β *-CLOSED SETS IN TOPOLOGICAL SPACES

J. ANTONY REX RODGIO, JESSIE THEODORE* AND A. HANA SELVI JANSI

Department of mathematics, V. O. Chidambaram College, Tuticorin-628 008, Tamil Nadu, INDIA

Ph.D. Scholar, Department of mathematics, Sarah Tucker College, Tirunelveli-7, India

(Received on: 06-03-12; Accepted on: 26-03-12)

ABSTRACT

New classes of sets called β^* -closed sets are introduced and studied some of their properties.

Keywords: *g-closed, *g-open, \tilde{g} -closed, \tilde{g} open, ρ -closed, \hat{h} *-closed

Mathematics subject classification: 54A05, 54A10, 54D10.

1. INTRODUCTION

The study of generalized closed sets in topological space was initiated by Levin [4]. In 1986 Andrijevic [2] defined semi pre open sets and it is also known under the name β -closed sets. In 1996, Julian Dontchev [3] introduced the notion of generalized semi-pre closed (*briefly gsp-closed sets*) via the concept of semi pre open sets. Generalised closed sets namely g-closed sets, gs closed sets, r-g closed sets, s-g closed sets, a-closed sets, a-g closed sets were introduced and studied by various authors. The class of gsp- closed sets contains properly the classes of all the above mentioned generalied closed sets except r-g closed sets. The class of ω -closed set was introduced by M. Shiek John[11]in 2002.In this paper we introduce a new classes of sets called β *Closed sets.This class lies between the class of open and semi pre closed sets and the class of $\hat{\rho}$ *-closed sets [9].

2. PRELIMINARIES

Throught this paper (X, τ) , (Y, σ) and (Z, η) will always denote topological spaces, on which no separation axioms are assumed unless otherwise mentioned. When A is a subset of (X, τ) , Cl (A), Int(A) and D[A] denote the closure, the interior and the derived set of A, respectively.

We recall some known definitions needed.

Definitions 2.1: Let (X,τ) be topological space. A subset A of X is said to be

- **1**.Preopen [7] if $A \subseteq Int(cl(A))$ and preclosed if $Cl(Int(A))\subseteq A$.
- **2.**Semi open[6] if $A \subseteq Cl(Int(A))$ and semi closed if $Int(Cl(A)) \subseteq A$.
- 3. Semi pre open[1] if $A \subseteq Cl(Int(Cl(A)))$ and semi pre closed if $Int(Cl(Int(A))) \subseteq A$.

Definition 2.2: Let (X,τ) be a topological space. A subset A of X is said to be

- 1. generalised closed (briefly g-closed) [5] if $Cl(A)\subseteq U$ whenever $A\subseteq U$ and U is open in X.
- 2. generalized pre closed (briefly gp-closed) [8] if $Pcl(A)\subseteq U$ whenever $A\subseteq U$ and U is open in X.
- 3. generalized semi pre closed (briefly gsp closed) [3]if Spcl(A)⊆U whenever A⊆U and U is open in X.
- **4**. ω -closed if [11]if Cl(A)⊆U whenever A⊆U and U is semi open in X.
- **5**.*g-closed if [12]cl(A)⊆U whenever A⊆U and U is ω -open in X.
- **6**. #gs-closed [13] if $Scl(A) \subseteq U$ whenever $A \subseteq U$ and U is *g-open in X.
- 7. \tilde{g} -closed [4] if cl(A) \subseteq U whenever A \subseteq U and U is #gs-open.
- **8**. ρ -closed [10] if Pcl(A)⊆Int(U) whenever A⊆U and U is g open in X.
- **9**. $_{n}^{\wedge}$ * -closed [9] if Spcl(A) ⊆Int(cl(U)) whenever A⊆U and U is ω -open in X.

The compliments of above mentioned sets are called their respective closed sets.

Basic Properties Of β*Closed Sets

We introduce the following **Definition**

Definition 3.1: A subset A of a space (X,τ) is said to be β^* - closed in (X,τ) if spcl $(A) \subseteq Int(U)$ whenever $A \subseteq U$ and U is ω -open in (X,τ)

Theorem 3.2: Every open and semi preclosed subset of (X,τ) is β^* -closed but not conversely.

Proof: Let A be an open and semi preclosed subset of (X,τ)

Let $A \subseteq U$ and U be ω -open in X

Then spcl $(A) = A = Int (A) \subseteq Int (U)$

Hence A is β*closed

The converse of the above **Theorem** need not be true as seen from the following example

Example 3.3: Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{a\}, X\}$

Then the set $A = \{a, c\}$ is β^* closed but neither open nor preclosed

Theorem 3.4: Every β^* - closed set is gsp – closed but not conversely.

Proof: Let A be any β^* - closed set in X

Let $A \subseteq U$ and U be open in X

Since every open set is ω -open and A is β^* - closed Spcl (A) \subseteq Int (U) = U

Hence A is gsp - closed

Converse of the above **Theorem** need not be true as seen from the following

Example 3.5: Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{b, c\}, X\}$

Then the set $A = \{a, b\}$ is gsp closed but not β^* - closed in X

Theorem 3.7: Every open and preclosed subset of (X,τ) is β^* -closed

Proof: Let A be an open and preclosed subset of (X, τ)

Let $A \subseteq U$ and U be ω -open in X

Then spcl (A) \subseteq pcl (A) = A = Int (A) \subseteq Int (U)

Hence A is β*- closed

The converse of the above **Theorem** need not be true. It is seen from the following example.

Example 3.8: Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{a\}, X\}$

Then the set $\{a, b\}$ is β^* - closed but neither open are preclosed.

Remark 3.9: β*- closedness and preclosedness are independent. It is shown by the following examples.

Example 3.10: Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$

Then the set $A=\{a\}$ is $\beta \mbox{*-}$ closed but not preclosed.

Example 3.11: Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{b, c\}\}$

Then the set $A = \{a, b\}$ is preclosed but not β^* - closed

Remark 3.12: β^* - closedness and α -closedness are independent. It is shown by the following examples.

Example 3.13: Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{b, c\}, X\}$

Then the set $A = \{a\}$ is α -closed but not β^* -closed

Example 3.14: Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{a\}, X\}$

Then the set $\{a, b\}$ is β^* - closed but not α -closed.

Remark 3.15: β^* - closed sets are independent of semi closed sets and semi preclosed sets. It is shown by the following examples.

Example 3.16: Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{b, c\}, X\}$

Then the set $A = \{a, b\}$ is both semi preclosed and semi closed but not β^* -closed.

Example 3.17: Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{a, c\}, X\}$

Then the set $A = \{a, b\}$ is β^* - closed but neither semi preclosed nor semi closed.

Remark 3.18: β^* - closedness and pre semi closedness are independent. It is shown by the following examples.

Example 3.19: Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a, b\}, X\}$

Then the set $A = \{a\}$ is pre semi closed but not β^* - closed.

Example 3.20: Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{a\}, X\}$

Then the set $A = \{a, b\}$ is β^* - closed but not pre semi closed.

Remark 3.21: β^* - closedness and g closedness are independent. It is shown by the following examples.

Example 3.22: Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{b, c\}, X\}$

Then the set $A = \{a, c\}$ is g closed but not β^* - closed.

Example 3.23: Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$

Then the set $A = \{b\}$ is β^* - closed but not g closed.

Theorem 3.24: β^* - closed set is $\widehat{\eta^*}$ closed set but not conversely.

Proof: Let A be any β^* - closed set in X.

Let $A \subseteq U$ and U be ω -open in X.

Then spcl (A) \subseteq Int (U) \subseteq U

Hence A is $\widehat{\eta} *$ closed

Converse of the above **Theorem** need not be true. It is seen from the following example

Example 3.25: Let $X = \{a, b, c, d, e\}$ and $\tau = \{\phi, \{a, b\}, \{a, b, d\}, \{a, b, c, d\}, \{a, b, d\},$

Then the set $A = \{a\}$ is $\widehat{\eta} *$ closed but not $\beta*$ - closed

Example 3.26: β^* - closedness and ρ closedness are independent. It is shown by the following examples.

© 2012, IJMA. All Rights Reserved

Example 3.27: Let $X = \{a, b, c, d, e\}$ and $\tau = \{\phi, \{a, b\}, \{a, b, d\}, \{a, b, c, d\}, \{a, b, d\},$

Then the set $A = \{c\}$ is β^* closed but not ρ - closed

Then the set $B = \{b, d\}$ is ρ closed but not β^* -closed.

Definition 3.28: A subset A of a space (X, τ) is said to be β *s- closed in (X, τ) if spcl $(A) \subseteq Int (cl(U))$ whenever $A \subseteq U$ and U is ω -open in (X, τ) .

Theorem 3.29: Every β^* - closed set is βs^* - closed but not conversely.

Proof: Let A be any β^* - closed set.

Let $A \subseteq U$ and U be ω -open

A is β^* - closed, spcl (A) \subseteq Int (U) \subseteq Int (cl(U))

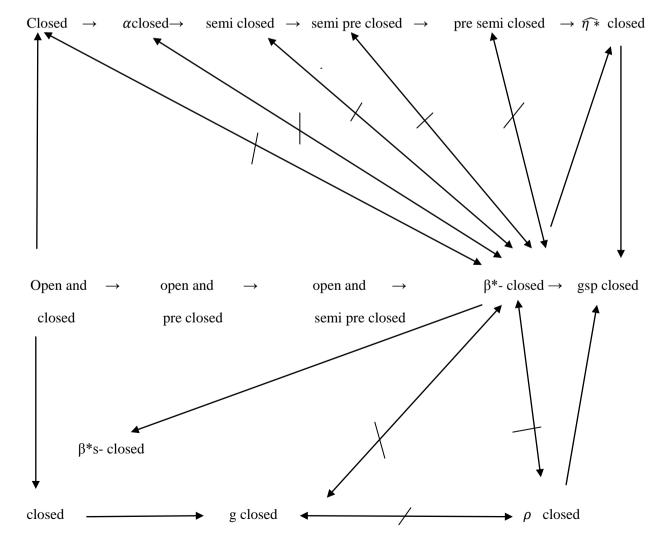
Hence A is βs^* - closed.

The converse of the above **Theorem** need not be true. It is seen from the following example.

Example 3.30: Let
$$X = \{a, b, c, d, e\}$$
 and $\tau = \{\phi, \{a, b\}, \{a, b, d\}, \{a, b, c, d\}, \{a, b, d, e\}, X\}$

Then the set $A = \{b, d\}$ is βs^* - closed but not β^* - closed

Remark 3.31: From the above discussion and known results we have the following implications. A \rightarrow B represents A implies B but not conversely and A \leftrightarrow B represents A and B are independent of each other



Properties Of β*Closed Sets

Remark 3.32: The union and intersection of two β^* - closed sets need not be β^* - closed. It is shown in the following examples.

Example 3.33: Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{a\}, X\}$

Then set $A = \{a, b\}$ and $B = \{a, c\}$ are β^* -closed but $A \cap B = \{a\}$ is not β^* -closed

2. Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, X\}$

Then set A = $\{a\}$ and B = $\{b\}$ are β^* - closed but AUB = $\{a, b\}$ is not β^* - closed

Theorem 3.34: A set A is β^* - closed Then spcl (A) – A contains no non empty closed set.

Proof: Suppose $H \subseteq \operatorname{spcl}(A)$ -A is a non empty closed set

Then $H \subseteq \operatorname{spcl}(A)$ and $A \subseteq X-H$. Since X-H is ω - open and A is β^* - closed, we have $\operatorname{spcl}(A) \subseteq \operatorname{Int}(X-H) = X - \operatorname{cl}(A)$.

Hence $cl(H) \subseteq X$ -spcl(A). which is a contradiction.

Hence spcl(A)-(A)contains no non empty closed set. Converse of the above

Theorem need not be true as seen from the following example.

Example 3.35: Let $X = \{a, b, c\}$ and $\tau = \{\phi, \{a\}, \{b, c\}, X\}$

Let $A = \{a, c\}$ Then $spcl(A) - (A) = \{a, c\} - \{a, c\} = \phi$ contains no non empty closed set but A is not β^* - closed

Theorem 3.36: A set A is β^* - closed Then spcl(A) – (A) contains no non empty ω -closed sets.

Proof: Let F be a non empty ω -closed set of $F \subseteq \operatorname{spcl}(A)$ -(A). Then $F \subseteq \operatorname{spcl}(A)$ and $A \subseteq X$ -F. Since A is β^* - closed and X-F is ω -open. We have $\operatorname{spcl}(A) \subseteq \operatorname{Int}(X-F) = X - \operatorname{cl}(F)$. Hence $\operatorname{cl}(F) \subseteq X - \operatorname{spcl}(A)$ and so $F \subseteq X - \operatorname{spcl}(A)$.

Already $F \subseteq \operatorname{spcl}(A)$ hence we get a contradiction. Hence $\operatorname{spcl}(A) - (A)$ contains no non empty ω – closed set.

Theorem 3.37: If A is β^* - closed and A \subseteq B \subseteq spcl (A) Then B is β^* - closed

Proof: Let U be a ω – open set of X such that B \subseteq U. Since A \subseteq U and U is ω – open we have spcl (A) \subseteq Int (U) .We have B \subseteq spcl (A) and so spcl (B) \subseteq spcl (spcl(A))=spcl (A). Hence spcl (A) \subseteq Int (U) and so B is β^* - closed

Theorem 3.38: If a subset A of (X, τ) is ω – open and β^* - closed Then A is semipreclosed in (X, τ) .

Proof: If A is ω – open and β^* - closed, since $A \subseteq A$, we have spcl (A) \subseteq Int (A) \subseteq A. but $A \subseteq$ spcl (A). Hence A = spcl (A). So A is semipreclosed.

Lemma 3.39: If A is open and gsp closed .Then A is semi pre closed.

Proof: Let $A \subseteq U$ and U be open in (X, τ) , since A is open and $A \subseteq A$, we have spcl $(A) \subseteq A \subseteq U$, hence spcl $(A) \subseteq U$ and so A is semi pre closed.

Theorem 3.40: A open set of (X,τ) is gsp closed if and only if A is β^* - closed.

Proof: Let A be a open set of (X,τ) and A is gsp closed.

Let $A \subseteq U$ and U be ω – open in (X, τ) , since A is open and gsp closed by the lemma 3.39; A is semi pre closed. Hence spcl $(A) = A = Int (A) \subseteq Int (U)$, therefore spcl $(A) \subseteq Int (U)$ and so A is β^* - closed. Conversely let A be a β^* - closed set. Then by Theorem 3.4, A is gsp closed.

Theorem 3.41: Let A be β^* - closed in (X, τ) Then A is semi pre closed if and only if spcl (A) – (A) is ω closed.

Proof: Let A be semi pre closed. Then spcl (A) = (A) and so spcl (A) – (A) = ϕ which is ω closed. Conversely Let spcl (A) – (A) is ω closed, Since A is β^* - closed by **Theorem** 3.36 spcl (A) – A contains no non empty ω – closed set.

Hence spcl (A) – (A) = ϕ which implies spcl (A) = (A) and so A is semi pre closed

Definition 3.42: Let (X, τ) be a topological space and $A \subseteq X$ and $x \in X$, Then x is said to be a semi pre limit point of A if every semi pre open set containing x contains a point of A different from x.

Definition 3.43: Let (X,τ) be a topological space and $A \subseteq X$, the set of all semi pre limit point of A is said to be semi pre derived set of A and is denoted by $D_{sp}[A]$

Theorem 3.44: If D [A] \subseteq D_{sp} [A] for each subset A of a space (X , τ), Then the union of two β^* - closed set is β^* -closed.

Proof: Let A and B be β^* - closed subsets of X and U be ω – open set with A U B \subseteq U, Then spcl (A) \subseteq Int(U) and spcl (B) \subseteq Int (U). Since for each subset A of X, we have $D_{sp}[A] \subseteq D[A]$, we get cl(A) = spcl(A) and cl(B) = spcl(B), therefore cl(AUB) = cl(A) U cl(B) = spcl(A) U $spcl(B) \subseteq Int(U)$, but $spcl(AUB) \subseteq cl(AUB)$. So $spcl(AUB) \subseteq cl(AUB)$ is β^* - closed

REFERENCE:

- [1] M.E.Abd El-Monsef, S.N.El-Deeb and R.A.Mahmoud, β -open sets and β -continuous mappings. Bull. Fac. Sci. Univ. (1983),77-90.
- [2] D. Andrijevic, semi-pre open sets. Mat. Vesnic. (1986), 24-32.
- [3] J. Dontchev, On generalizing semi-pre open sets. Mem. fac. Sci. Kochi Uni. Ser. A Math., (1995), 35-48.
- [4] S. Jafari, T. Noiri, N. Rajesh, M. L. Thivagar. Another generalization of closed sets, Kochi J. Math, S (2008), 25-38
- [5] N. Levin. Generalised closed sets in topology, Rend. Circ. Math., Palermo, (1970), 89-96.
- [6] N. Levin, semi open sets, semi continuity in topological spaces, Amer Math, Monthly, 70(1963), 36-41
- [7] A. S. Mashour, M.E.ABD EL-Monsef and S. N. El-Deep, ON pre continuous and weak pre continuous mapping, Proc, Math, Phys, Soc. Egypt, 53(1982),47-53
- [8] Noiri H.Maki and J. UMEHARA, generalized pre closed functions, Mem. Fac. Sci. Kochi Univ. Ser. A. Maths., 19(1998), 13-20
- [9] N.Palaniappan ,J.Antony Rex Rodgio and S.P.Misser,On $.\hat{\eta}$ * closed sets in topological spaces,International journal of general topology Vol. 1, No.1 (2008), 77-88.
- [10] S.Pious miser and C. Devamanoha, On ρ -closed sets, ON Contra ρ continuous functions and strongly ρ closed spaces, Demonstratio Mathematica vol.XLV NO 12012
- [11] M. Shiek John, A study of generalization of ω closed sets and continuous maps in topological and by topological spaces, Ph. D Thesis, Bharathiar University, Coimbathore (2002),44-55
- [12] M.K.R.S Veera Kumar, Between g* closed and g closed sets, Antarctica J. Maths.
- [13] M. K. R. S. Veerarakumar, #gs closed in topological spaces, Antartica J. maths 2(2)(2005),201-202
