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ABSTRACT 
The objective of this paper is to investigate the propagation of plane harmonic waves in a homogenous transversely 
isotropic plate of finite width.  A generalized theory of thermoelasticity effects are taken into consideration in detail 
with three different relaxation time theories. The frequency equation for the plate in closed form and suitable 
mathematical conditions for antisymmetric wave mode propagation is derived. Numerical computations for the 
frequency equation for three various theories of generalized thermoelasticity is carried out for zinc crystal. The real 
and imaginary parts of the frequency equation as a function of phase velocity for different values of thermal relaxation 
times are illustrated graphically. It is found that the frequency equation of the antisymmetric motion can be oscillating 
with respect to the medial of the plate. Moreover, it gets modified due to the thermal relaxation times and anisotropic 
effects. Finally, the results for the coupled thermoelasticity can be obtained as particular cases of the results by setting 
thermal relaxation times equal to zero. 
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1. INTRODUCTION  
 
The frequency equation in anisotropic plates find use in many engineering structures and other areas of practical 
interest, such as slabs on columns, printed circuit boards or solar panels supported at a few points. With their potential 
applications of antisymmetric modes of vibration of plates for considering the theories of generalized thermoelasticity 
has received considerable attention from researchers. 
 
The theory of thermoelasticity has aroused intense attention in our attempt to understand the nature of the interaction 
between temperature and strain fields because of its application in most heavy industries where various structural 
elements are often subjected to mechanical loads at an elevated temperature. Engineering materials such as fiber 
reinforced composite, graphite, zinc, ceramics, and aluminum-epoxy, where high strength-to- weight and stiffness-to-
weight ratios are required. These materials are crucial for structural applications, and have resulted in considerable 
research activities on their behavior. Consequently studies of the propagation of elastic waves in the layered media [1], 
[2], [11] and [12] which are anisotropic in nature become very important and have long been of interest to researchers 
in the fields of geophysics, acoustics and nondestructive evaluation. 
 
The heat conduction equations for classical uncoupled and coupled theories of thermoelasticity (here called 
conventional dynamics or CD theory) are of the diffusion type and predict an infinite speed of propagation of the heat 
wave which is physically inadmissible. To eliminate this paradox of the classical approach, theories of generalized 
thermoelasticity were developed. At present, there are various generalized approaches but the theories proposed by 
Lord and Shulman [9] and Green and Lindsay [7] (here called L-S and G-L theories respectively) are most popular. 
These theories have been developed by introducing one or two relaxation times in the thermoelastic process, with an 
aim to eliminate the paradox of an infinite speed for the propagation of thermal signals. The L-S model is based on a 
modified Fourier’s law, but the G-L model even allows second sound without violating the classical Fourier’s law. The 
two theories are structurally different, and one cannot be obtained as a particular case of the other. The two theories 
both ensure finite speeds of propagation for thermal wave.  Dhaliwal and Sherief [6] extended the theory of Lord and 
Shulman to an anisotropic media. Various problems characterizing these two theories have been investigated and have 
revealed some interesting phenomena. Chandrasekharaiah [4, 5] has reported brief reviews of this topic. Recently, Li et 
al. [8] discussed the vibration of thermally post buckled orthotropic circular plate. Nayfeh [10] illustrated the  
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propagation of horizontally polarized shear waves in multilayered anisotropic media. Several others authors have 
studied thermoelastic waves in a plate. For example, the theory of micropolar generalized thermoelastic continua has 
been employed by Sharma and Kumar [14] to study the propagation of plane waves in micropolar thermoelastic plates 
bordered with inviscid liquid layers (or half-spaces) with varying temperature on both sides. Also, Partap and Kumar 
[13] have studied the free vibration analysis of micropolar thermoelastic cylindrical curved plate in circumferential 
direction. Moreover, Shaw and Mukhopadhyay [21] have investigated the thermoelastic waves with thermal relaxation 
in isotropic micropolar plate. Furthermore, Son and Kang [22] have illustrated the effect of initial stress on the 
propagation behavior of SH waves in piezoelectric coupled plates. Verma et al. [15], [16], [17], [18], [19] and [20] 
have studied wave propagation in anisotropic media in the context of generalized thermoelasticity with different 
hypotheses. 
 
In this paper, analysis for the propagation of thermoelastic waves in a thin homogenous transversely isotropic plate is 
carried out in the framework of the generalized theory of thermoelasticity. Commencing with a formal analysis of 
waves in a heat-conducting layered plate of a transversely isotropic media, the frequency equation as function of the 
phase velocity of thermoelastic waves is obtained by invoking continuity at the interface and boundary of conditions on 
the surfaces of layered plate. Numerical solution of the frequency equations for a zinc material is carried out for 
different values of relaxation times and illustrated graphically. Finally, when the two thermal relaxation times are 
neglected, one may get the results as in [11] and [12]. 
 
2. BASIC EQUATIONS AND CONSTITUTIVE RELATIONS  
 
The basic governing equations of motion for homogeneous anisotropic generalized thermoelasticity in the absence of 
body forces and heat sources are given by: 
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Where the constitutive relations and equations governing linear generalized thermoelastic interaction in a homogenous 
anisotropic solid are as follows: 
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The strain–displacement relations 
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where ρ  is the density, t is the time,  iu  is the displacement in the ix  direction, ijK   are the thermal conductivities 

eC  is the specific heat at constant strain, oτ , 1τ  are thermal relaxation times, ijσ  are the components of stress 

tensor ije  are the components of strain tensor, ijβ  is thermal moduli, klα  is the coefficients of linear thermal 

expansion tensor, T is the temperature,  oT  is the reference temperature and the fourth-order tensor of the elasticity 

ijklc  satisfies the symmetry conditions.  The parameters in equations (3) and (4) are assumed to satisfy the following 

conditions [20]:  
(i) The thermal conductivity  ijK  is symmetric and positive-definite  

(ii) The thermoelastic coupling tensor ijβ  is non-singular 

(iii) The specific heat eC  at constant strain is positive 

(iv) The isothermal linear elasticity is positive-definite in the sense that .0>klijijkl eec   
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The use of symbol δ  makes the above equations possible for three of generalized thermoelasticity materials. For The 
L-S (Lord and Shulman) theory 0,01 >= oττ  and 1=δ . For G-L (Green and Lindsay) theory the thermal 

relaxation times oτ  and 1τ  satisfy the inequality 01 >≥ oττ with 0=δ . While for the C-D (Classical Dynamical 

Coupled) theory, the thermal relaxation times satisfy  .0,0o1 === δττ  
 
This matrix notation consists of replacing the indices ij  or kl   by p  or q , where  3,2,1,,, =lkji  and 

.6,5,4,3,2,1, =qp  We may write: 
 
                           ,,, pijipiklpqijkl eecc ττ ===                                                                                   (6) 

where 
Table 1. Indices for contracted notation 

ij    or pq  11 22 33 32=23 31=13 12=21 

↓  ↓  ↓  ↓  ↓  ↓  ↓  ↓  
p q 1 2 3 4 5 6 

 
 
3. FORMULATION OF THE PROBLEM AND ITS SOLUTION 
 
We assume an infinite, homogeneous, transversely isotropic, thermally conducting elastic plate of thickness d2  
initially at uniform temperature oT .  We consider the faces of the plate to be the planes dz ±=  referred to as a 

rectangular set of Cartesian axes Oxyz . We suppose that the x-axis to be in the direction of the propagation of waves 
so that all particles on a line parallel to y-axis are equally displaced. Therefore, all the field quantities will be 
independent of y-coordinate. The motion is assumed to take place in the dimensions )y,x( . Here, w,u  are the 
displacements of a point in the z,x  directions, respectively. The basic governing equations for homogeneous 
anisotropic generalized thermoelasticity in the absence of body forces and heat sources, are given by 
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Now, we introduce the following dimensionless quantities: 
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where 2/1
111 )/c( ρν =  is the velocity of   longitudinal waves, )C/(Kk e11 ρ=  is the thermal diffusivity in the 

x-direction, 1ε  is the thermoelastic coupling constant, *
1ω  is the characteristic frequency of the medium and *τ , *

1τ   
are the dimensionless thermal relaxation constants.  
 
Introducing quantities (10) in Equations (7)-(9), after excluding the asterisk (*) for convenience, one may get 
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The stresses and temperature gradient relevant to our problem in the plate are: 
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As we considering plane harmonic wave traveling in the x-direction therefore we may take the solutions for w,u  and   
T of Eqs. (11), (12) and (13) is follows: 
 
{ } { } [ ])ctx(iexp)z(h),z(g),z(fT,w,u −= ζ                                                                                                    (17) 
 
where )/c( ζω=  is the phase velocity, ζ  and ω  are the wave number, circular frequency, respectively and 

1i −= . 
 
Now using solutions (17) into equations (11), (12) and (13) we get 
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The solutions of equations (18)-(20) can be written in the form: 
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where, )3,2,1j(Q,P jj =  are arbitrary constants, and 21 M,M  and  3M  are the roots of the following equation 
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The displacement components and temperature of the plate become: 
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4. BOUNDARY CONDITIONS 
 
The non-dimensional boundary conditions at the surfaces dz ±=  of the plate are given by:  
(i)Mechanical conditions (stress-free surfaces) 
 

.0,0 xzzz == ττ                                                                                                                                                  (31) 
 
(ii) Thermal condition (thermally insulated) 
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The use of equations (28), (29) and (30) in equations (14), (15) and (16) leads to a system of the following coupled 
equations for the arbitrary unknown coefficients 21321 Q,Q,P,P,P  and 3Q :  
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where .ccF 23 −= We notice that the above six equations which are coming from applying the boundary conditions 
(31) must be satisfied simultaneously. 
 
5. FREQUENCY EQUATION 
 
The system of equation (33) has a nontrivial solution if and only if the determinant of the coefficients amplitudes iP  

and ,Qi  where ( 3,2,1i = ) vanishes. After applying algebraic reductions and manipulations this leads to the 
frequency equation (also called dispersion equation or secular equation) for thermally (insulated) of the plate 
oscillations. The frequency equation which corresponds to the antisymmetric motion of the plate with respect to the 
medial plane 0=z  may be written as: 
 

0332211 =−− ∆∆∆ AAA                                                                                                                                         (34) 
 
where we have used: 
 

,liMmciFA jajj1j τβ+−=                                                                                                                                 (35) 
 

,WUWU,WUWU,WUWU 122131331223321 −=−=−= ∆∆∆                                                  (36) 
 

3,2,1j,MlW,MimU jjjjjj =−=−=                                                                                              (37) 

 
with  jm  and  jl  are given in Eqs. (25) and (26). 
 
6. NUMERICAL RESULTS AND DISCUSSION 
 
With the view of illustrating the theoretical results obtained in the preceding sections and comparing these in the 
context of various theories of thermoelasticity we now present some numerical results. The material chosen for detailed 
computation is single crystal of zinc (Zn), of hexagonal symmetry, which is transversely isotropic material, the physical 
data of which is listed in  
 

Table 1: 
 

Table (1): The physical constants of Zn [19] 
Quantity Units Zinc 

ρ  31014.7 ×  3Kgm−  

11c  1110628.1 ×  2Nm−  

12c  1110362.0 ×  2Nm−  

13c  1110508.0 ×  2Nm−  

33c  1110627.0 ×  2Nm−  

44c  1110385.0 ×  2Nm−  
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1β  61075.5 ×  12 degNm −−  

3β  61015.5 ×  12 degNm −−  

eC  2109.3 ×  11 degJkg −−  

1K  21024.1 ×  11 degWm −−  

2K  21024.1 ×  11 degWm −−  

oT  298  deg  

*
1ω  5100.1 ×  1s−  

1ε  21021.2 −×  ......  
 
 
We restrict our attention to make the dimensionless phase velocity η  and the dimensionless wave number ξ  to be: 

11
2 c/cρη =  and 2/dζξ = respectively. 

 
The complex roots of characteristics equation (27) have been computed with the help of Cardan's procedure, which are 
then employed to solve frequency equation (FE) (34). Then, the real and imaginary parts of the (FE) (34) are obtained 
for the phase velocity  η  for different values of thermal relaxation times by utilizing iteration method and illustrated 
graphically in Figs. (1)- (7). 
 

The real and imaginary parts of the frequency equations multiplied by 1610−  profiles are plotted in Figs. (1) and (2) 
versus the phase velocity η  for (G-L) model  
 
(i.e., o1 5ττ = , )3.0,2.0,1.0o =τ . It is noticed that Re(FE) and Im(FE) start from zero as 0=η  and vary linearly 

until 9.0=η . After that, in the period 0.29.0 −=η , one may find that Re(FE) decrease nonlinearly as η  

increases, when ).3.0,2.0( =oτ  But for )1.0( =oτ Re(FE) decreases slowly and attains a minimum value, then 
rises again. 
 
Also, in the period ,0.29.0 −=η  all the curves for Im(FE) decrease with increasing η , see Fig. (2), (3) and (4) 

represent variations of the real and imaginary parts of (FE) multiplied by 2510−  with respect to the phase velocity η  

in case of (L-S) model for various values of the first thermal relaxation time oτ  (i.e. 

3.0,2.0,1.0,0,0 o1 === τδτ ). From Figs (3), it is noted that the behavior and trend of the variations of Re(FE) 
are almost similar as in case of Im(FE) for (G-L) in Fig. (2) for (G-L) model. From Fig. 4, it is observed that Im(FE) 
starts from zero as 0=η  and vary linearly until .9.0=η  After that, in the period ,0.29.0 −=η  the curves 

increase nonlinearly as η  increases and increasing of the first relaxation time oτ . 

Fig. (5) exhibits changes of Re(FE) and Im(FE) multiplied by 2010−  versus η  in case of (C-D) model. The trend and 
behavior of these profiles are similar to that of Figs, (2)-(4), while in this case, both of Re(FE) and Im(FE) are identical. 
This means that the values of (FE) are real only. 

Fig. (6) shows a comparison between Re(FE) for (G-L) model multiplied by 1910−  and Re(FE) for (L-S) model 

multiplied by 2510−  against to η . It is noticed that there are no variations in this case with respect to η  in the range 
( 9.00.0 −=η ). Moreover, it is clear that Re(FE) and Im(FE) in (L-S) model are higher than that of (G-L) model, 
whereas Re(FE) for (G-L) and (L-S) models in the range ( 29.0 −=η ) are just the opposite. 
 

In the similar way we observe that Fig. (7), displays a comparison between Im(FE) for (G-L) multiplied by 2110−  
with respect to η . It is seen that the profiles of the curves in this case behave similar to the earlier cases. 
 
CONCLUSION: In this paper, the boundary value problems concerning the propagation of plane harmonic 
thermoelastic waves in flat infinite homogeneous transversely isotropic plate of finite thickness in the generalized 
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theory of thermoelasticity with two thermal relaxation times is studied. The frequency equation against the phase 
velocity for a heat conducting thermoelastic plate corresponding to flexural (antisymmetric) thermoelastic modes of 
vibration is obtained and discussed. A numerical solution to the frequency equations for zinc plate (transversely 
isotropic) is given, and the dispersion relations are presented graphically. It is found that the phase velocity of the 
waves is modified due to the thermal and anisotropic effects and is also influenced by the thermal. It is interesting to 
note that the important clues to the wide-ranging utility of the frequency equation came from its used of the form of 
integrals relating the real and imaginary parts of a property, called the complex refractive, of any medium in which 
waves travel. The real part of this index describes how waves of different frequency refract (change speed and hence 
bend or disperse) on entering the medium, while the imaginary part of the index describes how the wave is absorbed in 
the medium. The frequency equation of the waves gets modified due to the thermal and anisotropic effects and is also 
influenced by the thermal relaxation times. The increasing ratios of thermal relaxation times tend to increase the values 
of the frequency equation of different modes. Within the framework of the generalized theory of thermoelasticity, 
dispersion curves are similar to those of the elastic waves. When the phase velocity is small, it is seen that there is no 
change for Re(FE) and Im(FE) among the three various models of generalized thermoelasticity. 
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 Figs. (1) and (2): The real and imaginary parts of the frequency equation multiplied by 1610−  versus the 

phase velocity  for (G-L) model for different values .1τ  
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Figs. (3) and (4): The real and imaginary parts of the frequency equation multiplied by 2510−  versus the 

phase velocity  for (L-S) model for different values .0τ  
 

 

Fig. (5): The real and imaginary parts of the frequency equation multiplied by 2010−  versus the phase 
velocity for (C-D) model. 
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Fig. (6): The real parts of the frequency equation for (G-L) model multiplied by 1910−  and (L-S) model 

multiplied by 2510−  versus the phase velocity. 
 

 
Fig. (7): The imaginary parts of the frequency equation for (G-L) model multiplied by 1610−  and (L-S) 

model multiplied by 2110−  versus the phase velocity. 
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