On a - Generalized Star Regular Closed Sets in Bitopological Spaces

K. Nandhini*, G. K. Chandrika and P. Priyadharsini

Department of Mathematics, Avinashilingam Institute for Home Science and Higher Education for Women, University, Coimbatore, India E-mail: nandhiniudhaya@ymail.com, chandrikaprem@gmail.com and dharsinimat@gmail.com

(Received on: 05-03-12; Accepted on: 26-03-12)

ABSTRACT

The aim of this paper is to introduce the concept of αg^*r -closed sets in bitopological spaces and the newly related concept of pairwise αg^*r -continuous mappings. Also αG^*RO -connectedness and αG^*RO -compactness are introduced in bitopological spaces and some of their properties are established.

Keywords: αg^*r -closed sets, pairwise αg^*r -continuous, αG^*RO -connectedness, αG^*RO -compactness.

Mathematics Subject Classification: 54C10, 54C08, 54C05, 54E55.

1 INTRODUCTION

The concept of bitopological spaces was introduced by Kelly [4] in 1963. Separation axioms in bitopological spaces were first studied by him. Fukutake [3] introduced generalized closed sets and pairwise generalized closure operator in bitopological spaces in 1986. On the other hand Chandrasekhara Rao and Kannan [1] introduced the concept of generalized star regular closed sets in bitopological spaces. Vadivel, Vijayalakshmi and Krishnaswamy [7] introduced the concepts of α -generalized star closed sets in bitopological spaces. The connectedness and components were introduced by Pervin [5] in bitopological spaces. A detailed study of connectedness in bitopological spaces was carried out by Reilly [6]. Fletcher, Hoyle III, and Patty introduced the notion of a pairwise compact bitopological spaces and proved that every pairwise Hausdorff pairwise compact space is pairwise regular.

In this paper, we introduce the concept of αg^*r -closed sets in bitopological spaces and the newly related concept of pairwise αg^*r -continuous mappings. Also αG^*RO -connectedness and αG^*RO -compactness are introduced in bitopological spaces and some of their properties are established.

2 PRELIMINARIES

Throughout this paper we shall denote by (X, τ_1, τ_2) a bitopological space. For any subset $A \subseteq X$, τ_i -int(A) and τ_i -cl(A) denote the interior of A and the closure of A with respect to τ_i for i = 1, 2.

We shall require the following known definitions:

Definition 2.1: Let (X, τ) be a topological spaces. A subset A of X is called

- a regular closed set if A = cl(int(A)).
- an α -open set if $A \subseteq int(cl(int(A)))$.

Let (X, τ_1, τ_2) or simply X denote a bitopological space. For any subset $A \subseteq X$, the intersection (resp. union) of all τ_i -regular closed sets containing A (resp. τ_i -regular open sets contained in A) is called the τ_i -regular closure (resp. τ_i -regular interior) of A, denoted by τ_i -rcl(A) (resp. τ_i -rint(A)), i=1,2. The regular closure and regular interior of B relative to A with respect to the topology τ_i are written as τ_i -rcl $_A(B)$ and τ_i -rint $_A(B)$ for i=1,2, respectively. The set of all τ_i -regular closed (resp. τ_i -regular open) sets in X is denoted by τ_i - $RC(X, \tau_1, \tau_2)$, (resp. τ_i - $RO(X, \tau_1, \tau_2)$), i=1,2. The set of all τ_i - α -open sets in X is denoted by τ_i - α O(X, τ_1, τ_2).

Definition 2.2: Let (X, τ_1, τ_2) be a bitopological space. A subset A of X is called

• $\tau_1\tau_2$ - α generalized star closed (briefly, $\tau_1\tau_2$ - α g* closed) in X if τ_2 -cl(A) $\subseteq U$ whenever $A \subseteq U$ and U is τ_1 - α -open in X.

- $\tau_1\tau_2$ - α generalized star open (briefly, $\tau_1\tau_2$ - α g* open) in X if $U \subseteq \tau_2$ -int(A) whenever $U \subseteq A$ and U is τ_1 - α -closed in X.
- $\tau_1\tau_2$ -generalized star regular closed (briefly, $\tau_1\tau_2$ -g*r closed) in X if τ_2 -rcl(A) \subseteq U whenever A \subseteq U and U is τ_1 -open in X.
- $\tau_1\tau_2$ -generalized star regular open (briefly, $\tau_1\tau_2$ -g*r open) in X if $U \subseteq \tau_2$ -rint (A) whenever $U \subseteq A$ and U is τ_1 -closed in X.

Definition 2.3: Let (X, τ_1, τ_2) and (Y, σ_1, σ_2) be bitopological spaces. A function $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is *pairwise continuous* if $f: (X, \tau_1) \to (Y, \sigma_1)$ and $f: (X, \tau_2) \to (Y, \sigma_2)$ are continuous.

$3 \tau_1 \tau_2$ - α generalized star regular closed sets

Definition 3.1: A set A of bitopological space (X, τ_1, τ_2) is called τ_i - α generalized star regular closed (briefly, τ_i - α g*r closed) if τ_i -rcl(A) \subseteq U whenever A \subseteq U and U is τ_i - α -open in X, i = 1, 2. The complement of a τ_i - α g*r closed set is said to be τ_i - α g*r open.

For any subset $A \subseteq X$, the intersection (resp. union) of all τ_i - αg^*r closed sets containing A (resp. τ_i - αg^*r open sets contained in A) is called the τ_i - αg^*r closure (resp. τ_i - αg^*r interior) of A, denoted by τ_i - αg^*r cl(A) (resp. τ_i - αg^*r int(A)), i = 1, 2. The set of all τ_i - αg^*r closed (resp. τ_i - αg^*r open) sets in X is denoted by τ_i - $\alpha G^*RC(X, \tau_1, \tau_2)$ (resp. τ_i - $\alpha G^*RO(X, \tau_1, \tau_2)$), i = 1, 2.

Theorem 3.2: Every τ_i -regular closed set is τ_i - αg^*r closed.

Definition 3.3: A set A of a bitopological space (X, τ_1, τ_2) is called $\tau_1\tau_2$ - α generalized star regular closed (briefly, $\tau_1\tau_2$ - αg^*r closed) if τ_2 -rcl(A) \subseteq U whenever A \subseteq U and U is τ_1 - α -open in X. The complement of a $\tau_1\tau_2$ - αg^*r closed set is said to be $\tau_1\tau_2$ - αg^*r open. The set of all $\tau_1\tau_2$ - αg^*r closed sets in X is denoted by $\tau_1\tau_2$ - $\alpha G^*RC(X)$ and the set of all $\tau_1\tau_2$ - αg^*r open sets in X is denoted by $\tau_1\tau_2$ - $\alpha G^*RO(X)$.

Example 3.4: Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X, \{a\}\}$ and $\tau_2 = \{\phi, X, \{b\}\}$. Then $\phi, X, \{b, c\}$ are $\tau_1\tau_2$ - αg^*r closed and $\{a\}$, $\{b\}$, $\{c\}$, $\{a, b\}$, $\{a, c\}$ are not $\tau_1\tau_2$ - αg^*r closed.

Theorem 3.5: Every τ_2 -regular closed set is $\tau_1\tau_2$ - αg^*r closed.

Proof: Let A be a τ_2 -regular closed set. Let $A \subseteq U$ and U be τ_1 - α -open in X. Since A is τ_2 -regular closed in X, we have τ_2 -rcl(A) = $A \subseteq U$. Therefore, A is $\tau_1\tau_2$ - αg^*r closed set.

Theorem 3.6: If A and B are $\tau_1\tau_2$ - αg^*r closed sets then $A \cup B$ is $\tau_1\tau_2$ - αg^*r closed.

Proof: Suppose that A and B are $\tau_1\tau_2$ - αg^*r closed. Let U be τ_1 - α -open and A \cup B \subseteq U. Since A \cup B \subseteq U, we have A \subseteq U and B \subseteq U. Since A and B are $\tau_1\tau_2$ - αg^*r closed sets, we have τ_2 -rcl(A) \subseteq U and τ_2 -rcl(B) \subseteq U. Therefore, $[\tau_2$ -rcl(A)] \cup $[\tau_2$ -rcl(B)] \subseteq U. Since $[\tau_2$ -rcl(A)] \cup $[\tau_2$ -rcl(B)] = τ_2 -rcl(A \cup B), we have τ_2 -rcl(A \cup B) \subseteq U. Hence A \cup B is $\tau_1\tau_2$ - αg^*r closed.

Remark 3.7: The converse of the above theorem is not true in general as can be seen from the following example.

Example 3.8: Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X, \{a\}, \{b, c\}\}$ and $\tau_2 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$. Let $A = \{a\}$ and $B = \{b\}$. Then $A \cup B = \{a, b\}$ is $\tau_1\tau_2$ - αg^*r closed. But $A = \{a\}$ is not $\tau_1\tau_2$ - αg^*r closed.

Remark 3.9: Intersection of two $\tau_1\tau_2$ - αg^*r closed sets need not be $\tau_1\tau_2$ - αg^*r closed as can be seen from the following example.

Example 3.10: Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X, \{a\}, \{b, c\}\}$ and $\tau_2 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$. Let $A = \{a, b\}$ and $B = \{a, c\}$. Then $A \cap B = \{a\}$ is not $\tau_1\tau_2 - \alpha g^*r$ closed. But $A = \{a, b\}$ and $B = \{a, c\}$ are $\tau_1\tau_2 - \alpha g^*r$ closed.

Definition 3.11: Let (X, τ_1, τ_2) be a bitopological space. A collection of subsets of X is said to be τ_i -regular locally finite, if for each point x in X there is a τ_i -regular open set U containing X such that U intersects only finitely many of the sets in the collection.

Theorem 3.12: If $\{A_i, i \in I\}$ is a τ_j -regular locally finite family, then τ_j -rcl $[\cup(A_i)] = \cup \tau_j$ -rcl $[A_i]$.

Theorem 3.13: The arbitrary union of $\tau_1\tau_2$ - αg^*r closed sets A_i , $i \in I$ in a bitopological space (X, τ_1, τ_2) is $\tau_1\tau_2$ - αg^*r closed if the family $\{A_i, i \in I\}$ is τ_2 -regular locally finite.

Proof: Let $\{A_i, i \in I\}$ be τ_2 -regular locally finite and A_i be $\tau_1\tau_2$ - αg^*r closed in X for each $i \in I$. Let $\cup A_i \subseteq U$ and U be τ_1 - α -open in X. Then $A_i \subseteq U$ and U is τ_1 - α -open in X for each i. Since A_i is $\tau_1\tau_2$ - αg^*r closed in X for each $i \in I$, we have τ_2 -rcl $(A_i) \subseteq U$. Consequently, $\cup [\tau_2$ -rcl $(A_i)] \subseteq U$.

Since the family $\{A_i, i \in I\}$ is τ_2 -regular locally finite, by Theorem 3.12, τ_2 -rcl $[U(A_i)] = U[\tau_2$ -rcl $(A_i)] \subseteq U$. Therefore, UA_i is $\tau_1\tau_2$ - αg^*r closed in X.

Theorem 3.14: The arbitrary intersection of $\tau_1\tau_2$ - αg^*r open sets A_i , $i \in I$ in a bitopological space (X, τ_1, τ_2) is $\tau_1\tau_2$ - αg^*r open if the family $\{A_i^c, i \in I\}$ is τ_2 -regular locally finite.

Proof: Let $\{A_i^c, i \in I\}$ be τ_2 -regular locally finite and A_i be $\tau_1\tau_2$ - αg^*r open in X, for each $i \in I$. Then A_i^c is $\tau_1\tau_2$ - αg^*r closed in X, for each $i \in I$. Hence by Theorem 3.13, we have $\cup (A_i^c)$ is $\tau_1\tau_2$ - αg^*r closed in X. Consequently, $(\cap (A_i))^c$ is $\tau_1\tau_2$ - αg^*r closed in X. Therefore, $\cap A_i$ is $\tau_1\tau_2$ - αg^*r open in X.

Theorem 3.15: Let A be a subset of a bitopological space (X, τ_1, τ_2) . If A is $\tau_1\tau_2$ - αg^*r closed then τ_2 -rcl(A) – A contains no nonempty τ_1 - α -closed set.

Proof: Suppose that A is $\tau_1\tau_2$ - αg^*r closed. Let F be a τ_1 - α -closed set such that $F \subseteq \tau_2$ -rcl(A) – A. We shall show that F = φ . Since $F \subseteq \tau_2$ -rcl(A) – A, we have $A \subseteq F^c$ and $F \subseteq \tau_2$ -rcl(A). Since F is a τ_1 - α -closed set, we have F^c is a τ_1 - α -open. Since A is $\tau_1\tau_2$ - αg^*r closed, we have τ_2 -rcl(A) $\subseteq F^c$.

Thus $F \subseteq [\tau_2\text{-rcl}(A)]^c = X - [\tau_2\text{-rcl}(A)]$. Hence $F \subseteq [\tau_2\text{-rcl}(A)] \cap [X - [\tau_2\text{-rcl}(A)]] = \phi$. Therefore, $F = \phi$. Hence $\tau_2\text{-rcl}(A) - A$ contains no nonempty $\tau_1\text{-}\alpha\text{-closed}$ sets.

Theorem 3.16: Let A be a $\tau_1\tau_2$ - αg^*r closed set. Then A is τ_2 -closed in X if and only if τ_2 -cl(A) – A is τ_1 - α -closed in X.

Proof: Suppose that A is $\tau_1\tau_2$ - αg^*r closed. Let A be τ_2 -closed. Then τ_2 -cl(A) = A. Therefore, τ_2 -cl(A) – A = ϕ is τ_1 - α -closed.

Conversely, suppose that A is $\tau_1\tau_2$ - αg^*r closed and τ_2 -cl(A) – A is τ_1 - α -closed. Since τ_2 -cl(A) $\subseteq \tau_2$ -rcl(A), we have τ_2 -cl(A) – A, for any subset A of X. Since A is $\tau_1\tau_2$ - αg^*r closed, we have τ_2 -cl(A) – A = ϕ , by Theorem 3.15. Hence A is τ_2 -closed.

Theorem 3.17: Let A and B be subsets such that $A \subseteq B \subseteq \tau_2\text{-rcl}(A)$. If A is $\tau_1\tau_2\text{-}\alpha g^*r$ closed then B is $\tau_1\tau_2\text{-}\alpha g^*r$ closed.

Proof: Let A and B be subsets such that $A \subseteq B \subseteq \tau_2\text{-rcl}(A)$. Suppose that A is $\tau_1\tau_2\text{-}\alpha g^*r$ closed. Let $B \subseteq U$ and U be $\tau_1\text{-}\alpha\text{-}open$ in X. Since $A \subseteq B$ and $B \subseteq U$, we have $A \subseteq U$. Since A is $\tau_1\tau_2\text{-}\alpha g^*r$ closed, we have $\tau_2\text{-rcl}(A) \subseteq U$. Since B $\subseteq \tau_2\text{-rcl}(A)$, we have $\tau_2\text{-rcl}(B) \subseteq \tau_2\text{-rcl}(\tau_2\text{-rcl}(A)) = \tau_2\text{-rcl}(A) \subseteq U$. Therefore B is $\tau_1\tau_2\text{-}\alpha g^*r$ closed.

 $\textbf{Theorem 3.18:} \text{ If } A \text{ is } \tau_1\tau_2 - \alpha g^*r \text{ closed and } A \subseteq B \subseteq \tau_2 - rcl(A) \text{ then } \tau_2 - rcl(B) - B \text{ contains no nonempty } \tau_1 - \alpha - closed \text{ set.}$

Proof: Follows from Theorem 3.17 and 3.15.

Theorem 3.19: Suppose that τ_1 - $\alpha O(X, \tau_1, \tau_2) \subseteq \tau_2$ - $RC(X, \tau_1, \tau_2)$. Then every subset of X is $\tau_1\tau_2$ - αg^*r closed.

Proof. Let A be a subset of X. Let $A \subseteq U$ and U be τ_1 - α -open in X. Since τ_1 - $\alpha O(X, \tau_1, \tau_2) \subseteq \tau_2$ -RC(X, τ_1, τ_2), we have U is τ_2 -regular closed in X. Therefore, τ_2 -rcl(U) = U. Since $A \subseteq U$, we have τ_2 -rcl(A) $\subseteq \tau_2$ -rcl(U) = U. Therefore, A is $\tau_1\tau_2$ - αg^*r closed.

Theorem 3.20: Let $B \subseteq A$ where A is τ_1 - α -open and $\tau_1\tau_2$ - αg^*r closed. Then B is $\tau_1\tau_2$ - αg^*r closed relative to A if and only if B is $\tau_1\tau_2$ - αg^*r closed in X.

Proof: Let $B\subseteq A$ where A is τ_1 - α -open and $\tau_1\tau_2$ - αg^*r closed. Suppose that B is $\tau_1\tau_2$ - αg^*r closed relative to A. We shall show that B is $\tau_1\tau_2$ - αg^*r closed in X. Let $B\subseteq U$ and U is τ_1 - α -open in X. Since A and U are τ_1 - α -open sets in X, we have $A\cap U$ is τ_1 - α -open in A. Since $B\subseteq U$ and $B\subseteq A$, we have $B\subseteq U\cap A$. Since B is $\tau_1\tau_2$ - αg^*r closed relative to A, we have τ_2 -rclA(B) A0. Since A1 A2 A3 and A4 is a4 and A4 is a5.

closed in X). Since $B \subseteq A$, $\tau_2\text{-rcl}(B) \subseteq \tau_2\text{-rcl}(A)$. Hence $\tau_2\text{-rcl}(B) \subseteq A$. Therefore, $\tau_2\text{-rcl}(B) \cap A = \tau_2\text{-rcl}(B) \Rightarrow \tau_2\text{-rcl}(B) = \tau_2\text{-rcl}(B)$. Hence $\tau_2\text{-rcl}(B) \subseteq A \cap U$. Thus B is $\tau_1\tau_2\text{-}\alpha g^*r$ closed.

Conversely, suppose that B is $\tau_1\tau_2$ - αg^*r closed in X. We shall show that B is $\tau_1\tau_2$ - αg^*r closed relative to A. Let $B \subseteq U$ and U be τ_1 - α -open in A. Since U is τ_1 - α -open in A, we have $U = V \cap A$, where V is τ_1 - α -open in X.

Hence $B \subseteq U \subseteq V$. Since B is $\tau_1\tau_2$ - αg^*r closed in X, τ_2 -rcl(B) $\subseteq V$. Hence τ_2 -rcl(B) \cap A \subseteq V \cap A, which in turn implies that τ_2 -rcl_A(B) \subseteq V \cap A = U. Therefore B is $\tau_1\tau_2$ - αg^*r closed relative to A.

Theorem 3.21: For each $x \in X$, the singleton $\{x\}$ is either τ_1 - α -closed or $\tau_1\tau_2$ - αg^*r open.

Proof: Let $x \in X$ and suppose that $\{x\}$ is not τ_1 - α -closed. Then $X - \{x\}$ is not τ_1 - α -open. Consequently, X is the only τ_1 - α -open set containing the set $X - \{x\}$. Therefore $X - \{x\}$ is $\tau_1\tau_2$ - αg^*r closed. Hence $\{x\}$ is $\tau_1\tau_2$ - αg^*r open.

4 Pairwise αg*r-continuous Functions

Definition 4.1: A function $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is pairwise αg^*r -continuous if $f^1(U)$ is $\tau_i \tau_j - \alpha g^*r$ closed in X for each σ_i -closed set U in $Y, i \neq j$ and i, j = 1, 2.

Example 4.2: Let $X = \{a, b, c\}$ and $Y = \{p, q, r\}$. Consider the topologies $\tau_1 = \{\phi, X, \{a\}, \{b, c\}\}, \tau_2 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}, \sigma_1 = \{\phi, Y, \{p\}\} \text{ and } \sigma_2 = \{\phi, Y, \{q\}, \{p\}, \{p, q\}\}.$ Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a function defined by f(a) = q, f(b) = r, f(c) = p. Then f is pairwise αg^*r -continuous.

Theorem 4.3: The following are equivalent for a function $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$

- (a) f is pairwise αg*r-continuous
- (b) $f^{-1}(A)$ is $\tau_i \tau_j \alpha g^* r$ open for each σ_j -open set A in Y, $i \neq j$ and i, j = 1, 2.

Proof: (a) \Rightarrow (b)

Suppose that f is pairwise αg^*r -continuous. Let A be σ_j -open in Y. Then A^c is σ_j -closed in Y. Since f is pairwise αg^*r -continuous, we have $f^{-1}(A^c)$ is $\tau_i\tau_j$ - αg^*r closed in X, $i \neq j$ and i, j = 1, 2. Consequently, $f^{-1}(A)$ is $\tau_i\tau_j$ - αg^*r open in X, $i \neq j$ and i, j = 1, 2.

 $(b) \Rightarrow (a)$

Suppose that $f^1(A)$ is $\tau_i\tau_j$ - αg^*r open for each σ_j -open set A in Y, $i \neq j$ and i, j = 1, 2. Let V be σ_j -closed in Y. Then V^c is σ_j -open in Y. Therefore, by our assumption, $f^1(V^c)$ is $\tau_i\tau_j$ - αg^*r open in X, $i \neq j$ and i, j = 1, 2. Hence $f^1(V)$ is $\tau_i\tau_j$ - αg^*r closed in X, $i \neq j$ and i, j = 1, 2. Therefore f is pairwise αg^*r -continuous.

Definition 4.4: Let (X, τ_1, τ_2) and (Y, σ_1, σ_2) be bitopological spaces. A function $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is pairwise regular continuous if $f^{-1}(U)$ is τ_i -regular closed in X for each σ_i -closed set U in Y, i = 1, 2.

Theorem 4.5: Every pairwise regular continuous function is pairwise αg*r-continuous.

Proof: Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be pairwise regular continuous. Let U be a σ_j -closed set in Y. Then $f^1(U)$ is τ_j -regular closed in X. Since every τ_j -regular closed set is $\tau_i \tau_j - \alpha g^* r$ closed, $i \neq j$ and i, j = 1, 2, we have f is pairwise $\alpha g^* r$ -continuous.

Definition 4.6: A function $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is pairwise αg^*r -irresolute if $f^1(U)$ is $\tau_i \tau_j - \alpha g^*r$ closed for each $\sigma_i \sigma_j - \alpha g^*r$ closed set in $Y, i \neq j$ and i, j = 1, 2.

Example 4.7: Let $X = \{a, b, c\}$ and $Y = \{p, q, r\}$. Consider the topologies $\tau_1 = \{\phi, X, \{a\}, \{b, c\}\}, \tau_2 = \{\phi, X, \{a\}, \{b\}\}, \{a, b\}\}, \sigma_1 = \{\phi, Y, \{p\}\}, \sigma_2 = \{\phi, Y, \{p\}\}, \{q\}, \{p, q\}\}$. Let $f : (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be a function defined by $f(a) = \{g, f(b) = r, f(c) = p\}$. Then f is pairwise $g = \{g, f(b) = r, f(c) = p\}$.

Concerning the composition of functions, we have the following.

Theorem 4.8: Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ and $g: (Y, \sigma_1, \sigma_2) \to (Z, \mu_1, \mu_2)$ be two functions.

- (1) If f and g are pairwise αg^*r -irresolute, then $g \circ f$ is also pairwise αg^*r -irresolute.
- (2) If f is pairwise αg^*r -irresolute and g is pairwise αg^*r -continuous then $g \circ f$ is pairwise αg^*r -continuous.
- (3) If f is pairwise αg^*r -continuous and g is pairwise continuous then $g \circ f$ is pairwise αg^*r -continuous.

Proof: (1) Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ and $g: (Y, \sigma_1, \sigma_2) \to (Z, \mu_1, \mu_2)$ be pairwise αg^*r -irresolute. Let U be $\mu_i \mu_j = \alpha g^*r$ closed in Z, $i \neq j$ and i, j = 1, 2. Since g is pairwise αg^*r -irresolute, $g^{-1}(U)$ is $\sigma_i \sigma_j - \alpha g^*r$ closed in Y, $i \neq j$ and i, j = 1, 2. Therefore, $g \circ f$ is pairwise αg^*r -irresolute.

- (2) Let $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be pairwise αg^*r -irresolute and $g:(Y, \sigma_1, \sigma_2) \to (Z, \mu_1, \mu_2)$ be pairwise αg^*r -continuous. Let U be μ_j -closed in Z. Since g is pairwise αg^*r -continuous, $g^{-1}(U)$ is $\sigma_i \sigma_j \alpha g^*r$ closed set in Y, $i \neq j$ and i, j=1,2. Since f is pairwise αg^*r -irresolute, $f^{-1}(g^{-1}(U)) = (g \circ f)^{-1}(U)$ is $\tau_i \tau_j \alpha g^*r$ closed in X, $i \neq j$ and i, j=1,2. Therefore $g \circ f$ is pairwise αg^*r -continuous.
- (3) Let $f: (X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ be pairwise αg^*r -continuous and $g: (Y, \sigma_1, \sigma_2) \to (Z, \mu_1, \mu_2)$ be pairwise continuous. Let U be μ_j -closed in Z. Since g is pairwise continuous, $g^{-1}(U)$ is σ_j -closed in Y. Since f is pairwise αg^*r -continuous, $(g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U))$ is $\tau_i \tau_i \alpha g^*r$ closed in X, $i \neq j$ and i, j = 1, 2. Therefore $g \circ f$ is pairwise αg^*r -continuous.

Remark 4.9: The composition of two pairwise αg^*r -continuous functions need not be a pairwise αg^*r -continuous function as can be seen from the following example:

Example 4.10: Let $X = \{p, q, r\}$, $Y = \{a, b, c\}$ and $Z = \{s, t, u\}$. Consider $\tau_1 = \{\phi, X, \{p\}\}$, $\tau_2 = \{\phi, X, \{p\}\}$, $\{q\}$, $\{p\}$, $\{q\}$,

5 Pairwise αG*RO-connected spaces

Definition 5.1: A bitopological space (X, τ_1, τ_2) is *pairwise* αG^*RO -connected if X cannot be expressed as the union of two non empty disjoint sets A and B such that $[A \cap \tau_1 - \alpha g^* rcl(B)] \cup [\tau_2 - \alpha g^* rcl(A) \cap B] = \varphi$.

Suppose X can be so expressed then X is called *pairwise* αG^*RO -disconnected and we write X = A|B and call this pairwise αG^*RO -separation of X.

Example 5.2: Let $X = \{a, b, c, d\}$, $\tau_1 = \{\phi, X, \{a\}, \{a, b\}\}$ and $\tau_2 = \{\phi, X, \{a, b\}, \{a, b, c\}, \{a, b, d\}\}$. Then (X, τ_1, τ_2) is pairwise $\alpha G * RO$ -connected.

Example 5.3: Let $X = \{a, b, c\}$, $\tau_1 = \{\phi, X, \{a\}, \{b, c\}\}$ and $\tau_2 = \{\phi, X, \{a\}, \{b\}, \{a, b\}\}$. Then (X, τ_1, τ_2) is pairwise αG^*RO -disconnected, since X = A|B gives a pairwise αG^*RO -separation of X.

Theorem 5.4: The following conditions are equivalent for any bitopological space:

- (a) X is pairwise αG^*RO -connected.
- (b) X cannot be expressed as the union of two nonempty disjoint sets A and B such that A is τ_1 - αg^*r open and B is τ_2 - αg^*r open
- (c) X contains no nonempty proper subset which is both τ_1 - αg^*r open and τ_2 - αg^*r closed.

Proof: (a) \Rightarrow (b)

Assume that X is pairwise αG^*RO -connected. Suppose that X can be expressed as the union of two nonempty disjoint sets A and B such that A is τ_1 - αg^*r open and B is τ_2 - αg^*r open. Then $A \cap B = \phi$. Consequently $A \subseteq B^c$. Then τ_2 - $\alpha g^*rcl(A) \subseteq \tau_2$ - $\alpha g^*rcl(B^c) = B^c$. Therefore, τ_2 - $\alpha g^*rcl(A) \cap B = \phi$. Similarly we can prove $A \cap \tau_1$ - $\alpha g^*rcl(B) = \phi$. Hence $[A \cap \tau_1$ - $\alpha g^*rcl(B)] \cup [\tau_2$ - $\alpha g^*rcl(A) \cap B] = \phi$. This is a contradiction. Hence X cannot be expressed as the union of two nonempty disjoint sets A and B such that A is τ_1 - αg^*r open and B is τ_2 - αg^*r open.

 $(b) \Rightarrow (c)$

Assume that X cannot be expressed as the union of two nonempty disjoint sets A and B such that A is τ_1 - αg^*r open and B is τ_2 - αg^*r open. Suppose that X contains a nonempty proper subset A which is both τ_1 - αg^*r open and τ_2 - αg^*r closed. Then $X = A \cup A^c$, where A is τ_1 - αg^*r open, A^c is τ_2 - αg^*r open and A and A^c are disjoint. This is a contradiction to our assumption. Therefore, X contains no nonempty proper subset which is both τ_1 - αg^*r open and τ_2 - αg^*r closed.

 $(c) \Rightarrow (d)$

Assume that X contains no nonempty proper subset which is both τ_1 - αg^*r open and τ_2 - αg^*r closed. Suppose that X is pairwise αG^*RO -disconnected. Then X can be expressed as the union of two nonempty disjoint sets A and B such that $[A \cap \tau_1$ - $\alpha g^*rcl(B)] \cup [\tau_2$ - $\alpha g^*rcl(A) \cap B] = \phi$. Since $A \cap B = \phi$, we have $A = B^c$ and $B = A^c$.

Since τ_2 - $\alpha g^*rcl(A) \cap B = \phi$, we have τ_2 - $\alpha g^*rcl(A) \subseteq B^c$. Hence τ_2 - $\alpha g^*rcl(A) \subseteq A$. Therefore, A is τ_2 - αg^*r closed. Similarly, B is τ_1 - αg^*r closed.

Since $A=B^c$, A is τ_1 - αg^*r open. Therefore, there exists a nonempty proper set A which is both τ_1 - αg^*r open and τ_2 - αg^*r closed. This is a contradiction to our assumption. Therefore X is pairwise αG^*RO -connected.

Theorem 5.5: If A is a pairwise αG^*RO -connected subset of a bitopological space (X, τ_1, τ_2) which has the pairwise αG^*RO -separation X = C|D, then $A \subseteq C$ or $A \subseteq D$.

Proof: Suppose that (X, τ_1, τ_2) has the pairwise αG^*RO -separation X = C|D. Then $X = C \cup D$ where C and D are two nonempty disjoint sets such that $[C \cap \tau_1\text{-}\alpha g^*rcl(D)] \cup [\tau_2\text{-}\alpha g^*rcl(C) \cap D] = \phi$. Since $C \cap D = \phi$, we have $C = D^c$ and $D = C^c$. Now $[(C \cap A) \cap \tau_1\text{-}\alpha g^*rcl(D \cap A)] \cup [\tau_2\text{-}\alpha g^*rcl(C \cap A) \cap (D \cap A)] \subseteq [C \cap \tau_1\text{-}\alpha g^*rcl(D)] \cup [\tau_2\text{-}\alpha g^*rcl(C) \cap D] = \phi$. Hence $A = (C \cap A)|(D \cap A)$ is a pairwise αG^*RO -separation of A. Since A is pairwise αG^*RO -connected, we have either $(C \cap A) = \phi$ or $(D \cap A) = \phi$. Consequently, $A \subseteq C^c$ or $A \subseteq D^c$. Therefore, $A \subseteq C$ or $A \subseteq D$.

Theorem 5.6: If A is pairwise αG^*RO -connected and $A \subseteq B \subseteq \tau_1$ - $\alpha g^*rcl(A) \cap \tau_2$ - $\alpha g^*rcl(A)$ then B is pairwise αG^*RO -connected.

Proof: Suppose that B is not pairwise αG^*RO -connected. Then $B=C\cup D$ where C and D are two nonempty disjoint sets such that $[C\cap \tau_1\text{-}\alpha g^*rcl(D)]\cup [\tau_2\text{-}\alpha g^*rcl(C)\cap D]=\phi$. Since A is pairwise αG^*RO -connected by Theorem 5.5, we have $A\subseteq C$ or $A\subseteq D$. Suppose $A\subseteq C$. Then $D=D\cap B\subseteq D\cap \tau_2\text{-}\alpha g^*rcl(A)\subseteq D\cap \tau_2\text{-}\alpha g^*rcl(C)=\phi$. Consequently, $D=\phi$. Similarly, we can prove $C=\phi$ if $A\subseteq D$. This is a contradiction to the fact that C and D are nonempty. Therefore, B is pairwise αG^*RO -connected.

Theorem 5.7: The union of any family of pairwise αG^*RO -connected sets having a nonempty intersection is pairwise αG^*RO -connected.

Proof: Let I be an index set and $i \in I$. Let $A = \cup A_i$, where each A_i is pairwise αG^*RO - connected with $\cap A_i \neq \phi$. Suppose that A is not pairwise αG^*RO -connected. Then $A = C \cup D$, where C and D are two nonempty disjoint sets such that $[C \cap \tau_1\text{-}\alpha g^*rcl(D)] \cup [\tau_2\text{-}\alpha g^*rcl(C) \cap D] = \phi$. Since A_i is pairwise αG^*RO -connected and $A_i \subset A$, by Theorem 5.5, we have $A_i \subseteq C$ or $A_i \subseteq D$. Since $A_i \neq \phi$, there exists an element $x \in A_i$. Therefore, $x \in A_i$ for all i. Suppose $A_i \subseteq C$ for some i. Then $x \in C$ since $x \in C \cap D = \phi$, $x \notin D$. Hence, we get $x \in C \cap D \cap C \cap C$ for every j. Therefore, $x \in C \cap C \cap C \cap C \cap C \cap C$. Therefore, $x \in C \cap C \cap C \cap C \cap C \cap C \cap C$. Therefore, $x \in C \cap C \cap C \cap C \cap C \cap C$. Therefore, $x \in C \cap C \cap C \cap C \cap C$. Therefore, $x \in C \cap C \cap C \cap C \cap C \cap C$. Therefore, $x \in C \cap C \cap C \cap C \cap C \cap C$. Therefore, $x \in C \cap C \cap C \cap C \cap C$. Therefore, $x \in C \cap C \cap C \cap C \cap C \cap C$. Therefore, $x \in C \cap C \cap C \cap C \cap C \cap C$. Therefore, $x \in C \cap C \cap C \cap C \cap C \cap C$. Therefore, $x \in C \cap C \cap C \cap C \cap C \cap C$. Therefore, $x \in C \cap C \cap C \cap C \cap C \cap C$. Therefore, $x \in C \cap C \cap C \cap C \cap C \cap C$. Therefore, $x \in C \cap C \cap C \cap C \cap C \cap C$. Therefore, $x \in C \cap C \cap C \cap C \cap C$.

6 Pairwise αG*RO-compact spaces

Definition 6.1: A nonempty collection $\mathcal{A} = \{A_i, i \in I, \text{ an index set}\}\$ is called a *pairwise regular open cover* of a bitopological space (X, τ_1, τ_2) if $X = \bigcup A_i$ and $\mathcal{A} \subseteq \tau_1\text{-RO}(X, \tau_1, \tau_2) \cup \tau_2\text{-RO}(X, \tau_1, \tau_2)$ and \mathcal{A} contains at least one member of $\tau_1\text{-RO}(X, \tau_1, \tau_2)$ and one member of $\tau_2\text{-RO}(X, \tau_1, \tau_2)$.

Definition 6.2: A bitopological space (X, τ_1, τ_2) is *pairwise regular compact* if every pairwise regular open cover of X has a finite subcover.

Definition 6.3: A nonempty collection $\mathcal{A} = \{A_i, i \in I, \text{ an index set}\}\$ is called a τ_i - αg^*r *open cover* of a bitopological space (X, τ_1, τ_2) if $X = \cup A_i$ and $\mathcal{A} \subseteq \tau_i$ - $\alpha G^*RO(X, \tau_1, \tau_2)$, i = 1, 2.

Definition 6.4: A bitopological space (X, τ_1, τ_2) is τ_i - αG^*RO -compact if every τ_i - αg^*r open cover of X has a finite subcover.

Definition 6.5: A nonempty collection $\mathcal{A} = \{A_i, i \in I, \text{ an index set}\}\$ is called a *pairwise* αg^*r -open cover of a bitopological space (X, τ_1, τ_2) if $X = \cup A_i$ and $\mathcal{A} \subseteq \tau_1$ - $\alpha G^*RO(X, \tau_1, \tau_2) \cup \tau_2$ - $\alpha G^*RO(X, \tau_1, \tau_2)$ and \mathcal{A} contains at least one member of τ_1 - $\alpha G^*RO(X, \tau_1, \tau_2)$ and one member of τ_2 - $\alpha G^*RO(X, \tau_1, \tau_2)$.

Definition 6.6: A bitopological space (X, τ_1, τ_2) is *pairwise* $\alpha G^*RO\text{-}compact$ if every pairwise αg^*r -open cover of X has a finite subcover.

Theorem 6.7: Every pairwise αG^*RO -compact space is pairwise regular compact.

Proof: Let (X, τ_1, τ_2) be pairwise αG^*RO -compact. Let $\mathcal{A} = \{A_i, i \in I\}$ be a pairwise regular open cover of X. Then $X = \bigcup A_i$ and $\mathcal{A} \subseteq \tau_1$ -RO $(X, \tau_1, \tau_2) \cup \tau_2$ -RO (X, τ_1, τ_2) and \mathcal{A} contains at least one member of τ_1 -RO (X, τ_1, τ_2) and one member of τ_2 -RO (X, τ_1, τ_2) . Since every τ_i -regular open set is τ_i - αg^*r open, we have $X = \bigcup A_i$ and $\mathcal{A} \subseteq \tau_1$ - $\alpha G^*RO(X, \tau_1, \tau_2)$ and \mathcal{A} contains at least one member of τ_1 - $\alpha G^*RO(X, \tau_1, \tau_2)$ and one member of τ_2 -

 $\alpha G^*RO(X, \tau_1, \tau_2)$. Therefore, \mathcal{A} is a pairwise αg^*r -open cover of X. Since X is pairwise αG^*RO -compact, we have \mathcal{A} has a finite subcover. Therefore, X is pairwise regular compact.

Theorem 6.8: If Y is a τ_1 - αg^*r closed subset of a pairwise αG^*RO -compact space (X, τ_1 , τ_2), then Y is τ_2 - αG^*RO compact.

Proof: Let (X, τ_1, τ_2) be a pairwise αG^*RO -compact space. Let $\mathcal{A} = \{A_i, i \in I\}$ be a τ_2 - αg^*r open cover of Y. Since Y is τ_1 - αg^*r oben. Then, $Y^c \cup \mathcal{A} = Y^c \cup \{A_i, i \in I\}$ is a pairwise αg^*r -open cover of X. Since X is pairwise αG^*RO -compact, $X = Y^c \cup A_1 \cup A_2 \cup \dots \cup A_n$. Hence $Y = A_1 \cup A_2 \cup \dots \cup A_n$. Therefore Y is τ_2 - αG^*RO compact.

Theorem 6.9: If Y is a τ_1 -regular closed subset of a pairwise αG^*RO -compact space (X, τ_1 , τ_2), then Y is τ_2 - αG^*RO compact.

Proof: Let Y be a τ_1 -regular closed subset of (X, τ_1, τ_2) . Since every τ_1 -regular closed set is τ_1 - αg^*r closed, we get Y is τ_1 - αg^*r closed. Hence by Theorem 6.8, Y is τ_2 - αG^*RO compact.

REFERENCE:

- [1] K. Chandrasekhara Rao and K. Kannan, Generalized star regular closed sets in bitopological spaces, Antarctica J. Math., 4 (2) (2007), 139-146.
- [2] Fletcher P., Hoyle III, H.B., and Patty. C.W., The comparison of topologies, Duke Math. J. 36(1969), 325-331.
- [3] T. Fukutake, On generalized closed sets in bitopological spaces, Bull. Fukuoka Univ. Ed. Part III, 35 (1986), 19-28.
- [4] J. C. Kelly, Bitopological spaces, Proc. London Math. Society, 13 (1963), 71-89.
- [5] W. J. Pervin, Connectedness in bitopological spaces. Indag. Math., 29 (1967), 369-372.
- [6] I. L. Reilly, On pairwise connected bitopological spaces, Kyungpook. Math. J., 11 (1971), 25-28.
- [7] A. Vadivel, R. Vijayalakshmi and D. Krishnaswamy, On α generalized star closed sets in bitopological spaces, Journal of Advanced Studies in Topology, 1 (2010), 63-71.
