International Journal of Mathematical Archive-3(3), 2012, Page: 1039-1046 MA Available online through <u>www.ijma.info</u> ISSN 2229 - 5046

COMMON FIXED POINT THEOREMS FOR FOUR MAPPINGS IN \mathcal{M} - FUZZY METRIC SPACE

T. Veerapandi

Associate Professor of Mathematics, P.M.T. College, Melaneelithanallur – 627953, India E-mail: tveerapandi@ymail.com

G. Uthaya Sankar* Department of Mathematics, Mano College (An Institution of M.S.Univerity, Tirunelveli), Sankarankovil – 627756, India E-mail: uthayaganapathy@yahoo.com

A. Subramanian

Department of Mathematics, The M.D.T. Hindu College, Tirunelveli – 627010, India E-mail: asmani1963@gmail.com

(Received on: 16-03-12; Accepted on: 31-03-12)

ABSTRACT

In this paper we prove a common fixed point theorem for four mappings in \mathcal{M} – fuzzy metric space using the notion of semi compatibility. Also, we prove a common fixed point theorem for four weakly compatible mappings in \mathcal{M} – fuzzy metric space.

Mathematics Subject Classification: 47H10, 54H25.

Keywords: Complete \mathcal{M} – Fuzzy metric space, Semi compatible mappings, weakly compatible mappings, Common fixed point.

INTRODUCTION AND PRELIMINARIES

Zadeh [16] introduced the concept of fuzzy sets in 1965. George and Veeramani [2] modified the concept of fuzzy metric space introduced by Kramosil and Michalek [7] and defined the Hausdorff topology of fuzzy metric spaces. Many authors [4, 8] have proved fixed point theorems in fuzzy metric space. Recently Sedghi and Shobe [13] introduced D^* - metric space as a probable modification of the definition of D - metric introduced by Dhage [1], and prove some basic properties in D^* - metric spaces. Using D^* - metric concepts, Sedghi and Shobe define \mathcal{M} – fuzzy metric space and proved a common fixed point theorem in it. Jong Seo Park [5] introduced the concept of semi compatible and weak compatible in \mathcal{M} – fuzzy metric space and prove some fixed point theorems for four mappings in \mathcal{M} – fuzzy metric space using the notion of semi compatibility. Also, we prove a common fixed point theorem for four weakly compatible mappings in \mathcal{M} – fuzzy metric space.

Definition: 1.1 Let *X* be a nonempty set. A generalized metric (or D^* - metric) on *X* is a function: $D^* : X^3 \to [0, \infty)$, that satisfies the following conditions for each *x*, *y*, *z*, $a \in X$

(i) D* (x, y, z) ≥ 0,
(ii) D* (x, y, z) = 0 iff x = y = z,
(iii) D* (x, y, z) = D* (p{x, y, z}), (symmetry) where p is a permutation function,
(iv) D* (x, y, z) ≤ D* (x, y, a) + D* (a, z, z).
The pair (X, D*), is called a generalized metric (or D* - metric) space.

Example: 1.2 Examples of D^* - metric are (a) $D^*(x, y, z) = \max \{ d(x, y), d(y, z), d(z, x) \},$ (b) $D^*(x, y, z) = d(x, y) + d(y, z) + d(z, x).$ Here, *d* is the ordinary metric on *X*.

Corresponding author: G. Uthaya Sankar, *E-mail: uthayaganapathy@yahoo.com International Journal of Mathematical Archive- 3 (3), Mar. – 2012

Definition: 1.3 A fuzzy set \mathcal{M} in an arbitrary set X is a function with domain X and values in [0, 1].

Definition: 1.4 A binary operation *: $[0, 1] \times [0, 1] \rightarrow [0, 1]$ is a continuous *t*-norm if it satisfies the following conditions

(i) * is associative and commutative,

(ii) * is continuous,

(iii) a * 1 = a for all $a \in [0, 1]$,

(iv) $a*b \le c*d$ whenever $a \le c$ and $b \le d$, for each $a, b, c, d \in [0, 1]$.

Examples for continuous *t*-norm are $a^*b = ab$ and $a^*b = \min \{a, b\}$.

Definition: 1.5 A 3-tuple $(X, \mathcal{M}, *)$ is called \mathcal{M} – fuzzy metric space if X is an arbitrary non-empty set, * is a continuous *t*-norm, and \mathcal{M} is a fuzzy set on $X^3 \times (0, \infty)$, satisfying the following conditions for each x, y, z, $a \in X$ and t, s > 0 $(FM - 1) \mathcal{M}(x, y, z, t) > 0$

 $(FM - 1) \quad \mathcal{M}(x, y, z, t) \neq 0$ $(FM - 2) \quad \mathcal{M}(x, y, z, t) = 1 \text{ iff } x = y = z$ $(FM - 3) \quad \mathcal{M}(x, y, z, t) = \mathcal{M}(p \{x, y, z\}, t), \text{ where } p \text{ is a permutation function}$ $(FM - 4) \quad \mathcal{M}(x, y, a, t) * \mathcal{M}(a, z, z, s) \leq \mathcal{M}(x, y, z, t+s)$ $(FM - 5) \quad \mathcal{M}(x, y, z, \cdot) : (0, \infty) \rightarrow [0, 1] \text{ is continuous}$ $(FM - 6) \lim_{t \to \infty} \mathcal{M}(x, y, z, t) = 1.$

Example: 1.6 Let *X* be a nonempty set and D^* is the D^* - metric on *X*. Denote $a^*b = a.b$ for all $a, b \in [0, 1]$. For each $t \in (0, \infty)$, define

$$\mathcal{M}(x, y, z, t) = \underline{t}$$
$$\underline{t + D^*(x, y, z)}$$

for all *x*, *y*, $z \in X$, then $(X, \mathcal{M}, *)$ is a \mathcal{M} -fuzzy metric space. We call this \mathcal{M} -fuzzy metric induced by D^* - metric space. Thus every D^* - metric induces a \mathcal{M} -fuzzy metric.

Lemma: 1.7 ([13]) Let $(X, \mathcal{M}, *)$ be a \mathcal{M} -fuzzy metric space. Then for every t > 0 and for every $x, y \in X$, we have $\mathcal{M}(x, x, y, t) = \mathcal{M}(x, y, y, t)$.

Lemma: 1.8 ([13]) Let $(X, \mathcal{M}, *)$ be a \mathcal{M} -fuzzy metric space. Then $\mathcal{M}(x, y, z, t)$ is non-decreasing with respect to t, for all x, y, z in X.

Definition: 1.9 Let $(X, \mathcal{M}, *)$ be a \mathcal{M} – fuzzy metric space and $\{x_n\}$ be a sequence in X

(a) $\{x_n\}$ is said to be converges to a point $x \in X$ if $\lim_{n \to \infty} \mathcal{M}(x, x, x_n, t) = 1$ for all t > 0

(b) $\{x_n\}$ is called Cauchy sequence if $\lim_{n \to \infty} \mathcal{M}(x_{n+p}, x_{n+p}, x_n, t) = 1$ for all t > 0 and p > 0

(c) A \mathcal{M} -fuzzy metric space in which every Cauchy sequence is convergent is said to be complete.

Remark: 1.10 Since * is continuous, it follows from (FM-4) that the limit of the sequence is uniquely determined.

Definition: 1.11 Let *S* and *T* be two self mappings of a \mathcal{M} -fuzzy metric space $(X, \mathcal{M}, *)$. Then the mappings are said to be compatible if $\lim_{n \to \infty} \mathcal{M}(STx_n, TSx_n, TSx_n, t) = 1$, for all t > 0, whenever $\{x_n\}$ be a sequence in *X* such that $\lim_{n \to \infty} Sx_n = \lim_{n \to \infty} Tx_n = z$ for some $z \in X$.

Definition: 1.12 Let *S* and *T* be two self mappings of a \mathcal{M} -fuzzy metric space $(X, \mathcal{M}, *)$. Then the mappings are called semi compatible if $\lim_{n \to \infty} \mathcal{M}(STx_n, Tz, Tz, t) = 1$, $\lim_{n \to \infty} \mathcal{M}(TSx_n, Sz, Sz, t) = 1$ for all t > 0, whenever $\{x_n\}$ be a sequence in *X* such that $\lim_{n \to \infty} Sx_n = \lim_{n \to \infty} Tx_n = z$ for some $z \in X$.

Definition: 1.13 Let *S* and *T* be two self mappings of a \mathcal{M} – fuzzy metric space (*X*, \mathcal{M} , *). Then the mappings *S* and *T* are said to be weakly compatible if they commute at their coincidence points; that is, if Sx = Tx for some $x \in X$, then STx = TSx.

Lemma: 1.14 ([11]) Let $\{x_n\}$ be a sequence in a \mathcal{M} – fuzzy metric space ($X, \mathcal{M}, *$) with the condition (*FM*-6). If there exists a number $k \in (0, 1)$ such that

 $\mathcal{M}(x_n, x_{n+1}, x_{n+1}, kt) \ge \mathcal{M}(x_{n-1}, x_n, x_n, t)$ for all t > 0 and n = 1, 2, 3, ..., then $\{x_n\}$ is a Cauchy sequence.

Lemma 1.15 ([11]) Let $(X, \mathcal{M}, *)$ be a \mathcal{M} -fuzzy metric space with condition (*FM-6*). If there exists a number $k \in (0, 1)$ such that $\mathcal{M}(x, y, z, kt) \ge \mathcal{M}(x, y, z, t)$, for all $x, y, z \in X$ and t > 0, then x = y = z.

MAIN RESULTS:

Theorem: 2.1 Let *S* and *T* be two continuous self mappings of a complete \mathcal{M} – fuzzy metric space (*X*, \mathcal{M} , *). Let *A* and *B* be two self mappings of *X* satisfying

- (1) $A(X) \subset T(X), B(X) \subset S(X).$
- (2) (A, S) and (B, T) are semi compatible.
- (3) there exists $k \in (0, 1)$ such that for all $x, y \in X$ and t > 0,

 $\mathcal{M}(Ax, By, By, kt) \geq \min \{ \mathcal{M}(By, Ty, Ty, t), \mathcal{M}(Sx, Ty, Ty, t), \mathcal{M}(Ax, Sx, Sx, t), \mathcal{M}(Ax, By, By, t) \}.$

Then A, B, S and T have a unique common fixed point.

Proof: Let $x_0 \in X$ be any arbitrary element.

Since $A(X) \subset T(X)$, then there exists a point $x_1 \in X$ such that $Ax_0 = Tx_1$.

Also, since $B(X) \subset S(X)$, then there exists another point $x_2 \in X$ such that $Bx_1 = Sx_2$.

Then by induction, we can define a sequence $\{y_n\}$ in X such that

 $y_{2n+1} = Ax_{2n} = Tx_{2n+1}$ and $y_{2n+2} = Bx_{2n+1} = Sx_{2n+2}$ for n = 0, 1, 2, ...

Now using condition (3) we get

$$\begin{split} \mathcal{M} \left(y_{2n+1}, y_{2n+2}, y_{2n+2}, kt \right) &= \mathcal{M} \left(Ax_{2n}, Bx_{2n+1}, Bx_{2n+1}, kt \right) \\ &\geq \min \left\{ \mathcal{M} \left(Bx_{2n+1}, Tx_{2n+1}, Tx_{2n+1}, t \right), \, \mathcal{M} \left(Sx_{2n}, Tx_{2n+1}, Tx_{2n+1}, t \right), \, \mathcal{M} \left(Ax_{2n}, Sx_{2n}, Sx_{2n}, t \right), \\ &\mathcal{M} \left(Ax_{2n}, Bx_{2n+1}, Bx_{2n+1}, t \right) \right\} \\ &= \min \left\{ \mathcal{M} \left(y_{2n+2}, y_{2n+1}, y_{2n+1}, t \right), \, \mathcal{M} \left(y_{2n}, y_{2n+1}, y_{2n+1}, t \right), \, \mathcal{M} \left(y_{2n+1}, y_{2n}, y_{2n}, t \right), \, \mathcal{M} \left(y_{2n+1}, y_{2n+2}, y_{2n+2}, t \right) \right\} \\ &= \min \left\{ \mathcal{M} \left(y_{2n+1}, y_{2n+2}, t \right), \, \mathcal{M} \left(y_{2n}, y_{2n+1}, y_{2n+1}, t \right), \, \mathcal{M} \left(y_{2n}, y_{2n+1}, t \right), \, \mathcal{M} \left(y_{2n+1}, y_{2n+2}, y_{2n+2}, t \right) \right\} \\ &= \min \left\{ \mathcal{M} \left(y_{2n+1}, y_{2n+2}, y_{2n+2}, t \right), \, \mathcal{M} \left(y_{2n}, y_{2n+1}, t \right) \right\} \\ &= \mathcal{M} \left(y_{2n}, y_{2n+1}, y_{2n+1}, t \right) \end{split}$$

Therefore $\mathcal{M}(y_{2n+1}, y_{2n+2}, y_{2n+2}, kt) \ge \mathcal{M}(y_{2n}, y_{2n+1}, y_{2n+1}, t).$

```
Also, \mathcal{M}(y_{2n+2}, y_{2n+3}, kt) = \mathcal{M}(y_{2n+2}, y_{2n+2}, y_{2n+3}, kt)

= \mathcal{M}(y_{2n+3}, y_{2n+2}, y_{2n+2}, kt) = \mathcal{M}(Ax_{2n+2}, Bx_{2n+1}, Bx_{2n+1}, kt)
\geq \min \{\mathcal{M}(Bx_{2n+1}, Tx_{2n+1}, Tx_{2n+1}, t), \mathcal{M}(Sx_{2n+2}, Tx_{2n+1}, Tx_{2n+1}, t), \mathcal{M}(Ax_{2n+2}, Sx_{2n+2}, Sx_{2n+2}, t),
\mathcal{M}(Ax_{2n+2}, Bx_{2n+1}, Bx_{2n+1}, t) \}
= \min \{\mathcal{M}(y_{2n+2}, y_{2n+1}, y_{2n+1}, t), \mathcal{M}(y_{2n+2}, y_{2n+1}, t), \mathcal{M}(y_{2n+3}, y_{2n+2}, y_{2n+2}, t), \mathcal{M}(y_{2n+3}, y_{2n+2}, y_{2n+2}, t), \\
= \min \{\mathcal{M}(y_{2n+2}, y_{2n+1}, y_{2n+1}, t), \mathcal{M}(y_{2n+3}, y_{2n+2}, y_{2n+2}, t)\}
= \min \{\mathcal{M}(y_{2n+1}, y_{2n+2}, y_{2n+2}, t), \mathcal{M}(y_{2n+2}, y_{2n+3}, t)\}
= \min \{\mathcal{M}(y_{2n+1}, y_{2n+2}, y_{2n+2}, t), \mathcal{M}(y_{2n+2}, y_{2n+3}, t)\}
= \mathcal{M}(y_{2n+1}, y_{2n+2}, y_{2n+2}, t)
```

Therefore $\mathcal{M}(y_{2n+2}, y_{2n+3}, y_{2n+3}, kt) \geq \mathcal{M}(y_{2n+1}, y_{2n+2}, y_{2n+2}, t).$

Hence $\mathcal{M}(y_{n+1}, y_{n+2}, y_{n+2}, kt) \ge \mathcal{M}(y_n, y_{n+1}, y_{n+1}, t)$, for all *n*.

By lemma 1.14, $\{y_n\}$ is a Cauchy sequence in \mathcal{M} – fuzzy metric space X.

Since *X* is \mathcal{M} -fuzzy complete, sequence $\{y_n\}$ converges to the point $z \in X$.

Also, since $\{Ax_{2n}\}$, $\{Bx_{2n+1}\}$, $\{Sx_{2n}\}$ and $\{Tx_{2n+1}\}$ are subsequences of $\{y_n\}$, they also converge to the point z.

Case I: Since *S* is continuous, we have $SAx_{2n} \rightarrow Sz$, $SSx_{2n} \rightarrow Sz$.

Also (A, S) is semi compatible, we have $ASx_{2n} \rightarrow Sz$.

Let $x = Sx_{2n}$, $y = x_{2n+1}$ in condition (3) we get

 $\mathcal{M} (ASx_{2n}, Bx_{2n+1}, Bx_{2n+1}, kt) \geq \min \{ \mathcal{M} (Bx_{2n+1}, Tx_{2n+1}, Tx_{2n+1}, t), \mathcal{M} (SSx_{2n}, Tx_{2n+1}, Tx_{2n+1}, t), \\ \mathcal{M} (ASx_{2n}, SSx_{2n}, SSx_{2n}, t), \mathcal{M} (ASx_{2n}, Bx_{2n+1}, Bx_{2n+1}, t) \}$ Taking limit as $n \to \infty$ we get $\mathcal{M} (Sz, z, z, kt) \geq \min \{ \mathcal{M} (z, z, z, t), \mathcal{M} (Sz, z, z, t), \mathcal{M} (Sz, Sz, Sz, t), \mathcal{M} (Sz, z, z, t) \}$

 $= \mathcal{M}(Sz, z, z, t)$

Therefore by lemma 1.15, Sz = z.

Now let x = z, $y = x_{2n+1}$ in condition (3) we get

 $\mathcal{M}(Az, Bx_{2n+1}, Bx_{2n+1}, kt) \ge \min \{ \mathcal{M}(Bx_{2n+1}, Tx_{2n+1}, Tx_{2n+1}, t), \mathcal{M}(Sz, Tx_{2n+1}, Tx_{2n+1}, t), \mathcal{M}(Az, Sz, Sz, t), \\ \mathcal{M}(Az, Bx_{2n+1}, Bx_{2n+1}, t) \}$

Taking limit as $n \rightarrow \infty$ we get

 $\mathcal{M}(Az, z, z, kt) \ge \min \{ \mathcal{M}(z, z, z, t), \mathcal{M}(Sz, z, z, t), \mathcal{M}(Az, Sz, Sz, t), \mathcal{M}(Az, z, z, t) \}$ $= \min \{ \mathcal{M}(z, z, z, t), \mathcal{M}(z, z, z, t), \mathcal{M}(Az, z, z, t), \mathcal{M}(Az, z, z, t) \}$ $= \mathcal{M}(Az, z, z, t)$

Therefore by lemma 1.15, Az = z.

Therefore Az = z = Sz.

Case II: Since *T* is continuous, we have $TBx_{2n+1} \rightarrow Tz$, $TTx_{2n+1} \rightarrow Tz$.

Also (*B*, *T*) is semi compatible; we have $BTx_{2n+1} \rightarrow Tz$.

Let $x = x_{2n}$, $y = Tx_{2n+1}$ in condition (3) we get

 $\mathcal{M}(Ax_{2n}, BTx_{2n+1}, BTx_{2n+1}, kt) \geq \min \{ \mathcal{M}(BTx_{2n+1}, TTx_{2n+1}, tTx_{2n+1}, t), \mathcal{M}(Sx_{2n}, TTx_{2n+1}, TTx_{2n+1}, t), \mathcal{M}(Ax_{2n}, Sx_{2n}, Sx_{2n}, t), \mathcal{M}(Ax_{2n}, BTx_{2n+1}, BTx_{2n+1}, t) \}$

Taking limit as $n \to \infty$ we get

 $\mathcal{M}(z, Tz, Tz, kt) \ge \min \{ \mathcal{M}(Tz, Tz, Tz, t), \mathcal{M}(z, Tz, Tz, t), \mathcal{M}(z, z, z, t), \mathcal{M}(z, Tz, Tz, t) \}$ = $\mathcal{M}(z, Tz, Tz, t)$

Therefore by lemma 1.15, Tz = z.

Now let $x = x_{2n}$, y = z in condition (3) we get

 $\mathcal{M}(Ax_{2n}, Bz, Bz, kt) \ge \min \{ \mathcal{M}(Bz, Tz, Tz, t), \mathcal{M}(Sx_{2n}, Tz, Tz, t), \mathcal{M}(Ax_{2n}, Sx_{2n}, Sx_{2n}, t), \\ \mathcal{M}(Ax_{2n}, Bz, Bz, t) \}$

Taking limit as $n \to \infty$ we get

 $\begin{aligned} \mathcal{M}(z, Bz, Bz, kt) &\geq \min \left\{ \mathcal{M}(Bz, Tz, Tz, t), \, \mathcal{M}(z, Tz, Tz, t), \, \mathcal{M}(z, z, z, t), \, \mathcal{M}(z, Bz, Bz, t) \right\} \\ &= \min \left\{ \mathcal{M}(Bz, z, z, t), \, \mathcal{M}(z, z, z, t), \, \mathcal{M}(z, z, z, t), \, \mathcal{M}(z, Bz, Bz, t) \right\} \\ &= \min \left\{ \mathcal{M}(Bz, Bz, z, t), \, \mathcal{M}(z, z, z, t), \, \mathcal{M}(z, z, z, t), \, \mathcal{M}(z, Bz, Bz, t) \right\} \\ &= \min \left\{ \mathcal{M}(z, Bz, Bz, t), \, \mathcal{M}(z, z, z, t) \right\} \\ &= \mathcal{M}(z, Bz, Bz, t) \end{aligned}$

Therefore by lemma 1.15, Bz = z.

Therefore Bz = z = Tz.

Thus we have Az = Sz = Bz = Tz = z.

Hence z is a common fixed point of A, B, S, and T.

Uniqueness: Suppose $z' (\neq z)$ is another common fixed point of *A*, *B*, *S*, and *T*.

Now $\mathcal{M}(z, z', z', kt) = \mathcal{M}(Az, Bz', Bz', kt)$ $\geq \min \{\mathcal{M}(Bz', Tz', Tz', t), \mathcal{M}(Sz, Tz', Tz', t), \mathcal{M}(Az, Sz, Sz, t), \mathcal{M}(Az, Bz', Bz', t)\}$ $= \min \{\mathcal{M}(z', z', z', t), \mathcal{M}(z, z', z', t), \mathcal{M}(z, z, z, t), \mathcal{M}(z, z', z', t)\}$ $= \mathcal{M}(z, z', z', t)$

Therefore by lemma 1.15, z = z'.

This completes the proof.

Remark: 2.2 Putting B = A in theorem 2.1, we get the following result.

Corollary: 2.3 Let *S* and *T* be two continuous self mappings of a complete \mathcal{M} – fuzzy metric space (*X*, \mathcal{M} , *). Let *A* be a self mapping of *X* satisfying

- (1) $A(X) \subset T(X), A(X) \subset S(X).$
- (2) (A, S) and (A, T) are semi compatible.
- (3) there exists $k \in (0, 1)$ such that for all $x, y \in X$ and t > 0,

 $\mathcal{M}(Ax, Ay, Ay, kt) \geq \min \{ \mathcal{M}(Ay, Ty, Ty, t), \mathcal{M}(Sx, Ty, Ty, t), \mathcal{M}(Ax, Sx, Sx, t), \mathcal{M}(Ax, Ay, Ay, t) \}.$

Then A, S and T have a unique common fixed point.

Remark: 2.4 Putting B = A, T = S in theorem 2.1, we get the following result.

Corollary: 2.5 Let S be continuous self mapping of a complete \mathcal{M} – fuzzy metric space (X, \mathcal{M} , *). Let A be a self mapping of X satisfying

- (1) $A(X) \subset S(X)$
- (2) (A, S) semi compatible pair of mappings
- (3) there exists $k \in (0, 1)$ such that for all $x, y \in X$ and t > 0,

 $\mathcal{M}(Ax, Ay, Ay, kt) \geq \min \{ \mathcal{M}(Ay, Sy, Sy, t), \mathcal{M}(Sx, Sy, Sy, t), \mathcal{M}(Ax, Sx, Sx, t), \mathcal{M}(Ax, Ay, Ay, t) \}.$

Then A and S have a unique common fixed point.

Remark: 2.6 Putting B = A, T = S = I in theorem 2.1, we get the following result.

Corollary: 2.7 Let A be a self mapping of a complete \mathcal{M} – fuzzy metric space (X, \mathcal{M} , *) satisfying

 $\mathcal{M}(Ax, Ay, Ay, kt) \ge \min \{\mathcal{M}(Ay, y, y, t), \mathcal{M}(x, y, y, t), \mathcal{M}(Ax, x, x, t), \mathcal{M}(Ax, Ay, Ay, t)\}$ for all $x, y \in X, t > 0$ and 0 < k < 1. Then A has a unique fixed point.

Theorem: 2.8 Let A, B, S and T be self mappings of a complete \mathcal{M} – fuzzy metric space (X, \mathcal{M} , *) satisfying the following conditions

(1) $A(X) \subset T(X), B(X) \subset S(X).$

- (2) (A, S) and (B, T) are weakly compatible.
- (3) there exists $k \in (0, 1)$ such that for all $x, y \in X$ and t > 0,

 $\mathcal{M}(Ax, By, By, kt) \ge \min \{\mathcal{M}(By, Ty, Ty, t), \mathcal{M}(Sx, Ty, Ty, t), \mathcal{M}(Ax, Sx, Sx, t), \mathcal{M}(Ax, By, By, t)\}.$

Then A, B, S and T have a unique common fixed point.

Proof: Let $x_0 \in X$ be any arbitrary element.

Since $A(X) \subset T(X)$, then there exists a point $x_1 \in X$ such that $Ax_0 = Tx_1$.

Also, since $B(X) \subset S(X)$, then there exists another point $x_2 \in X$ such that $Bx_1 = Sx_2$.

© 2012, IJMA. All Rights Reserved

Then by induction, we can define a sequence $\{y_n\}$ in X such that

$$y_{2n+1} = Ax_{2n} = Tx_{2n+1}$$
 and $y_{2n+2} = Bx_{2n+1} = Sx_{2n+2}$ for $n = 0, 1, 2, ...$

Now using condition (3) we get

 $\begin{aligned} \mathcal{M} (y_{2n+1}, y_{2n+2}, y_{2n+2}, kt) &= \mathcal{M} (Ax_{2n}, Bx_{2n+1}, Bx_{2n+1}, kt) \\ &\geq \min \left\{ \mathcal{M} (Bx_{2n+1}, Tx_{2n+1}, Tx_{2n+1}, t), \, \mathcal{M} (Sx_{2n}, Tx_{2n+1}, Tx_{2n+1}, t), \, \mathcal{M} (Ax_{2n}, Sx_{2n}, Sx_{2n}, t), \\ & \mathcal{M} (Ax_{2n}, Bx_{2n+1}, Bx_{2n+1}, t) \right\} \\ &= \min \left\{ \mathcal{M} (y_{2n+2}, y_{2n+1}, y_{2n+1}, t), \, \mathcal{M} (y_{2n}, y_{2n+1}, y_{2n+1}, t), \, \mathcal{M} (y_{2n}, y_{2n}, t), \, \mathcal{M} (y_{2n+1}, y_{2n+2}, y_{2n+2}, t) \right\} \\ &= \min \left\{ \mathcal{M} (y_{2n+1}, y_{2n+1}, y_{2n+2}, t), \, \mathcal{M} (y_{2n}, y_{2n+1}, y_{2n+1}, t), \, \mathcal{M} (y_{2n}, y_{2n}, y_{2n+1}, t), \, \mathcal{M} (y_{2n+1}, y_{2n+2}, y_{2n+2}, t) \right\} \\ &= \min \left\{ \mathcal{M} (y_{2n+1}, y_{2n+2}, y_{2n+2}, t), \, \mathcal{M} (y_{2n}, y_{2n+1}, y_{2n+1}, t) \right\} \\ &= \mathcal{M} (y_{2n}, y_{2n+1}, y_{2n+1}, t) \end{aligned}$

Therefore $\mathcal{M}(y_{2n+1}, y_{2n+2}, y_{2n+2}, kt) \ge \mathcal{M}(y_{2n}, y_{2n+1}, y_{2n+1}, t)$.

Also,
$$\mathcal{M}(y_{2n+2}, y_{2n+3}, y_{2n+3}, kt) = \mathcal{M}(y_{2n+2}, y_{2n+2}, y_{2n+3}, kt)$$

$$= \mathcal{M}(y_{2n+3}, y_{2n+2}, y_{2n+2}, kt) = \mathcal{M}(Ax_{2n+2}, Bx_{2n+1}, Bx_{2n+1}, kt)$$

$$\geq \min \{ \mathcal{M}(Bx_{2n+1}, Tx_{2n+1}, Tx_{2n+1}, t), \mathcal{M}(Sx_{2n+2}, Tx_{2n+1}, t), \mathcal{M}(Ax_{2n+2}, Sx_{2n+2}, Sx_{2n+2}, t), \\ \mathcal{M}(Ax_{2n+2}, Bx_{2n+1}, Bx_{2n+1}, t) \}$$

$$= \min \{ \mathcal{M}(y_{2n+2}, y_{2n+1}, y_{2n+1}, t), \mathcal{M}(y_{2n+2}, y_{2n+1}, t), \mathcal{M}(y_{2n+3}, y_{2n+2}, y_{2n+2}, t), \\ \mathcal{M}(y_{2n+2}, y_{2n+1}, y_{2n+1}, t), \mathcal{M}(y_{2n+3}, y_{2n+2}, y_{2n+3}, t) \}$$

$$= \min \{ \mathcal{M}(y_{2n+1}, y_{2n+1}, y_{2n+2}, t), \mathcal{M}(y_{2n+2}, y_{2n+3}, t) \}$$

$$= \min \{ \mathcal{M}(y_{2n+1}, y_{2n+2}, y_{2n+2}, t), \mathcal{M}(y_{2n+2}, y_{2n+3}, t) \}$$

$$= \mathcal{M}(y_{2n+1}, y_{2n+2}, y_{2n+2}, t)$$

Therefore $\mathcal{M}(y_{2n+2}, y_{2n+3}, y_{2n+3}, kt) \ge \mathcal{M}(y_{2n+1}, y_{2n+2}, y_{2n+2}, t).$

Hence $\mathcal{M}(y_{n+1}, y_{n+2}, y_{n+2}, kt) \ge \mathcal{M}(y_n, y_{n+1}, y_{n+1}, t)$, for all *n*.

By lemma 1.14, $\{y_n\}$ is a Cauchy sequence in \mathcal{M} – fuzzy metric space X.

Since *X* is \mathcal{M} -fuzzy complete, sequence $\{y_n\}$ converges to the point $z \in X$.

Also, since $\{Ax_{2n}\}$, $\{Bx_{2n+1}\}$, $\{Sx_{2n}\}$ and $\{Tx_{2n+1}\}$ are subsequences of $\{y_n\}$, they also converge to the point z.

Since $B(X) \subset S(X)$, there exists a point $u \in X$ such that z = Su.

Then by condition (3) we have

 $\mathcal{M}(Au, Bx_{2n+1}, Bx_{2n+1}, kt) \ge \min \{ \mathcal{M}(Bx_{2n+1}, Tx_{2n+1}, Tx_{2n+1}, t), \mathcal{M}(Su, Tx_{2n+1}, Tx_{2n+1}, t), \\ \mathcal{M}(Au, Su, Su, t), \mathcal{M}(Au, Bx_{2n+1}, Bx_{2n+1}, t) \}$

Taking limit as $n \to \infty$ we get

 $\begin{aligned} \mathcal{M}(Au, z, z, kt) &\geq \min \left\{ \mathcal{M}(z, z, z, t), \, \mathcal{M}(Su, z, z, t), \, \mathcal{M}(Au, Su, Su, t), \, \mathcal{M}(Au, z, z, t) \right\} \\ &= \min \left\{ \mathcal{M}(z, z, z, t), \, \mathcal{M}(z, z, z, t), \, \mathcal{M}(Au, z, z, t), \, \mathcal{M}(Au, z, z, t) \right\} \\ &= \mathcal{M}(Au, z, z, t). \end{aligned}$

Therefore by lemma l.15, Au = z.

Therefore Au = z = Su.

Similarly, since $A(X) \subset T(X)$, there exists a point $v \in X$ such that z = Tv.

Then by condition (3) we have $\mathcal{M}(z, Bv, Bv, kt) = \mathcal{M}(Au, Bv, Bv, kt)$ $\geq \min \{\mathcal{M}(Bv, Tv, Tv, t), \mathcal{M}(Su, Tv, Tv, t), \mathcal{M}(Au, Su, Su, t), \mathcal{M}(Au, Bv, Bv, t)\}$ $= \min \{\mathcal{M}(Bv, z, z, t), \mathcal{M}(z, z, z, t), \mathcal{M}(z, z, z, t), \mathcal{M}(z, Bv, Bv, t)\}$ $= \mathcal{M}(z, Bv, Bv, t).$

© 2012, IJMA. All Rights Reserved

Therefore by lemma 1.15, Bv = z.

Therefore Bv = z = Tv.

Hence Au = z = Su = Bv = Tv.

Since the pair of mappings (A, S) is weakly compatible, so ASu = SAu gives Az = Sz.

Now we prove z is a fixed point of A.

 $\begin{aligned} \mathcal{M}(Az, z, z, kt) &= \mathcal{M}(Az, Bv, Bv, kt) \\ &\geq \min \{ \ \mathcal{M}(Bv, Tv, Tv, t), \ \mathcal{M}(Sz, Tv, Tv, t), \ \mathcal{M}(Az, Sz, Sz, t), \ \mathcal{M}(Az, Bv, Bv, t) \} \\ &= \min \{ \ \mathcal{M}(z, z, z, t), \ \mathcal{M}(Az, z, z, t), \ \mathcal{M}(Az, Az, Az, t), \ \mathcal{M}(Az, z, z, t) \} \\ &= \mathcal{M}(Az, z, z, t). \end{aligned}$

Therefore by lemma 1.15, Az = z.

Hence Az = z = Sz.

Since the pair of mappings (B, T) is weakly compatible, so BTv = TBv gives Bz = Tz.

Now we prove z is a fixed point of B.

 $\begin{aligned} \mathcal{M}(z, Bz, Bz, kt) &= \mathcal{M}(Az, Bz, Bz, kt) \\ &\geq \min \{ \ \mathcal{M}(Bz, Tz, Tz, t), \ \mathcal{M}(Sz, Tz, Tz, t), \ \mathcal{M}(Az, Sz, Sz, t), \ \mathcal{M}(Az, Bz, Bz, t) \} \\ &= \min \{ \ \mathcal{M}(Bz, Bz, Bz, t), \ \mathcal{M}(z, Bz, Bz, t), \ \mathcal{M}(z, z, z, t), \ \mathcal{M}(z, Bz, Bz, t) \} \\ &= \mathcal{M}(z, Bz, Bz, t). \end{aligned}$

Therefore by lemma 1.15, Bz = z.

Hence Bz = z = Tz.

Thus we have Az = Bz = Sz = Tz = z.

Hence z is a common fixed point of A, B, S and T.

Uniqueness: Suppose $z' (\neq z)$ is another common fixed point of *A*, *B*, *S*, and *T*.

Now $\mathcal{M}(z, z', z', kt) = \mathcal{M}(Az, Bz', Bz', kt)$ $\geq \min \{\mathcal{M}(Bz', Tz', Tz', t), \mathcal{M}(Sz, Tz', Tz', t), \mathcal{M}(Az, Sz, Sz, t), \mathcal{M}(Az, Bz', Bz', t)\}$ $= \min \{\mathcal{M}(z', z', z', t), \mathcal{M}(z, z', z', t), \mathcal{M}(z, z, z, t), \mathcal{M}(z, z', z', t)\}$ $= \mathcal{M}(z, z', z', t)$

Therefore by lemma 1.15, z = z'.

This completes the proof.

Remark: 2.9 Putting B = A in theorem 2.8, we get the following result.

Corollary: 2.10 Let A, S and T be self mappings of a complete \mathcal{M} – fuzzy metric space (X, \mathcal{M} , *) satisfying the following conditions

(1) $A(X) \subset T(X), A(X) \subset S(X).$

- (2) (A, S) and (A, T) are weakly compatible.
- (3) there exists $k \in (0, 1)$ such that for all $x, y \in X$ and t > 0, $\mathcal{M}(Ax, Ay, Ay, kt) \ge \min \{ \mathcal{M}(Ay, Ty, Ty, t), \mathcal{M}(Sx, Ty, Ty, t), \mathcal{M}(Ax, Sx, Sx, t), \mathcal{M}(Ax, Ay, Ay, t) \}.$

Then A, S and T have a unique common fixed point.

Remark: 2.11 Putting B = A, T = S in theorem 2.8, we get the following result.

Corollary: 2.12 Let *A* and *S* be self mappings of a complete \mathcal{M} – fuzzy metric space (*X*, \mathcal{M} , *) satisfying the following conditions

(1) $A(X) \subset S(X)$.

- (2) (A, S) weakly compatible pair of mappings.
- (3) there exists $k \in (0, 1)$ such that for all $x, y \in X$ and t > 0,

 $\mathcal{M}(Ax, Ay, Ay, kt) \geq \min \{ \mathcal{M}(Ay, Sy, Sy, t), \mathcal{M}(Sx, Sy, Sy, t), \mathcal{M}(Ax, Sx, Sx, t), \mathcal{M}(Ax, Ay, Ay, t) \}.$

Then A and S have a unique common fixed point.

Remark: 2.13 Putting B = A, T = S = I in theorem 2.8, we get the following result.

Corollary: 2.14 Let A be a self mapping of a complete \mathcal{M} – fuzzy metric space (X, \mathcal{M} , *) satisfying

 $\mathcal{M}(Ax, Ay, Ay, kt) \geq \min \{ \mathcal{M}(Ay, y, y, t), \mathcal{M}(x, y, y, t), \mathcal{M}(Ax, x, x, t), \mathcal{M}(Ax, Ay, Ay, t) \}$

for all $x, y \in X$, t > 0 and 0 < k < 1. Then A has a unique fixed point.

REFERENCES:

[1] Dhage .B.C, Generalised metric spaces and mappings with fixed point, Bull. Calcutta Math. Soc., 84(4), (1992), 329-336.

[2] George .A and Veeramani .P, On some results in fuzzy metric space, Fuzzy Sets and Systems, 64 (1994), 395-399.

[3] Grabiec .M, Fixed points in fuzzy metric spaces, Fuzzy Sets and Systems, 27 (1988), 385-389.

[4] Gregori V and Sapena A, On fixed point theorem in fuzzy metric spaces, Fuzzy Sets and Systems, 125 (2002), 245-252.

[5] Jong Seo Park, Some fixed point theorems and examples in \mathcal{M} -fuzzy metric space, J. Korean Soc. Math. Education Series B: Pure Appl. Math., Vol.17, No.3, (2010), 205-209.

[6] Jungck .G, Compatible mappings and common fixed points, Internat. J. Math. Math. Sci., 9 (1986), 771-779.

[7] Kramosil .I and Michalek .J, Fuzzy metric and statistical metric spaces, Kybernetica, 11 (1975), 326-334.

[8] Mihet D, A Banach contraction theorem in fuzzy metric spaces, Fuzzy Sets and Systems, 144 (2004), 431-439.

[9] Naidu .S.V.R, Rao .K.P.R and Srinivasa .R.N, On the topology of D-metric spaces and the generation of D-metric spaces from metric space, Internat. J. Math. Math. Sci., 51 (2004), 2719-2740.

[10] Naidu .S.V.R, Rao .K.P.R and Srinivasa .R.N, On the convergent sequences and fixed point theorems in D-metric spaces, Internat. J. Math. Math. Sci., 12 (2005), 1969-1988.

[11] Park .J.H, Park .J.S and Kwun .Y.C, Fixed point in *M*-fuzzy metric spaces, Optimization and Decision Making, 7 (2008), No.4, 305-315.

[12] Schweizer .B and Sklar .A, Statistical metric spaces, Pacific. J. Math., 10 (1960), 314-334.

[13] Sedghi .S and Shobe .N, Fixed point theorem in \mathcal{M} -fuzzy metric spaces with property (E), Advances in Fuzzy Mathematics, Vol.1, No.1 (2006), 55-65.

[14] Singh .B and Chouhan .M. S, Common fixed points of compatible maps in fuzzy metric spaces, Fuzzy sets and systems, 115 (2000), 471-475.

[15] Veerapandi .T, Jeyaraman .M and Paul Raj Josph .J, Some fixed point and coincident point theorem in generalized \mathcal{M} -fuzzy metric space, Int. Journal of Math. Analysis, Vol.3, (2009), 627-635.

[16] Zadeh .L. A, Fuzzy sets, Information and Control, 8 (1965), 338-353.