International Journal of Mathematical Archive-3(3), 2012, Page: 962-967

SMALL PQ-PRINCIPALLY INJECTIVE MODULES

S. Wongwai*

Department of Mathematics, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathumthani 12110, Thailand

*E-mail: wsarun@hotmail.com

(Received on: 16-02-12; Accepted on: 13-03-12)

ABSTRACT

Let M be a right R – module. A right R – module N is called small pseudo M – principally injective (briefly, small PM – principally injective) if, every R – monomorphism from an M – cyclic small submodule of M to N can be extended to an R – homomorphism from M to N. In this paper, we give some characterizations and properties of small pseudo quasi-principally injective modules.

2000 Mathematics Subject Classification: 16D50, 16D70, 16D80.

Key words and phrases: Small PQ-principally Injective Modules and Endomorphism Rings.

1. INTRODUCTION

Let R be a ring. A right R-module M is called *principally injective* (or P-*injective*) [6], if every R-homomorphism from a principal right ideal of R to M can be extended to an R-homomorphism from R to M. Equivalently, $l_M r_R(a) = Ma$ for all $a \in R$. Following [9], a right R-module M is called *quasiprincipally injective*, if every R-homomorphism from an M-cyclic submodule of M to M can be extended to M.

In [14], a right R – module M is called PPQ – *injective* if, every R – monomorphism from a principal submodule of M to M extends to an endomorphism of M. A right R – module N is called small *principally* M – *injective* (briefly, SP – M – *injective*) [13] if, every R – homomorphism from a small and principal submodule of M to N can be extended to an R – homomorphism from M to N. A right R – module M is called *small principally quasiinjective* (briefly, SPQ – *injective*) if it is SP – M – injective. In this note we introduce the definition of small PQ – principally injective modules and give some interesting results on these modules.

Throughout this paper, R will be an associative ring with identity and all modules are unitary right R – modules. For right R – modules M and N, $\operatorname{Hom}_{R}(M, N)$ denotes the set of all R – homomorphisms from M to N and $S = \operatorname{End}_{R}(M)$ denotes the endomorphism ring of M. A submodule X of M is said to be M – cyclic submodule of M if it is the image of an element of S. If X is a subset of M the right (resp. left) annihilator of X in R (resp. S) is denoted by $r_{R}(X)$ (resp. $l_{S}(X)$). By notations, $N \subset^{\oplus} M$, $N \subset^{e} M$, and $N \ll M$ we mean that N is a direct summand, an essential submodule and a superfluous submodule of M, respectively. We denote the Jacobson radical of M by J(M).

Following [1], a submodule K of a right R – module M is *superfluous* (or *small*) in M, abbreviated $K \ll M$, in case for every submodule L of M, K + L = M implies L = M.

It is clear that $kR \ll R$ if and only if $k \in J(R)$.

Corresponding author: S. Wongwai, *E-mail: wsarun@hotmail.com

2. SMALL PO-PRINCIPALLY INJECTIVE MODULES

Definition 2.1: Let M be a right R – module. A right R – module N is called *small pseudo* M – *principally* injective (briefly, small PM – principally injective) if, every R – monomorphism from an M – cyclic small submodule of M to N can be extended to an R – homomorphism from M to N. M is called *small pseudo quasi*principally injective (briefly, small PQ-principally injective) if, it is small PM – principally injective.

Example 2.2: Let $\mathbf{R} = \begin{pmatrix} F & F \\ 0 & F \end{pmatrix}$ where F is a field, $\mathbf{M}_{R} = \mathbf{R}_{R}$ and $\mathbf{N}_{R} = \begin{pmatrix} F & F \\ 0 & 0 \end{pmatrix}$.

Then N is small PM - principally injective.

Proof: It is clear that only $X = \begin{pmatrix} 0 & F \\ 0 & 0 \end{pmatrix}$ is the nonzero M-cyclic small submodule of M.

Let $\phi: X \to N$ be an R – monomorphism. Since $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \in X$, there exists $x_{11}, x_{12} \in F$ such that

$$\varphi\left(\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}\right) = \begin{pmatrix} \mathbf{x}_{11} & \mathbf{x}_{12} \\ 0 & 0 \end{pmatrix}.$$

Then

$$\varphi \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \varphi \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

= $\varphi \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} x_{11} & x_{12} \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & x_{12} \\ 0 & 0 \end{pmatrix}$

It follows that $x_{11} = 0$.

Define
$$\hat{\phi}: M \to N$$
 by $\hat{\phi} \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} = \begin{pmatrix} ax_{12} & bx_{12} \\ 0 & 0 \end{pmatrix}$ for every $a, b, c \in F$.

It is clear that $\hat{\phi}$ is an R – homomorphism and $\hat{\phi}$ extends ϕ .

Then N is small PM – principally injective.

Clearly, every X-cyclic submodule of X is an M-cyclic submodule of M for every M-cyclic submodule X of M . Then we have the following

Lemma 2.3:

- (1) N is small PM principally injective if and only if N is small PX principally injective for any M cyclic submodule X of M.
- (2) Every direct summand of small PM principally injective is also small PM principally injective.

Proof: (1) The sufficiency is trivial. For the necessity, let f(X) be an M-cyclic small submodule of X and let $\alpha: f(X) \rightarrow N$ be an R – monomorphism. Since $f(X) \ll M$ [1, Lemma 5.18], there exists an R – homomorphism $\hat{\alpha}: M \to N$ such that $\alpha = \hat{\alpha}_1 \iota_1$ where $\iota_1: f(X) \to X$ and $\iota_2: X \to M$ are the inclusion maps. Then α_1 , extends α .

(2) Let N be a small PM-principally injective module, $X \subset^{\oplus} N$, $s \in S$ with $s(M) \ll M$ and let $\alpha: \mathfrak{s}(M) \to X$ be an R-monomorphism. Let $\varphi: X \to N$ be the injection map. Since $\varphi \alpha$ is monic, there exists an R-homomorphism $\beta: M \to N$ such that $\varphi \alpha = \beta \iota$ where $\iota: s(M) \to M$ is the inclusion map. Then $\pi \beta$ extends α where $\pi: N \to X$ is the projection map. © 2012, IJMA. All Rights Reserved 963

Theorem 2.4: Let M be a right R – module. If every M – cyclic small submodule of M is projective, then every factor module of a small PM – principally injective module is small PM – principally injective.

Proof: Let N be a small PM-principally injective module, X a submodule of N, $s(M) \ll M$ and let $\phi: s(M) \rightarrow N/X$ be an R-monomorphism. Then by assumption, there exists an R-homomorphism $\hat{\phi}: s(M) \rightarrow N$ such that $\phi = \eta \hat{\phi}$ where $\eta: N \rightarrow N/X$ is the natural R-epimorphism. If $x \in \text{Ker}(\hat{\phi})$, then $\phi(x) = \eta \hat{\phi}(x) = X$ so x = 0 which shows that $\hat{\phi}$ is monic. Since N is small PM-principally injective, there exists an R-homomorphism $\beta: M \rightarrow N$ which is an extension of $\hat{\phi}$ to M. Then $\eta\beta$ is an extension of ϕ to M.

Let M be a right R – module with $S = End_{R}(M)$. Following [8], write

$$W(S) = \{s \in S : Ker(s) \subset^{e} M \}$$

It is known that W(S) is an ideal of S. A right R – module M is called a *principal self-generator* if every element $m \in M$ has the form $m = \gamma(m_1)$ for some $\gamma: M \to mR$.

Lemma 2.5: Let M be a small PQ-principally injective module. If Ker(s) = Ker(t), where $s, t \in S$ with $s(M) \ll M$, then $St \subset Ss$.

Proof: Let Ker(s) = Ker(t), where $s, t \in S$ with $s(M) \ll M$. Define $\varphi: s(M) \to M$ by $\varphi(s(m)) = t(m)$ for every $m \in M$. It is obvious that φ is an R-monomorphism.

Since M is small PQ – principally injective, let $\hat{\phi} \in S$ be an extension of ϕ .

Then $\hat{t} = \phi s = \hat{\phi} s \in Ss \text{ so } St \subset Ss$.

Proposition 2.6: Let M be a principal module which is a principal self-generator and $Soc(M_R) \subset^e M$. If M is small PQ – principally injective, then $J(S) \subset W(S)$.

Proof: Let $s \in J(S)$. If $Ker(s) \not\subset^e M$, then $Ker(s) \cap K = 0$ for some nonzero submodule K of M. Since $Soc(M_R) \subset^e M$, $Soc(M_R) \cap K \neq 0$. Then there exists a simple submodule kR of M such that $kR \subset Soc(M_R) \cap K$ [1, Corollary 9.10]. As M is a principal self-generator and kR is simple, kR = t(M) for some $t \in S$. It follows that Ker(st) = Ker(t). Since M is a principal module, $J(M) \ll M$ [11, 21.6] and we have $J(S)M \subset J(M)$, it follows that st(M) is a small submodule of M. Since M is small PQ – principally injective, $St \subset Sst$ by Lemma 2.5. Write t = gst where $g \in S$. It follows that (1-gs)t = 0 so $t = (1-gs)^{-1}0 = 0$, a contradiction.

Proposition 2.7: Let M be a principal nonsingular module which is a principal self-generator and $Soc(M_R) \subset^e M$. If M is small PQ – principally injective, then J(S) = 0.

Proof: Since $J(S) \subset W(S)$ by Proposition 2.6, we show that W(S) = 0.

Let $s \in W(S)$ and let $m \in M$. Define $\phi : R \to M$ by $\phi(r) = mr$ for every $r \in R$.

It is clear that ϕ is an R – homomorphism. Thus

$$r_{R}(s(m)) = \left\{ r \in R : s(mr) = 0 \right\}$$
$$= \left\{ r \in R : mr \in Ker(s) \right\}$$

© 2012, IJMA. All Rights Reserved

$$= \left\{ r \in \mathbf{R} : \phi(r) \in \operatorname{Ker}(s) \right\}$$
$$= \phi^{-1}(\operatorname{Ker}(s)).$$

It follows that $\phi^{-1}(\text{Ker}(s)) \subset^{e} R$ [3, Lemma 5.8(a)] so $r_{R}(s(m)) \subset^{e} R$. Thus $s(m) \in Z(M_{R}) = 0$ because M is nonsingular. As this is true for all $m \in M$,

we have s = 0. Hence W(S) = 0 as required.

Proposition 2.8: Let M be a small PQ – principally injective module and $s \in S$.

(1) If s(M) is a simple and small right R – module, then Ss is a simple left S – module.

(2) If $Ss_1 \oplus ... \oplus Ss_n$ is direct, $s_i \in S$ with $s_i(M) \ll M$, $(1 \le i \le n)$, then any R-monomorphism $\alpha: s_1(M) + ... + s_n(M) \to M$ has an extension in S.

Proof: (1) If A is a nonzero submodule of Ss and $0 \neq \alpha s \in A$, then $S\alpha s \subset A$. Note that $\alpha s(M)$ is a nonzero homomorphic image of the simple module s(M), then $\alpha s(M)$ is simple.

It is clear that $\alpha s(M) \ll M$. Define $\phi: \alpha s(M) \to M$ by $\phi(\alpha s(m)) = s(m)$ for every $m \in M$. Since $Ker(\alpha) \cap s(M) = 0$, ϕ is well-defined. It is clear that ϕ is an R-homomorphism. Since $\alpha s(M)$ is simple and ϕ is nonzero, $Ker(\phi) = 0$.

Then there exists an R – homomorphism $\hat{\phi} \in S$ is an extension of ϕ . Hence $s = \hat{\phi} \alpha s \in S \alpha s$. It follows that $Ss = S\alpha s$ so A = Ss.

(2) Since $\alpha |_{s_i(M)}$ is monic, for each *i*, there exists an R-homomorphism $\phi_i : M \to M$ such that $\phi_i s_i(m) = \alpha s_i(m)$ for all $m \in M$.

Since $(\sum_{i=1}^{n} s_{i})(M) \ll M$, $(\sum_{i=1}^{n} s_{i})(M) \subset \sum_{i=1}^{n} s_{i}(M)$ and $\alpha \Big|_{(\sum_{i=1}^{n} s_{i})(M)}$ is monic, α can be extended to $\phi: M \to M$ such that, for any $m \in M$,

$$\varphi(\sum_{i=1}^n s_i)(m) = \alpha(\sum_{i=1}^n s_i)(m) \, .$$

It follows that $\sum_{i=1}^{n} \phi s_i = \sum_{i=1}^{n} \phi_i s_i$. Since $Ss_1 \oplus ... \oplus Ss_n$ is direct, $\phi s_i = \phi_i s_i$ for all $1 \le i \le n$. Therefore ϕ is an extension of α .

Theorem 2.9: Let M be a small PQ – principally injective module, $s, t \in S$ with $s(M) \ll M$. (1) If s(M) embeds in t(M), then Ss is an image of St.

(2) If $s(M) \simeq t(M)$, then $Ss \simeq St$.

Proof: (1) Let $f: s(M) \to t(M)$ be an R-monomorphism. Since M is small PQ-principally injective, there exists $\hat{f} \in S$ such that \hat{f} extends f.

Let $\sigma: St \to Ss$ defined by $\sigma(ut) = u\hat{f}s$ for every $u \in S$. Since $\hat{f}s(M) \subset t(M)$, σ is well-defined. It is clear that σ is an S-homomorphism. Note that $fs(M) = \hat{f}s(M) \ll M$. Since f is monic, Ker(s) = Ker(fs) and hence by Lemma 2.5, $Ss \subset Sfs$. Then $s \in Sfs \subset \sigma(St)$.

(2) Let $f: s(M) \rightarrow t(M)$ be an R-isomorphism. Since M is small PQ-principally injective, f can be extended to $\hat{f}: M \to M$. Define $\sigma: St \to Ss$ by $\sigma(ut) = u\hat{f}s$ for every $u \in S$. It is clear that σ is an S-epimorphism. If $ut \in Ker(\sigma)$, then $0 = \sigma(ut) = u\hat{fs} = ufs$. Since Im(fs) = Im(t), ut = 0. This shows that σ is monic.

Proposition 2.10: Let M be a principal, small PQ – principally injective module which is a principal self-generator. Then $\operatorname{Soc}(M_R) \subset r_M(J(S))$.

Proof: Let mR be a simple submodule of M. Suppose $\alpha(m) \neq 0$ for some $\alpha \in J(S)$. As M is a principal selfgenerator, $mR = \sum_{s \in I} s(M)$ for some $I \subset S$.

Since mR is simple, mR = s(M) for some $0 \neq s \in I$. Then $\alpha s \neq 0$ and Ker(αs) = Ker(s). Since M is small PQ – principally injective and $\alpha s(M)$ is a small submodule of M, $Ss \subset S\alpha s$ by Lemma 2.5. Write $s = \beta \alpha s$ where $\beta \in S$. Then $(1 - \beta \alpha)s = 0$ so $s = (1 - \beta \alpha)^{-1}0 = 0$, a contradiction.

Following [5], a ring R is called *semiregular* if R/J(R) is regular and idempotents can be lifted modulo J(R). Equivalently, R is semiregular if and only if for each element $a \in R$, there exists $e^2 = e \in Ra$ such that $a(1-e) \in J(R)$.

Proposition 2.11: Let M be a principal, small PQ – principally injective module.

(1) If S is local, then $J(S) = \{s \in S : \text{Ker}(s) \neq 0\}$.

(2) If S is semiregular, then for every $s \in S \setminus J(S)$, there exists a nonzero idempotent $\alpha \in Ss$ such that $\operatorname{Ker}(s) \subset \operatorname{Ker}(\alpha)$ and $\operatorname{Ker}(s(1-\alpha)) \neq 0$.

Proof: (1) Since S is local, $Ss \neq S$ for any $s \in J(S)$. If $s \in J(S)$ and Ker(s) = 0, then by Lemma 2.5, $S \subseteq Ss$ because $s(M) \ll M$. It follows that S = Ss, which is a contradiction. This shows that $J(S) \subset \{s \in S: Ker(s) \neq 0\}$. The other inclusion is clear.

(2) Let $s \in S \setminus J(S)$. Then there exists $\alpha^2 = \alpha \in Ss$ such that $s(1-\alpha) \in J(S)$. Then $\alpha \neq 0$ and $Ker(s) \subset Ker(\alpha)$. If $\text{Ker}(s(1-\alpha)) = 0$, then $S \subset Ss(1-\alpha)$ by Lemma 2.5. It follows that $gs(1-\alpha) = 1_M$ for some $g \in S$. It follows that $\alpha = 0$, a contradiction.

REFERENCES

[1] F. W. Anderson and K. R. Fuller, "Rings and Categories of Modules", Graduate Texts in Math.No.13, Springerverlag, New York, 1992.

[2] N. V. Dung, D. V. Huynh, P. F. Smith and R. Wisbauer, "Extending Modules", Pitman, London, 1994.

[3] A. Facchini, "Module Theory", Birkhauser Verlag, Basel, Boston, Berlin, 1998.

[4] S. H. Mohamed and B. J. Muller, "Continuous and Discrete Modules", London Math Soc. Lecture Note Series 14, Cambridge Univ. Press, 1990.

[5] W. K. Nicholson, Semiregular modules and rings, Canad. J. Math. 28(1976), 105-1120.

[6] W. K. Nicholson and M. F. Yousif, Principally injective rings, J. Algebra, 174(1995), 77--93.

[7] W. K. Nicholson and M. F. Yousif, Mininjective rings, J. Algebra, 187(1997), 548--578.

[8] W. K. Nicholson, J. K. Park and M. F. Yousif, Principally quasi-injective modules, Comm. Algebra, 27:4 (1999),1683--1693. 966 © 2012, IJMA. All Rights Reserved

[9] N. V. Sanh, K. P. Shum, S. Dhompongsa and S. Wongwai, On *quasi-principally injective modules*, Algebra Coll.6: 3(1999), 269--276.

[10] L.V. Thuyet, and T. C. Quynh, On *small injective rings*, simple-injective and quasi-Frobenius rings, Acta Math. Univ. Comenianae, Vol.78 (2), (2009) pp. 161-172.

[11] R. Wisbauer, "Foundations of Module and Ring Theory", Gordon and Breach London, Tokyo e.a., 1991.

[12] S. Wongwai, On the endomorphism ring of a semi-injective module, Acta Math. Univ. Comenianae, Vol.71, 1(2002), pp. 27-33.

[13] S. Wongwai, Small Principally Quasi-injective modules, Int. J. Contemp. Math. Sciences, Vol.6, no. 11, 527-534.

[14] Z. Zhu, Pseudo PQ-injective modules, Trk J Math, 34(2010), 1-8.
