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ABSTRACT 

In this paper, we will define the chaotic tree with knots together with its adjacent and incidence matrices. The limit of 
foldings on it is deduced. The corresponding changes in the adjacent and incidence matrices under these 
transformations are achieved. 
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Left hand trefoil      Right hand trefoil        Hopf link       Singular trefoil knot 

Fig. (1) 
2- Tree with knots [5]: 
It is a connected graph that contains number of knots, see Fig. (2) 
 

________________________________________________________________________________________________ 
 
DEFINITIONS AND BACKGROUNDS: 
 
1- Knots [3]: 
A knot is a subset of 3- space homeomorphic to the unit circle, while the link is a union of finitely many disjoint knots. 
The individual knots that make up a link are called its components (so a knot is a link with just one component, i.e. a 
connected link). A singular knot is a knot with self-intersection 
 
Fig. (1) shows left handed trefoil, right handed trefoil, Hopf link and singular terfoil knot. 

 
Fig. (2) 

 
Where 𝐾𝐾0 ,𝐾𝐾1 indicates the knots in the graph .Both the adjacency 𝐴𝐴(𝑇𝑇𝐾𝐾)and incidence𝐼𝐼(𝑇𝑇𝐾𝐾) matrices representing the 
tree with knots takes the form 
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Such that the upper suffix1 in the adjacent matrix refers to the number of knots exist in the graph. 
________________________________________________________________________________________________ 
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3 -Folding [2]: 
 
Let f: G→ G′ be a map between any two graphs G and G′ (not necessary to be simple) such that if (u, v) ∈G, (f(u), 
f(v))∈G′. Then f is called a "topological folding” of G into G′ provided that d(f(u),f(v)) ≤ d(u, v) (or the number of 
vertices and edges are  decreased). 
 
MAIN RESULTS: 
 
1- Chaotic Knot: 
It is a knot carries many physical characters, Fig. (3). 

 
Chaotic left hand      Chaotic right hand       Chaotic hopf link       Chaotic singular trefoil 

trefoiltrefoil         knot         
Fig. (3) 

 
2- Chaotic tree with knots: 
    It is a tree with knots carries many physical characters, Fig. (4). 
 

 
Fig. (4) 

 
 Such that itsadjacent 𝐴𝐴(𝑇𝑇ℎ𝑘𝑘)and incidence 𝐼𝐼(𝑇𝑇ℎ𝑘𝑘)matrices are as follows’ 
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Folding of the chaotic tree with knots: 
 
*Folding of the chaotics: 
 
Here, the folding acts on the chaotic vertices, chaotic edges, and chaotic knots. The change in the chaotic tree with 
knots are deduced together with the change in its matrices. 
 
First: Folding of the chaotic vertices: 
 
Case (1): Identity case: 
In this case, the folding gives the original chaotic tree with knots without any change.It's adjacent matrix 𝐴𝐴(𝑇𝑇ℎ𝑘𝑘)and 
incidence matrix 𝐼𝐼(𝑇𝑇ℎ𝑘𝑘)will remain as they are, see the following Figure. 
 

 
Fig. (5) 
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Case (2): 
In this case, the folding acts on the chaotics of the vertices v⁰,v¹,v²,v³, we fold only one physical character to another 
one and the result is the same system but with decreasing of the number of physical character by one, such 
that 𝑓𝑓2𝑚𝑚�𝑣𝑣𝑗𝑗ℎ𝑖𝑖 � = 𝑣𝑣(𝑗𝑗−1)ℎ

𝑖𝑖 , where m=1,2...n , i=0,1,2,3 , j=1,2...∞. 
 

 
Fig. (6) 

 
where the chaotic incidence matrix  𝐼𝐼(𝑇𝑇ℎ𝑘𝑘)will not change, but the chaotic adjacent matrix 𝐴𝐴(𝑇𝑇ℎ𝑘𝑘) will be changed as 
follows: 
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Second: Folding of the chaotic edges: 
 
Here, the folding acts on the chaotics of the edges e⁰,e¹,e²., such that 𝑓𝑓3𝑚𝑚�𝑒𝑒𝑗𝑗ℎ𝑖𝑖 � = 𝑒𝑒(𝑗𝑗−1)ℎ

𝑖𝑖 , where m=1,2...n , i=0,1,2 , 
j=1,2...∞,See the following Fig. 
 
 

 
Fig. (7) 
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Such that 
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Third: Folding of the chaotic knots: 
 
As shown in the next Figure, the folding acts on the chaotics of the knots k⁰,k¹, such that 𝑓𝑓4𝑚𝑚�𝑘𝑘𝑗𝑗ℎ𝑖𝑖 � = 𝑘𝑘(𝑗𝑗−1)ℎ

𝑖𝑖 , where 
m=1,2...n , i=0,1 , j=1,2...∞.The final step of folding gives a 1- chaotic tree with knots(fuzzy tree with knots). 
 

 
Fig. (8) 
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It's incidence matrix )( k
hTI will not change. 
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*FOLDING OF THE GEOMETRY: 
 
Folding of the geometric tree with knots which requires to fold the corresponding chaotic tree with knots to each other, 
and the result is a new chaotic tree with knots. 
 
First: Folding of the geometric vertices: 
 
Case (1): In this case, the folding acts on the geometric vertex v⁰, which fold it on the vertex v¹ (which requires folding 
of e⁰) forming a knot k² such that f₅(v⁰)=v¹,f₅( e⁰)=k². 

 
Fig. (9) 

 
The chaotic adjacent and incident matrices resulting from the folding take the following form 
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Case (2): 
Let f₆: 𝑇𝑇ℎ𝑘𝑘→G, such that f₆(v³)=v².The result of folding is not a chaotic tree with knots, but a chaotic graph with 
multiple edge. 
 

 
Fig. (10) 

Its matrices will be changed. 
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As shown in the next Figure, the folding acts on the chaotics of the knots k⁰, k¹, such that where the upper suffix 2k 
refers to the existence of two knots connected to the edge, and 2012…∞ℎrefers to the multiple edge. 
 
Second: Folding of the geometric edges: 
 
Case (3): In this case, the folding acts on the edge e⁰, such that  f₇: 𝑇𝑇ℎ𝑘𝑘→𝑇𝑇ℎ𝑘𝑘 , f₇(e⁰)=e². The result of folding is a chaotic 
tree with knots, see the following Fig. 
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Fig. (11) 
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Case (4): Here, we fold the edge e² on the edge e¹, which consequently leads to folding of the vertex v³ on the vertex 
v², where f₈: 𝑇𝑇ℎ𝑘𝑘→𝑇𝑇ℎ𝑘𝑘 , f₈(e²)=e¹. 
 

 
Fig. (12) 

 
The change in it's matrices will be in the following form 
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Third: Folding of the geometric knots:

 
 
Case (5): 
 

 
 

Fig. (13) 
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Such that the lower suffix which exist in the matrices 012...∞h means that all the vertices and all the edges carries the 
same physical characters. 
 
Case (6): Here, the folding acts on the length of the knots k⁰, k¹, until it reaches the null knot. The result of the folding 
is the usual chaotic tree .See Fig. (14). 
 

 
 

Fig. (14) 
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Theorem (1): The chaotic tree with knots changed into the usual tree by using some types of folding. 
 
Proof: The proof is clear from the above discussion. 
 
Lemma: The matrices of the chaotic tree with knots changed also into the matrices of the usual tree under the folding 
transformation. 
 
Theorem (2): The chaotic tree with knots changes into the chaotic tree by using some geometric transformations. 
 
Proof: The proof comes directly from the above discussion. 
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