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ABSTRACT 
The flow of blood in human circulatory system can be controlled by applying appropriate magnetic field. It is also well 
known that non-Newtonian nature of blood significantly influences the flows, particularly in the cases where blood 
vessels are curved, branching or narrow etc. Stenosis refers to localized narrowing of an artery and is a frequent result 
of arterial disease and is caused mainly due to intravascular atherosclerotic plaque which develops at the arterial wall 
and protrudes into the lumen of the vessel. Such constrictions disturb normal blood flow through the artery. Here study 
is made on the flow of blood through a stenosed artery with the effect of slip at the boundary in presence of transverse 
magnetic field considering blood as Casson fluid (non- Newtonian fluid). The equations of motion has have been solved 
numerically. The effect of various parameters on the flow characteristics like Hartmann number, Reynolds number has 
been discussed. Numerical results were obtained for different values of the Hartmann number M and Reynolds number 
Re. It is observed that the fluid velocity decreases as the Hartmann number increases.   
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1. INTRODUCTION 
 
It is well known that non-Newtonian nature of blood significantly influences the flows, particularly in the cases where 
blood vessels are curved, branching or narrow etc. Stenosis refers to localized narrowing of an artery and is a frequent 
result of arterial disease and is caused mainly due to intravascular atherosclerotic plaque which develops at the arterial 
wall and protrudes into the lumen of the vessel. Such constrictions disturb normal blood flow through the artery. There 
is considerable evidence that hydrodynamic factors can play a significant role in the development and progression of 
this disease. Several flow characteristics, such as wall shearing stress (Caro [31]), pressure (Taxon [181]) and 
turbulence (Wesolowski [190]) may have potential medical significance. Higher resistance to flow can also become 
increasingly important as the stenosis becomes more severe (May [111]). Although the potential importance of 
hydrodynamic factors has been recognized for many years, the study of the mechanics of flow in constricted tubes 
remains a formidable problem. To study the detail the flow in a stenosis Young [200] considered the flow in a middy 
constricted tube based on a highly simplified linear model which work extended by Forrester and Young [77] to include 
the effects of flow separation on a mild constriction. The flow of blood in human circulatory system can be controlled 
by applying appropriate magnetic field. Many researchers have shown that blood is an electrically conducting tube. The 
Lorentz’s force will act on the constituent particles of blood and this force will oppose the motion of the blood and thus 
reduces its velocity. This decelerated blood flow may help in the treatment of certain cardiovascular diseases and in the 
diseases with accelerated blood circulations such as hypertension, hemorrhages etc. Many works have been done in this 
field. Rathod and Gayatri [140] studied the conducting pulsatile blood flow with micro organisms represented by two 
fluid model through circular channel which diverges at a slow exponential rate under the magnetic field. It is suggested 
by Karchevski and Marochnik [99] that there is possibility of regulating moment of blood by application of an external 
magnetic field. It has been observed by many investigators that by the application of an external magnetic field, the 
biological systems are greatly affected. The effect of static magnetic field on the blood flow is studied by Suri and 
Puspa [177]. Ramachandra Rao Deshi kachar [137] have given an excellent review of a good number of works 
concerning the effect of a magnetic field on flow characteristic of blood.  
 
Morgan and Young [118] and Shukla [160] studied blood flow in stenosed artery without magnetic effect. They have 
considered no slip at the boundary. It is observed that under certain conditions, there exits a slip at the wall in blood 
flow. Effects of slip in blood flow through stenosed artery has been studied by Chaturani and Biswas [41] without  
________________________________________________________________________________________________ 

*Corresponding author: Dusmanta Kumar Sut*, *E-mail: sutdk001@yahoo.com 

http://www.ijma.info/�
mailto:sutdk001@yahoo.com�
mailto:sutdk001@yahoo.com�


Dusmanta Kumar Sut*/ STUDY OF BLOOD FLOW WITH EFFECTS OF SLIP IN ARTERIAL STENOSIS DUE TO PRESENCE OF 
TRANSVERSE MAGNETIC FIELD/ IJMA- 3(3), Mar.-2012, Page: 983-993 

© 2012, IJMA. All Rights Reserved                                                                                                                                                     984  

 
magnetic effect. Bhuyan and Hazarika [11] have studied its effect with magnetic effect. Although at high shear rates 
and in large diameter arises, blood behaves like a Newtonian fluid, but it is not so in narrow tubes. It has been observed 
that blood being a suspension of red cells in plasma (a Newtonian fluid) behaves like a non Newtonian fluid at low 
shear rate in smaller diameter tubes. Here an attempt is made to study the flow of blood through a stenosed artery with 
the effect of slip at the boundary in presence of transverse magnetic field considering blood as non- Newtonian fluid. 
 
2. MATHEMATICAL FORMULATION OF THE PROBLEM 
 
Steady laminar flow of blood through an axially symmetric stenosed artery in presence of a transverse magnetic field is 
considered (Fig. 1). The axial coordinate and velocity are ẑ  and û   respectively, and are considered to be positive in 

the downstream direction with Û  as centerline velocity. The radial coordinate r̂ and velocity v̂  are positive when 

directed outward from the centerline. The local radius of the axi symmetric tube is )ˆ(ˆ zR  and 0R  is the radius of the 

unconstricted sections in the upstream and downstream of the stenos is, B is the applied magnetic field in r̂  direction. 
The equations that govern the flow, under the assumed conditions are the continuity equation and the Navier-Stokes 
equation. Under the magnetic field applied in r̂  direction the equations in the axial and radial directions in 
dimensionless form become,  
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In order to proceed, three simplifying assumptions are made.  

(i) The terms due to the viscous component of the normal stress in the axial direction 
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 are negligible which has 

been extensively used in the analysis of non-uniform flow.  
(ii) The axial velocity is expressible as a suitable polynomial.  
(iii) The pressure gradient term can be eliminated since, 
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Multiplying (2) by r, rearranging and integrating over the cross section of the tube, we get the integral momentum 
equation. In the same manner, an integral energy equation is obtained by multiplying equation (2) by ru and integrating 
over the cross section. Using the above assumptions and combining the integral momentum and integral energy 
equations we get, 
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                                                                                             (4) 
The dimensionless polynomial velocity profile can be expressed as  
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On using the boundary conditions (i) to (iii) we get 
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Where F=R2U, G=R2us, us is slip velocity, when F=2 and us=0 in (6) parabolic profile is obtained. The blunted profile 
can be expressed as 
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Using the boundary condition (iv), equation (7) reduces to  
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When 2F+G=3, 0=λ  and with this restriction the blunted velocity profile equation (7) reduces to a polynomial 
profile. When 2F +G<3, λ is positive and real. When 2F+G>3, λ is imaginary. So, the blunted velocity profile, 
equation (7) will be valid for 2F+G<3 and for the case 2F+G≥ 3, the polynomial velocity profile equation (6) will be 
used to approximate the flow. 
 
The profile equations (6) and (8) are substituted into (4). Then it becomes 
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The primed quantities represent derivatives in the axial direction. The initial condition for solving (12) comes from the 
asumptio of poiseuille flow in far upstream of the stenosis,  
 
i.e., 2,1, ==−= URz α .                                                                                                       (9) 
 
The shear stress component at any distant r from the tube axis is given by 
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Expression for wall shear stress )( wτ can be obtained from the formula, 
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Also under high shear blood behaves as Newtonian fluid and in the neighborhood of the blood vessel wall, shear rate is 
high enough for the Newtonian assumption to hold good for normal blood. Also, toward the centre of the tube, the 
shear gradient tends to zero and the non-Newtonian behaviour will become prominent. Further, it is reported that blood 
has a finite yield stress )( yτ . From the above considerations, Cassson behavior of blood is found evident.  At tube wall 

(r=R), the shear stress is wτ  and at a certain distance from the tube axis i.e., along the stress axis, it is yτ , the yield 

stress which correspondence on the horizontal axis is cr , a critical radius (Fig 2). Thus their arises two cases viz., (i) if 

the shear stress rzτ  at a distance r, is not higher than he yield stress yτ , i.e., yrz ττ ≤ or crr ≤ , blood will not follow 

and (ii) if shear stress is not lower than its yield value i.e., yrz ττ ≥ or crr ≥ , blood flow will be possible.  
 
Using the above equation (14) and ycrz r ττ =)( , the expression for yτ  
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In between the stresses yτ and wτ there may arise two cases viz., wall shear stress greater and smaller than yield stress. 

If wy ττ ≥  i.e., if Rrc ≥  then no flow will occur, accordingly velocity function will result to  

0=u                                                    (13) 
 
And if wy ττ ≤  i.e., if Rrc ≤  then there will be flow and for that  
 

)(ruu =                                                   (14) 
 
Again, Casson’s equation may be reproduced in the following form: 
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      =0   yrz ττ ≤,                                                (16) 

Now, the vanishing of the strain rate, i.e., =γ 0, implies that 0=
dr
dv

, which on integration results to 

 v = constant = vc when  yrz ττ =                                               (17) 
Where vc is the core velocity at r=rc (core radius).  
 
Thus for blood flow when Rrc <  there will be two regions viz., crr ≤≤0 and Rrrc ≤≤ and it is, obvious, for the 
region between 0 and rc, equation representing the flow is  
 

0=
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which on integration provides v=vc for crr ≤≤0 indicating that velocity profile will be flat and for Rrrc ≤≤ ,  u  
will show deviations from the flat profile and Casson’s equation has to be applied for this domain of blood flow. From 
this question, it is easily found that 
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Which is the governing equation of the fluid flow and it has been integrated with the introduction of a velocity slip 
condition at the vessel wall. 
 
3. SOLUTION OF THE PROBLEM 
 
Using the slip velocity condition at the vessel wall 
 
v=vs at r=R                                                  (20) 
 
Where vs is a constant slip velocity at tube wall in the axial direction, equation (19) is integrated between r and R 
numerically. 
 
The solution of the equation is solved by numerically.  
 
From the above expression and others consideration velocity distribution Vz can be re written in the following style 
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Also the rate of volume flow can be obtained from 
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Young’s model: 
The particular stenosis geometry used was selected after Young [*] and is described by the expressions 
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where δ =(Stenosis height)/ R0 and Z0=(Stenosis length)/2R0. Three model stenosis with geometries defined in the 
above, but with different values of δ and Z0 were constructed for the experimental testes (Table 1). 
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Table 1 

Geometric parameters of the model Stenosis 
 

Model 
Numbers R0 δ  Z0 Percent Stenosis 

M-1 0.372 1/3 4 56 
M-2 0.372 2/3 4 89 
M-3 0.372 2/3 2 89 

 
For classification purposes the severity of a stenosis is often defined by the maximum reduction in lumen area 
expressed as a percentage (percent stenosis). Model M-1 represents a relatively mild stenosis with a 56 percent severity 
of constriction and a total length of 8R0. Model M-2 has the same length but is more severe with 89 percent 
constriction. To evaluate the effect of stenosis length, model M-3 was designed to have the same severity as M-2 but 
only half of its length. 
 
4. RESULTS AND DISCUSSION 
 
The problem under investigation is solved numerically using Shooting Method. Numerical calculations have been done 
for various combinations of parameters i.e., the Hartmann number M and Reynolds number Re with slip and no slip. 
The Young model is used in computing the centerline velocity U. After obtaining the centerline velocity U from (8), the 
axial velocity profiles (u) are computed directly by substituting U into (5) or (7). Then the value of u substituting in 
equation (19) the velocity profile v are computed. The wall shear stress Tw has been computed from the relation (11) 
for both slip and no slip case. 
 
Numerical results are shown graphically. It has been observed that the effect of the Hartmann number M and Reynolds 
number Re on the velocity field as well as on the wall shear stress is very prominent. 
 
It is observed that the centerline velocity U decreases with increasing Reynolds number at M=1.5 (Fig. 3). The nature 
of U is also same with no slip (Fig. 4). The centerline velocity U increases when the Hartmann number increases with 
slip at Re=50 (Fig. 1). The nature of U is same in no slip case also (Fig. 2). It is seen that when Hartmann number 
increases the axial velocity (v) decreases with slip (Fig. 5). A similar case occurs in no slip also (Fig. 6). The axial 
velocity increases when Reynolds number increases with slip (Fig. 7). A similar case occurs in no slip also (Fig. 8). 
 
The present problem reduces to the problem discussed by Chaturani [*] when M=0. It is observed that when the 
Hartmann number increases the fluid velocity and the wall shear stress is greatly affected. Numerical results agree well 
with their solution in non-magnetic case. The mathematical expressions may help medical practitioners to control the 
blood flow of a patient whose blood pressure is very high, by applying certain magnetic field.  

 
 

 
Fig. 1: Geometry of an arterial stenosis with axial velocity slip at wall. 
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Fig. 1: Variation of Center line Velocity for different Hartmann number at Re=50 

-3.75 -3.5 -3.25 -3 -2.75 -2.5 -2.25 -2 -1.75 -1.5 -1.25 -1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.25 3.5 3.75 4 

M=1 
M=2 
M=3 
M=4 

Fig. 2: Variation of Center line velocity for different Hartmann number at Re=60 with no slip 
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Fig. 3: Variation of center line velocity for different Reynolds numbers at M=1.5 
with slip 
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Fig. 4: Variation of center line velocity for different Reynolds numbers at M=1.5 with no slip 
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Fig. 5: Variation of Velocity profile for different Hartmann numbers at Re=50 with slip 
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Fig. 6: Variation of Velocity profile for different Hartmann number at Re=50 with no slip 
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