E; (respectively Fi) and U,” the subalgebra generated by
the K; and [Ki;0].

1.4 We shall show how to choose a canonical basis for U, from the given set of generators (for details see [1, 5, 6]).
We note that we can define an anti-automorphism @ of U, defined by
(1.4.1) WE=F, oF=E, oK=K" oq=q"
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Foranyi, 1< i <n,thereisa unique algebra automorphism T; of U, such that

(142) TiEi = -FK;,, TiEi = 'EiEi + q_lEiEi if ajj = -1and T|(E|) = E; if ajj = 0
(143) TiFi = -Ki_lEi, TiFi = 'FiFi + quFi if ajj = -1 and T|(F|) = Fi if ajj = 0
(1.4.4) TK =KK™ To=o0T.

Let w € W and let r-il LR 'rik be a reduced expression of w. Then the automorphism T, = Tiy. . . Tix of Uq is
independent of the choice of the reduced expression of w.

Fix a reduced expression riy, ri,,...,riy of the longest element of W , where N = |[R* |. Then this gives us an enumeration
of the elements of R*

Br=aiy, P2 = ril iz, ..., Pn= ril ""riN L ain,

We define the roots vectors:

EBS =T Ti.. -Tis—lEis, FBS = Ti Tio.. -Tis-lFis which is the same as @ E[Ss-

Forj=(juj2 .., jn) € Z." let he elements FjK;"H.. K/"E" wherej,re z.N (my,...m,) € Z"forma basis
of U, over C (q).

1.5 Given e € C”, we now consider the specialization U, = U/ [(q-g)Ua].We take € in such way that % # 1.

Then U, is an algebra over C with generators E;, F;, Kiil (1 <i<n) (identifying these vectors with their images), and

defining relations ,

@) Ki Ki_1 = Ki_1 Ki =1, KiK; = KiK;,

0)  KEK™=¢E KFK™*=¢"F,

K, - Ki‘l
e—¢g™t

(d) EE; - (e + e )EEEE; + EE® =0, ifa;=-1

(e’) FizFi - (8 + 8_1)FiFiFi + FiFiz =0, if ajj = -1,
(f,) EiEi = EiEi s if ajj = 0, FiFi = FiFi if ajj = 0.

(C') EiFj - FjEi = 5“-

1.6 We denote by U,", U., U, the images of U,", U, and U’ in U,. The automorphism T; of U, defined in (1.4)
clearly induces an automorphism T; of U,. The vectors E', F' of U, defined in (1.4.5) can then be taken to represent their

. : - ) . Tk ™ m
images in U,. Then the elements E!, j € Z ,N form a basis of U," over C, and the elements F Kj Kn "E
wherej,re zZ.N (my,...,m,) € Z"form a basis of U, over C.

2. VERMA MODULES

2.1. The notion of Verma modules over U, and U, was introduced by De Concini and Kac in [1, 6]. In the rest of the
paper, we shall be concerned only with Verma modules over U, , where ¢ is a primitive Ith root of unity.

We recapitulate the definition below:

For each A € P the Verma module M,(A) over U, is the vector space M,(A) in which there exists a non-zero
distinguished vector v, such that U,"v; =0, K v, = €%, , Ke U, where (| ) is the pairing from P xW — Z
defined in (1.2) and { F'v, (j €Z.")} is a basis of M,(L) . Let L,(A) denote the unique irreducible quotient of My()) by
its unique maximal submodule.

Then we have

(2.1.1) Kv, =™y,
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Also foreachh=1,2,...,N, F, v, isaweight vector of weight A - a, as easily seen below.
KRy, = € ) b,
_ g elen) g Eov, (since ((amlo) = (aow))
_ g—(ﬂ—ahla) Fov,

(2.1.2) This shows that for any re Z, , Fy," v, is a weight vector of weight A - ray, and therefore each

f F j1 F jN . . . N .
Fv, (= .-y v)isaweight vector of weight & - Z Jhay, -
h=1

2.2 VERMA MODULES OVER SOME SUBALGEBRAS OF Ug.

We first define the subalgebras U, , U,", U, of U, generated b

{Fj,HKimi,Er,0< ji.r <I",(ml...mn)eZ“},{E',HK{”' o<r, <Ir,(m1...mn)ez”}
i=1

i=1
,{Fj,OS Ji < Ir} respectively.
The set

(2.2.0) {F* .. VKM KPE L ERY, 0 < 1, < I, (my,..,my) € Z"} is a basis of U, and the set
(2.2.1) {F* .. F}¥,0 < j; < I"} is a basis of Uy

We can then define the Verma modules M (A) of weight A over U, analogously to M.(A) over Ue, that is, there exists
a non-zero vector (say) V, such that U;* V, =0, KV, ="V, forKe U and {F V,, 0 <j; <1} form a basis of
M t,r(}")

There is a natural injective homomorphism f.: M (A ) —>M,()A) given by
(2.2.3) f(FV,) =Pv,

2.3 We next introduce certain elements defined by I, of U, , which play an important role in our future study of the
socles of Verma modules and homomorphisms between Verma modules.

"1 (e
For each positive integer r, let I, = Fl "'FN which is an element of U, It then follows that 1,v; is a weight

vector of Uyv, of weight A - 2(I-)p, where p is half the sum of the positive roots. In fact,

"1 "1
(2.3.1) Klrvx=KF1 ---FN v,

A-(1"-D oy +..+ay|a) = I"-1 = (e
1 e

=& NV, from(2.1.2)

g e e

A+2 r 1 |
= 5( Ale) Fll 1---|:,\|| Vi [since € =1]

_ g(ﬂ—2|p+2p|a) Fllr_l...F,\I,H

Va

:g(ﬂ—Z(I—l)pla) Fl'r‘l...F,\'lr_l

Vo

In particular, when 2 = 0, we see that I, V, is a weight vector of M . (0)with minimal weight -2(I -1)p.
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We observe for later use that I, is an integral of U,". In fact, for o € R"anda € NsuchthatO<a</, R; I, and I, Faa
are in U,". Hence F; IV, and I Fwa V, are weight vectors of M (O)with weight -2(I -1)p-ac.. By the minimahty of

the weight -2(1 -1)p, it follows that F;‘ I,=1 Faa =0. This shows that I, is an integral of U,", in other works
ul, =V (u)l, forallu € U, , where V: U~ —> C is the augmentation function.

2.4 A HOMOMORPHISM BETWEEN TWO VERMA MODULES

ML) , M¢(p) is a map ¢: M(A)—>M,(u)such that ¢ is a vector space homomorphism and ¢(uu) = up(v), u € U,
ve M(L).

Lemma 2.4.1: If M,(A),M.(n) are Verma modules over the quantum grou U,, and there is an injective U, module
homomorphism ¢: M (L)—>M,(l), then A = p and ¢ is multipli‘cation by some element of C.

Proof: Let v, v, be non-zero highest weight vectors of M(A),M.(p)respectively. Since v, generates M, (1), v is

determined by y(v,). Say y(v;) = uv,, u € U, . Now by definition, U, is the union of the subalgebras U, forr =1, 2,..
and so there is some r for which u € U, Since I, is an integral for U, ,

V() vy = luvy = 1oy(vy) = o( 1vy)

where V : U — > C is the augmentation function and I,v, is an element of the basis for M,(), so is non-zero, and
therefore V(u) = 0. But y(v,) must have weight A, so uv,, has weight X, which contradicts V(u) = 0 unless A = L.

Since v/, spans the p-weight space of M,(l),w(v,) = cv,, = cv, for some ¢ € C, and ¢ is just multiplication by c.
3. SOCLE OF VERMA MODULES
Denote the socle of the U, module M,(A) by Soc(M())) and the socle of the U, module M, (1) by Soc(M,(1)).[3].

Since for any r > 0, M, (1) is finite dimensional, clearly Soc(M.,(1)) = 0. It is interesting to note that even for the
infinite dimensional module M,(1), its socle is non-zero. We proceed to prove this in this section.

Lemma3.1: If0=u € U, forsomer €N, then U, u contains Cl, .
Proof: We shall order the positive roots a(l), a.(2)... «(N) in such a way that if
a(i) + a(j) = (k) then k < i j.

If 0 <a < I"then clearly

I"'-1—a I"-1+a
|:or(l) a(l) = I:or(l) =0.
Flr—l I'—lFa
We shall prove by induction on i, with 1 <i < N, that ¥ o(1) """ a(i) ' « =

whenever a € {a(1), ...,a(i)}and0<a</"

Suppose there exists some i, 2 < i < N, such that

|:|f—1|:|f*l I'1 —a
(3.1.1) a@) T a@) T a(i-1)T o =0, whenever a € {a(l)... a(i-1)}and0<a<I".
Now, suppose that there is some a. € {a(1),0(2), ..., ai)}and choose a such that0 <a < I".
F I"d-a
Ifa=a(i) then ¥ o(i) ' o =0,andso
"1 1t I"'1—a
Fa(l) Fa(Z)"' a(i) Fa =0.
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If o= (i), then using the commutation relations imply that

"1t I"1—a
I:a(l) Fa(Z)"' a(i) " «a

is a sum of elements of the form
I"1p=1"t I'-1 =b
I:01(1) I:06(2) T a(i-1) Fﬂ u
with B € {a(l), ..., a(i-1)}0<b <I', u € U, and each element of this form equals 0 by (3.1.1). So (3.1.1) holds for all
i.

Using this equation together with the commutation relationsif 1< i<Nand0<a<|", then

"1t I'1 —a “1(-)(1" D) = 11 1 I"-1
(3.1.2) Fa(l) Fa(Z)"' ai-)) Cag) T € Fa(l) I:oz(2)"' a(i-1) =0

andsoifl<i<NandO<a,b<I then
a [l "1 =b
a()" a() I:05(2)--- a(i—l)Fa(i)
A1) =11t "1 ~a+b
=& Fa(l) Fa(2)"' a(i—l)Fa(i)
=0ifa+b>1"

Suppose u is a non-zero element of U, . Then by the basis of U, the element u is of the form Fa"é(ll))F;é(zz)) Fa"E%) with

0<a(),..,aN)<l"
By repeated use of (3.1.2) CF(ZI;;_“(N) Fizl_)l‘“(l)u = CFyy) - Fh3y' = Cl; as required.

Corollary 3.2: Letr be a positive integer.
Ir+1e Uglr.

Proof: Lemma 3.1 implies that Cl..; < Uyily, SO lie1 € Upglrc Ul
Corollary 3.3:

(i) 1f Misanon-zero U, submodule of M, () and V, € M, (}), then |V, € M.
(ii) If M is a non-zero U, submodule of M.(A) and v, € M,(L), then I,v;, € M for all r.

Proof:
(i) By the basis of M, (%), M contains some vector uV, withue U, . By Lemma 3.1, 1,V, € CI,V, cUuV, c M.

(ii) By the basis of M.(X), M contains some vector uv, withu € U, , hence u€ U, for somer.
By Lemma 3.1, v, € Clv; < Uuv, = M.

Corollary 3.4: Soc(M,,())) is simple.

Proof: Soc(M,,(A)) is a non-zero U, submodule of M,(%) and by Corollary 3.3 (i) the submodule U, I,V is contained
in every simple component of Soc(M, (1)) and hence Soc(M,(1)) itself is simple.

Lemma3.5: Let) € P*, the set of dominant weights. Then for all r > 0, the highest weight of Soc (M,,(1)) is
Wo(A- 2(1 - I)p) and hence is independent of r.

Proof: From (2.3.1), the lowest weight of M, (1) is A - 2(l - I)p for all r > 0. From Corollary 3.3(i), we have seen that
any non-zero submodule of M, (1) contains .V, . Hence Soc (M,,(A)) contains I,V , whose weight is A-2(I-1)p.

Therefore the lowest weight of Soc(M, (1)) is A - 2(1 -1)p for all r > 0 and hence the highest weight of Soc(M,(})) is
Wo(A- 2(1 - )p) = wo( A + 2p), which is independent of r. Hence the result.
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Corollary 3.6:  Soc(M,,())) is isomorphics to L, (wo(A- 2(1 - I)p) for all r > 0.
Proof: From the corollary 3. 4 and the lemma 3.5 we get Soc(M, (1)) is simple and the highest weight is
Wo(A- 2(1 - I)p). But A-2(1-1)p is a weight of L, (wg(A- 2(1 - I)p) and hence this simple U, module is isomorphic to the
U, module Soc(M,,(1)), for all r > 0.

We shall proceed to prove our main result concerning the socle of the Verma modules.
Theorem 3.7: Soc (M,())) is non-zero for all L€ P™ .

Proof: Let v, V, be non-zero highest weight vectors of the Verma module M.(1) over U,, and M,,(%) over U,

respectively. Let M be an arbitrary non-zero U, submodule of M,(1). Then by Corollary 3.3(ii), I,V, € UuV, =M

for all r and hence U,l,v, = M. Now, let | denote the submodule ﬂU & I rV/l of M;(0).
r>0

Replacing M by each simple component of Soc(M,(1)), it immediately follows that Soc(M,(A)) = I.

We proceed to prove that | = (0). Since M,.(A) is finite dimensional, Soc(M,,(A)) = 0. By Corollary 3.3(i),
Soc(Mg,(1)) is simple and we can take Soc(M, (1)) to be isomorphic to the simple U, module L, () (where p is

Wo(A- 2(1 - I)p)). Also by Corollary 3.3(i), Soc(M, (1)) contains I,V , . Therefore there is some X, in U, such that X, I,
V, is in the highest weight space of Soc(M.(A))).

In other words, x, I,V, € (M.(1))" the pth weight space of M,(A). Now let f, be the injective U, module
homomorphism from M.,,.(1) to M.(1) described in (3.2.3), then f(V, )= v;.
So, Xclvy, = fr(xrlrvg )E (M (W))".

This shows that for eachr, U.l,v, N (M (A))* = (0) and is a finite dimensional C-vector space (since (M,(A))" is finite
dimensional).

From Corollary (3.2), we have the descending chain of submodules
Uglvi N (M (L))" 2 Ulvy, N (MW o ...

Hence its intersection which is just I N M.(A)" is non-zero which implies that | = 0. Since Soc(M,(L)) = | = 0, it follows
that Soc(M(A)) = 0.

Hence the theorem.
Theorem 3.8: Soc (M,())) is simple and isomorphic to the simple U.- module L.( wo(A- 2(1 - I)p)) =L.( Wo(A + 2p)).

Proof: From the above theorem we get Soc ( M.(A)) is a non zero U,- module of M.(A) and by the corollary ( 3.3.) (ii)
the submodule U.l,v;, is contained in every simple component of Soc(M ((A)) and hence Soc(M (1)) itself is simple.

Since Soc(M ¢(A)) contains I,v, whose weight is A-2(1 — 1) p, the lowest weight of Soc(M (1)) is A -2(I-1)p and the
highest weight of Soc(M (1)) is wo(A- 2(1 - I)p).

But A-2(1-1) p isaweight of L, (wg(A- 2(1 - I)p) = L.(wo(A + 2p)) and hence this simple U,- module is isomorphic
to the U,module socle of M(A).

4. STEINBERG MODULE IN QUANTUM GROUPS
One can naturally expect to define a Steinberg module in Quantum groups. [6]

We let My(A), M(1) , M, (A) to denote the Verma modules over U, and L,(), L.(A) the corresponding ( unique )
simple factor modules. From the corollary 3.6 we get

(4.1.1) Soc(Mg(A)) = Lg(Wo(h +2p))
© 2012, IIMA. All Rights Reserved 1160



P. B. SARASIJA*/ STEINBERG MODULES IN QUANTUM GROUPS/ IIMA- 3(3), Mar.-2012, Page: 1154-1161
Now we take A = (I - 1) p which is in P",

Then (4.1.1) implies that

Soc(M.((1-1) p))

I

Le(Wo((1-1) p +2p))

=Le(wo(Ip +p))

=L.((-1)p) (sincee®=¢""?=¢l'"DP)forallr>0.
There is some non zero vector v in SocM .,( (1-1) p ) with weight (1-1) p.

But M. ((I-1)p )a-1y,=Cv,. S0V, € SocM ( (I-1) p) and v, generates M .. ((1 - 1) p).

Hence M ,.((1 - 1) p) =SocM ,,((1-1) p) =L .((I - 1) p) forall r € N.

We call this the Steinberg module St,, which is of dimension I'™, where N = | R*|. At the same time, we know that there
exists a natural injective U, — homomorphism,

fr: Mo ((1-1) p) > M ((I1-1) p) [From (2.2.3)]
Hence we conclude that
St=M_.((I-1)p) = SocM((I-1)p) =SocM.((I-1)p)
=L . ((1-1)p) [From theorem 3.8]
WecallL . ((I-1) p) the Universal Steinberg module.
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