International Journal of Mathematical Archive-3(3), 2012, Page: 962-967 (C) MMA Available online through www.ijma.info ISSN 2229-5046

SMALL PQ-PRINCIPALLY INJECTIVE MODULES

S. Wongwai*
Department of Mathematics, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Pathumthani 12110, Thailand
*E-mail: wsarun@hotmail.com

(Received on: 16-02-12; Accepted on: 13-03-12)

Abstract

Let M be a right R - module. A right R - module N is called small pseudo M - principally injective (briefly, small PM - principally injective) if, every R - monomorphism from an M - cyclic small submodule of M to N can be extended to an R - homomorphism from M to N . In this paper, we give some characterizations and properties of small pseudo quasi-principally injective modules.

2000 Mathematics Subject Classification: 16D50, 16D70, 16D80.
Key words and phrases: Small PQ-principally Injective Modules and Endomorphism Rings.

1. INTRODUCTION

Let R be a ring. A right R - module M is called principally injective (or P -injective) [6], if every R - homomorphism from a principal right ideal of R to M can be extended to an R - homomorphism from R to M. Equivalently, $l_{M} r_{R}(a)=M a$ for all $a \in R$. Following [9], a right R-module M is called quasiprincipally injective, if every R - homomorphism from an M - cyclic submodule of M to M can be extended to M.

In [14], a right R - module M is called PPQ - injective if, every R - monomorphism from a principal submodule of M to M extends to an endomorphism of M . A right R - module N is called small principally M - injective (briefly, SP - M - injective) [13] if, every R - homomorphism from a small and principal submodule of M to N can be extended to an R - homomorphism from M to N . A right R - module M is called small principally quasiinjective (briefly, SPQ - injective) if it is $\mathrm{SP}-\mathrm{M}$ - injective. In this note we introduce the definition of small PQ - principally injective modules and give some interesting results on these modules.

Throughout this paper, R will be an associative ring with identity and all modules are unitary right R - modules. For right R - modules M and N , $\operatorname{Hom}_{\mathrm{R}}(\mathrm{M}, \mathrm{N})$ denotes the set of all R - homomorphisms from M to N and $\mathrm{S}=\operatorname{End}_{\mathrm{R}}(\mathrm{M})$ denotes the endomorphism ring of M . A submodule X of M is said to be $\mathrm{M}-$ cyclic submodule of M if it is the image of an element of S. If X is a subset of M the right (resp. left) annihilator of X in R (resp. S) is denoted by $r_{R}(X)$ (resp. $l_{S}(X)$). By notations, $N \subset^{\oplus} M, N \subset{ }^{e} M$, and $N \ll M$ we mean that N is a direct summand, an essential submodule and a superfluous submodule of M , respectively. We denote the Jacobson radical of M by $\mathrm{J}(\mathrm{M})$.

Following [1], a submodule K of a right R - module M is superfluous (or small) in M , abbreviated $\mathrm{K} \ll \mathrm{M}$, in case for every submodule L of $M, K+L=M$ implies $L=M$.

It is clear that $k R \ll R$ if and only if $k \in J(R)$.

* Corresponding author: S. Wongwai*,* E-mail: wsarun@hotmail.com

2. SMALL PQ-PRINCIPALLY INJECTIVE MODULES

Definition 2.1: Let M be a right R -module. A right R -module N is called small pseudo M -principally injective (briefly, small PM - principally injective) if, every R -monomorphism from an M -cyclic small submodule of M to N can be extended to an R - homomorphism from M to N . M is called small pseudo quasiprincipally injective (briefly, small PQ-principally injective) if, it is small PM - principally injective.

Example 2.2: Let $\mathrm{R}=\left(\begin{array}{ll}\mathrm{F} & \mathrm{F} \\ 0 & \mathrm{~F}\end{array}\right)$ where F is a field, $\mathrm{M}_{\mathrm{R}}=\mathrm{R}_{\mathrm{R}}$ and $\mathrm{N}_{\mathrm{R}}=\left(\begin{array}{ll}\mathrm{F} & \mathrm{F} \\ 0 & 0\end{array}\right)$.
Then N is small PM - principally injective.
Proof: It is clear that only $X=\left(\begin{array}{ll}0 & F \\ 0 & 0\end{array}\right)$ is the nonzero M - cyclic small submodule of M.
Let $\varphi: X \rightarrow N$ be an R - monomorphism. Since $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right) \in X$, there exists $X_{11}, x_{12} \in F$ such that

$$
\varphi\left(\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\right)=\left(\begin{array}{cc}
\mathrm{x}_{11} & \mathrm{x}_{12} \\
0 & 0
\end{array}\right)
$$

Then

$$
\begin{aligned}
\varphi\left(\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\right. & =\varphi\left(\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\right) \\
& =\varphi\left(\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)\right)\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
\mathrm{x}_{11} & \mathrm{X}_{12} \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)=\left(\begin{array}{cc}
0 & \mathrm{x}_{12} \\
0 & 0
\end{array}\right)
\end{aligned}
$$

It follows that $X_{11}=0$.
Define $\hat{\varphi}: M \rightarrow N$ by $\hat{\varphi}\left(\left(\begin{array}{cc}a & b \\ 0 & c\end{array}\right)\right)=\left(\begin{array}{cc}\mathrm{ax}_{12} & b x_{12} \\ 0 & 0\end{array}\right)$ for every $a, b, c \in \mathrm{~F}$.

It is clear that $\hat{\varphi}$ is an R - homomorphism and $\hat{\varphi}$ extends φ.
Then N is small PM - principally injective.
Clearly, every X - cyclic submodule of X is an M - cyclic submodule of M for every M - cyclic submodule X of M . Then we have the following

Lemma 2.3:
(1) N is small PM - principally injective if and only if N is small PX - principally injective for any M - cyclic submodule X of M .
(2) Every direct summand of small PM - principally injective is also small PM - principally injective.

Proof: (1) The sufficiency is trivial. For the necessity, let $f(X)$ be an M - cyclic small submodule of X and let $\alpha: f(X) \rightarrow N$ be an R - monomorphism. Since $f(X) \ll M$ [1, Lemma 5.18], there exists an R - homomorphism $\hat{\alpha}: M \rightarrow N$ such that $\alpha=\widehat{\alpha} \imath_{2} \imath_{1}$ where $\quad v_{1}: f(X) \rightarrow X \quad$ and $\quad v_{2}: X \rightarrow M \quad$ are the inclusion maps. Then $\widehat{\alpha} l_{2}$ extends α.
(2) Let N be a small $P M$-principally injective module, $X \subset^{\oplus} N, s \in S$ with $s(M) \ll M$ and let $\alpha: s(M) \rightarrow X$ be an R - monomorphism. Let $\varphi: X \rightarrow N$ be the injection map. Since $\varphi \alpha$ is monic, there exists an R - homomorphism $\beta: \mathrm{M} \rightarrow \mathrm{N}$ such that $\varphi \alpha=\beta \mathrm{l}$ where $\mathrm{\imath}: \mathrm{s}(\mathrm{M}) \rightarrow \mathrm{M}$ is the inclusion map. Then $\pi \beta$ extends α where $\pi: N \rightarrow X$ is the projection map.

Theorem 2.4: Let M be a right R - module. If every M - cyclic small submodule of M is projective, then every factor module of a small PM - principally injective module is small PM - principally injective.

Proof: Let N be a small PM - principally injective module, X a submodule of $\mathrm{N}, \mathrm{s}(\mathrm{M}) \ll \mathrm{M}$ and let $\varphi: s(\mathrm{M}) \rightarrow \mathrm{N} / \mathrm{X}$ be an R -monomorphism. Then by assumption, there exists an R -homomorphism $\hat{\varphi}: s(M) \rightarrow N$ such that $\varphi=\eta \hat{\varphi}$ where $\eta: N \rightarrow N / X$ is the natural $R-$ epimorphism. If $x \in \operatorname{Ker}(\hat{\varphi})$, then $\varphi(x)=\eta \hat{\varphi}(x)=X$ so $x=0$ which shows that $\hat{\varphi}$ is monic. Since N is small $P M$ - principally injective, there exists an R - homomorphism $\beta: M \rightarrow N$ which is an extension of $\hat{\varphi}$ to M. Then $\eta \beta$ is an extension of φ to M.

Let M be a right $\mathrm{R}-$ module with $\mathrm{S}=\operatorname{End}_{\mathrm{R}}(\mathrm{M})$. Following [8], write

$$
\mathrm{W}(\mathrm{~S})=\left\{\mathrm{s} \in \mathrm{~S}: \operatorname{Ker}(\mathrm{s}) \subset^{\mathrm{e}} \mathrm{M}\right\} .
$$

It is known that $\mathrm{W}(\mathrm{S})$ is an ideal of S . A right R - module M is called a principal self-generator if every element $\mathrm{m} \in \mathrm{M}$ has the form $\mathrm{m}=\gamma\left(\mathrm{m}_{1}\right)$ for some $\gamma: \mathrm{M} \rightarrow \mathrm{mR}$.

Lemma 2.5: Let M be a small PQ - principally injective module. If $\operatorname{Ker}(\mathrm{s})=\operatorname{Ker}(\mathrm{t})$, where $\mathrm{s}, \mathrm{t} \in \mathrm{S}$ with $\mathrm{s}(\mathrm{M}) \ll \mathrm{M}$, then $\mathrm{St} \subset \mathrm{Ss}$.

Proof: Let $\operatorname{Ker}(\mathrm{s})=\operatorname{Ker}(\mathrm{t})$, where $\mathrm{s}, \mathrm{t} \in \mathrm{S}$ with $\mathrm{s}(\mathrm{M}) \ll \mathrm{M}$. Define $\varphi: \mathrm{s}(\mathrm{M}) \rightarrow \mathrm{M}$ by $\varphi(\mathrm{s}(\mathrm{m}))=\mathrm{t}(\mathrm{m})$ for every $\mathrm{m} \in \mathrm{M}$. It is obvious that φ is an R-monomorphism.

Since M is small $P Q$ - principally injective, let $\hat{\varphi} \in S$ be an extension of φ.
Then

$$
\mathrm{t}=\varphi \mathrm{s}=\hat{\varphi} \mathrm{s} \in \mathrm{Ss} \text { so } \mathrm{St} \subset \mathrm{Ss} .
$$

Proposition 2.6: Let M be a principal module which is a principal self-generator and $\operatorname{Soc}\left(M_{R}\right) \subset^{e} M$. If M is small $P Q$ - principally injective, then $J(S) \subset W(S)$.

Proof: Let $s \in J(S)$. If $\operatorname{Ker}(s) \not \not^{e} M$, then $\operatorname{Ker}(s) \cap K=0$ for some nonzero submodule K of M. Since $\operatorname{Soc}\left(M_{R}\right) \subset^{e} M, \operatorname{Soc}\left(M_{R}\right) \cap K \neq 0$. Then there exists a simple submodule $k R$ of M such that $k R \subset \operatorname{Soc}\left(M_{R}\right) \cap K$ [1, Corollary 9.10]. As M is a principal self-generator and $k R$ is simple, $k R=t(M)$ for some $t \in S$. It follows that $\operatorname{Ker}(s t)=\operatorname{Ker}(t)$. Since M is a principal module, $J(M) \ll M[11,21.6]$ and we have $J(S) M \subset J(M)$, it follows that $s t(M)$ is a small submodule of M. Since M is small $P Q$ - principally injective, St \subset Sst by Lemma 2.5. Write $t=g s t$ where $g \in S$. It follows that $(1-\mathrm{gs}) \mathrm{t}=0$ so $\mathrm{t}=(1-\mathrm{gs})^{-1} 0=0$, a contradiction.

Proposition 2.7: Let M be a principal nonsingular module which is a principal self-generator and $\operatorname{Soc}\left(M_{R}\right) \subset^{e} M$. If M is small $P Q-$ principally injective, then $J(S)=0$.

Proof: Since $\mathrm{J}(\mathrm{S}) \subset \mathrm{W}(\mathrm{S})$ by Proposition 2.6 , we show that $\mathrm{W}(\mathrm{S})=0$.
Let $\mathrm{s} \in \mathrm{W}(\mathrm{S})$ and let $\mathrm{m} \in \mathrm{M}$. Define $\varphi: \mathrm{R} \rightarrow \mathrm{M}$ by $\varphi(\mathrm{r})=\mathrm{mr}$ for every $\mathrm{r} \in \mathrm{R}$.
It is clear that φ is an R - homomorphism. Thus

$$
\begin{aligned}
\mathrm{r}_{\mathrm{R}}(\mathrm{~s}(\mathrm{~m})) & =\{\mathrm{r} \in \mathrm{R}: \mathrm{s}(\mathrm{mr})=0\} \\
& =\{\mathrm{r} \in \mathrm{R}: \mathrm{mr} \in \operatorname{Ker}(\mathrm{~s})\}
\end{aligned}
$$

$$
\begin{aligned}
& =\{r \in \mathrm{R}: \varphi(\mathrm{r}) \in \operatorname{Ker}(\mathrm{s})\} \\
& =\varphi^{-1}(\operatorname{Ker}(\mathrm{~s})) .
\end{aligned}
$$

It follows that $\varphi^{-1}(\operatorname{Ker}(\mathrm{~s})) \subset^{e} \mathrm{R}[3$, Lemma $5.8(a)]$ so $\mathrm{r}_{\mathrm{R}}(\mathrm{s}(\mathrm{m})) \subset{ }^{e} \mathrm{R}$. Thus $\mathrm{s}(\mathrm{m}) \in \mathrm{Z}\left(\mathrm{M}_{\mathrm{R}}\right)=0$ because M is nonsingular. As this is true for all $\mathrm{m} \in \mathrm{M}$,
we have $s=0$. Hence $W(S)=0$ as required.
Proposition 2.8: Let M be a small $P Q$ - principally injective module and $s \in S$.
(1) If $s(M)$ is a simple and small right R - module, then $S s$ is a simple left S - module.
(2) If $\mathrm{Ss}_{1} \oplus \ldots \oplus \mathrm{Ss}_{\mathrm{n}}$ is direct, $\mathrm{s}_{\mathrm{i}} \in \mathrm{S}$ with $\mathrm{s}_{\mathrm{i}}(\mathrm{M}) \ll \mathrm{M},(1 \leq \mathrm{i} \leq \mathrm{n})$, then any R-monomorphism $\alpha: s_{1}(M)+\ldots+s_{n}(M) \rightarrow M$ has an extension in S.

Proof: (1) If A is a nonzero submodule of $S s$ and $0 \neq \alpha s \in A$, then $S \alpha s \subset A$. Note that $\alpha s(M)$ is a nonzero homomorphic image of the simple module $s(M)$, then $\alpha s(M)$ is simple.

It is clear that $\alpha s(M) \ll M$. Define $\varphi: \alpha s(M) \rightarrow M$ by $\varphi(\alpha s(m))=s(m)$ for every $m \in M$. Since $\operatorname{Ker}(\alpha) \cap s(M)=0, \varphi$ is well-defined. It is clear that φ is an R - homomorphism. Since $\alpha s(M)$ is simple and φ is nonzero, $\operatorname{Ker}(\varphi)=0$.

Then there exists an R -homomorphism $\hat{\varphi} \in \mathrm{S}$ is an extension of φ. Hence $\mathrm{S}=\hat{\varphi} \alpha \mathrm{S} \in \mathrm{S} \alpha \mathrm{s}$. It follows that Ss $=S \alpha$ s so $A=S s$.
(2) Since $\left.\alpha\right|_{s_{i}(M)}$ is monic, for eachi,there exists an R-homomorphism $\varphi_{i}: M \rightarrow M$ such that $\varphi_{\mathrm{i}} \mathrm{s}_{\mathrm{i}}(\mathrm{m})=\alpha \mathrm{s}_{\mathrm{i}}(\mathrm{m})$ for all $\mathrm{m} \in \mathrm{M}$.
$\operatorname{Since}\left(\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{s}_{\mathrm{i}}\right)(\mathrm{M}) \ll \mathrm{M},\left(\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{s}_{\mathrm{i}}\right)(\mathrm{M}) \subset \sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{s}_{\mathrm{i}}(\mathrm{M}) \quad$ and $\left.\quad \alpha\right|_{\left(\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{s}_{\mathrm{i}}\right)(\mathrm{M})}$ is monic, α can be extended to $\varphi: M \rightarrow M$ such that, for any $m \in M$,

$$
\varphi\left(\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{~s}_{\mathrm{i}}\right)(\mathrm{m})=\alpha\left(\sum_{\mathrm{i}=1}^{\mathrm{n}} \mathrm{~s}_{\mathrm{i}}\right)(\mathrm{m})
$$

It follows that $\sum_{i=1}^{\mathrm{n}} \varphi \mathrm{S}_{\mathrm{i}}=\sum_{\mathrm{i}=1}^{\mathrm{n}} \varphi_{\mathrm{i}} \mathrm{S}_{\mathrm{i}}$. Since $\mathrm{Ss}_{1} \oplus \ldots \oplus \mathrm{Ss}_{\mathrm{n}}$ is direct, $\varphi \mathrm{s}_{\mathrm{i}}=\varphi_{\mathrm{i}} \mathrm{S}_{\mathrm{i}}$ for all $1 \leq \mathrm{i} \leq \mathrm{n}$. Therefore φ is an extension of α.

Theorem 2.9: Let M be a small $P Q$ - principally injective module, $s, t \in S$ with $s(M) \ll M$.
(1) If $s(M)$ embeds in $t(M)$, then $S s$ is an image of $S t$.
(2) If $s(M) \simeq t(M)$, then $S s \simeq S t$.

Proof: (1) Let $\mathrm{f}: \mathrm{s}(\mathrm{M}) \rightarrow \mathrm{t}(\mathrm{M})$ be an R - monomorphism. Since M is small PQ - principally injective, there exists $\hat{f} \in S$ such that \hat{f} extends f.

Let $\sigma: S t \rightarrow$ Ss defined by $\sigma(u t)=u \hat{f}$ for every $u \in S$. Since $\hat{f}(M) \subset t(M), \sigma$ is well-defined. It is clear that σ is an S -homomorphism. Note that $\mathrm{fs}(\mathrm{M})=\hat{\mathrm{f}}(\mathrm{M}) \ll \mathrm{M}$. Since f is monic, $\operatorname{Ker}(\mathrm{s})=\operatorname{Ker}(\mathrm{fs})$ and hence by Lemma 2.5, $\mathrm{Ss} \subset \mathrm{Sfs}$. Then $\mathrm{S} \in \mathrm{Sfs} \subset \sigma(\mathrm{St})$.
(2) Let $f: s(M) \rightarrow t(M)$ be an R - isomorphism. Since M is small $P Q$ - principally injective, f can be extended to $\hat{\mathrm{f}}: \mathrm{M} \rightarrow \mathrm{M}$. Define $\sigma: \mathrm{St} \rightarrow \mathrm{Ss}$ by $\sigma(\mathrm{ut})=\mathrm{uf} s$ for every $u \in \mathrm{~S}$. It is clear that σ is an S - epimorphism. If ut $\in \operatorname{Ker}(\sigma)$, then $0=\sigma(u t)=u \hat{f} s=u f s$. Since $\operatorname{Im}(f s)=\operatorname{Im}(t)$, ut $=0$. This shows that σ is monic.

Proposition 2.10: Let M be a principal, small PQ - principally injective module which is a principal self-generator. Then $\operatorname{Soc}\left(M_{R}\right) \subset r_{M}(J(S))$.

Proof: Let $m R$ be a simple submodule of M. Suppose $\alpha(m) \neq 0$ for some $\alpha \in J(S)$. As M is a principal selfgenerator, $\mathrm{mR}=\sum_{\mathrm{s} \in \mathrm{I}} \mathrm{s}(\mathrm{M})$ for some $\mathrm{I} \subset \mathrm{S}$.

Since $m R$ is simple, $m R=s(M)$ for some $0 \neq s \in I$. Then $\alpha s \neq 0$ and $\operatorname{Ker}(\alpha s)=\operatorname{Ker}(s)$. Since M is small PQ - principally injective and $\alpha s(M)$ is a small submodule of $M, S s \subset S \alpha s$ by Lemma 2.5. Write $s=\beta \alpha s$ where $\beta \in S$. Then $(1-\beta \alpha) s=0$ so $s=(1-\beta \alpha)^{-1} 0=0$, a contradiction.

Following [5], a ring R is called semiregular if $R / J(R)$ is regular and idempotents can be lifted modulo $J(R)$. Equivalently, R is semiregular if and only if for each element $a \in R$, there exists $e^{2}=e \in R a$ such that $a(1-e) \in J(R)$.

Proposition 2.11: Let M be a principal, small PQ - principally injective module.
(1) If S is local, then $J(S)=\{s \in S: \operatorname{Ker}(s) \neq 0\}$.
(2) If S is semiregular, then for every $S \in S \backslash J(S)$, there exists a nonzero idempotent $\alpha \in S$ such that $\operatorname{Ker}(\mathrm{s}) \subset \operatorname{Ker}(\alpha)$ and $\operatorname{Ker}(\mathrm{s}(1-\alpha)) \neq 0$.

Proof: (1) Since S is local, $S s \neq S$ for any $s \in J(S)$. If $s \in J(S)$ and $\operatorname{Ker}(s)=0$, then by Lemma $2.5, S \subset S s$ because $s(M) \ll M$. It follows that $S=S s$, which is a contradiction. This shows that $J(S) \subset\{s \in S: \operatorname{Ker}(s) \neq 0\}$. The other inclusion is clear.
(2) Let $s \in S \backslash J(S)$. Then there exists $\alpha^{2}=\alpha \in S s$ such that $s(1-\alpha) \in J(S)$. Then $\alpha \neq 0$ and $\operatorname{Ker}(s) \subset \operatorname{Ker}(\alpha)$. If $\operatorname{Ker}(s(1-\alpha))=0$, then $S \subset S s(1-\alpha)$ by Lemma 2.5. It follows that $g s(1-\alpha)=1_{M}$ for some $g \in S$. It follows that $\alpha=0$, a contradiction.

REFERENCES

[1] F. W. Anderson and K. R. Fuller, "Rings and Categories of Modules", Graduate Texts in Math.No.13, Springerverlag, New York, 1992.
[2] N. V. Dung, D. V. Huynh, P. F. Smith and R. Wisbauer, "Extending Modules", Pitman, London, 1994.
[3] A. Facchini, "Module Theory", Birkhauser Verlag, Basel, Boston, Berlin, 1998.
[4] S. H. Mohamed and B. J. Muller, "Continuous and Discrete Modules", London Math Soc. Lecture Note Series 14, Cambridge Univ. Press, 1990.
[5] W. K. Nicholson, Semiregular modules and rings, Canad. J. Math. 28(1976), 105-1120.
[6] W. K. Nicholson and M. F. Yousif, Principally injective rings, J. Algebra, 174(1995), 77--93.
[7] W. K. Nicholson and M. F. Yousif, Mininjective rings, J. Algebra, 187(1997), 548--578.
[8] W. K. Nicholson, J. K. Park and M. F. Yousif, Principally quasi-injective modules, Comm. Algebra, 27:4 (1999),1683--1693.
© 2012, IJMA. All Rights Reserved

S. Wongwai*/ Small PQ-principally Injective Modules/ IJMA- 3(3), Mar.-2012, Page: 962-967

[9] N. V. Sanh, K. P. Shum, S. Dhompongsa and S. Wongwai, On quasi-principally injective modules, Algebra Coll.6: 3(1999), 269--276.
[10] L.V. Thuyet, and T. C. Quynh, On small injective rings, simple-injective and quasi-Frobenius rings, Acta Math. Univ. Comenianae, Vol. 78 (2), (2009) pp. 161-172.
[11] R. Wisbauer, "Foundations of Module and Ring Theory", Gordon and Breach London, Tokyo e.a., 1991.
[12] S. Wongwai, On the endomorphism ring of a semi-injective module, Acta Math. Univ. Comenianae, Vol.71, 1(2002), pp. 27-33.
[13] S. Wongwai, Small Principally Quasi-injective modules, Int. J. Contemp. Math. Sciences, Vol.6, no. 11, 527-534.
[14] Z. Zhu, Pseudo PQ-injective modules, Trk J Math, 34(2010), 1-8.

