International Journal of Mathematical Archive-3(3), 2012, Page: 899-901 (Ca)MAAvailable online through www.ijma.info ISSN 2229-5046

DOMINATION NUMBERS OF GRID GRAPHS $\mathbf{P}_{\mathbf{1 5}} \times \mathbf{P}_{\mathrm{n}}$

D. Reddy Babu ${ }^{1 *}$ \& L. N. Varma, P. ${ }^{2}$
${ }^{1}$ Dept. of FED-1, K. L. University, Vaddesswaram 522502, Guntur, India
E-mail: reddybabu17@gmail.com
Dept. of S\&H. Vignan University, Vadlamudi 522 231, Guntur, India
E-mail: plnvarma@gmail.com

(Received on: 19-02-12; Accepted on: 15-03-12)

Abstract

In this paper we deal with the domination numbers of the complete grid graphs $P_{k} \times P_{n}$ for $k=15$ and $n \geq 1$. Establishing this numbers for various class of graphs is the content of many papers in literature. Some of the papers which deal with the dominating number of grid graphs are [3], [4], [5]. There is no general formula for the domination number of a graph. In this paper, we use the concept of transforming the domination from a vertex in a dominating set D of a graph $G=(V, E)$ to a vertex in $V-D$, where G is a simple connected graph. We give an algorithm using this transformation to obtain a domination set of a graph G.

Key words: Dominating set, Domination number, Transformation of a dominating set.
2000 Mathematics subject classification: 05C69.

1. INTRODUCTION

A graph $G=(V, E)$ is a mathematical structure consisting of two sets, V (of vectors), and E (of edges) where V is a finite and nonempty and elements of E are unordered pairs $\{u, v\}$ of distinct element of V. We simply write $u v$ instead of $\{u, v\}$. The order of the graph G is the cardinality of its vertex set V , the size of the graph G is the cardinality of its edge set E (see [1]). Two verities u and v of a graph G are said to be adjacent if $u v \in E$. For a vertex v of G, the neighborhood of $v, N(v)$, is defined as the set of all vertices of G which are adjacent to v. The closed neighborhood of v is $\bar{N}(v)=N(v) \cup\{v\}$. If S is a set of vertices of G, then the neighborhood of S is given by $N(S)=\bigcup_{v \in S} N(v)$ and $\bar{N}(S)=\cup \bar{N}(v)$. The degree of vertex v, is given by $d(v)=|N(v)|$, the number of vertices which are adjacent to v.

Let $G=(V, E)$ be a graph. A set $D \subseteq V$ is called a dominating set of G if every vertex in V - D is adjacent to at least one vertex of D. A dominating set D of G is said to be a minimal dominating set of G if $|D| \leq\left|D_{1}\right|$ for any dominating set D_{1} of G. In otherwords, dominating set is minimal if it contains no other dominating set as a proper subset. The cardinality of a minimal dominating set of G is known as the domination number of G, and is denoted by $\gamma(G)$.

Next we give some more definitions.
Let D be a dominating set of a graph $G=(V, E)$.

1. We define the weight function F_{D} on V as follows: $F_{D}: V \rightarrow \mathbb{N}$ given by $F_{D}(v)=$ the cardinality of the closed neighborhood of v, ie., $F_{D}(v)=|\bar{N}(v)|$.
(Here \mathbb{N} denotes the set of natural numbers).
2. We say that $v \in D$ has a moving domination if there exits a vertex $w \in N(v)-D$ such that $w u \in E$ for every vertex $u \in\left\{y \in N(v): F_{D}(y)\right\}=1$.
3. We say that a vertex $v \in D$ is redundant of D if $F_{D}(w) \geq 2$ for every vertex $w \in \bar{N}(v)$.

[^0]4. If $v \in D$ has moving domination, we say that v is inefficient if transforming the domination from v to any vertex in $N(v)$ would not produce any redundant vertex.
5. For two vertices v_{0} and v_{n} of a graph G, a $v_{0}-v_{n}$ walk is an alternating sequence of $n+1$ vertices and n edges v_{0}, $e_{1}, v_{1}, e_{2}, v_{2}, \ldots . ., e_{n}, v_{n}$ such that consecutive vertices and edges are incident.
6. A path is defined to be a walk in which no vertices are repeated. A path with n vertices is denoted by P_{n}. It has $n-1$ edges and the length of P_{n} is $n-1$. The grid graph $P_{k} \times P_{n}$ is defined by $V\left(P_{k} \times P_{n}\right)=\left\{v_{i j}: 1 \leq i \leq k, 1 \leq j \leq n\right\}$ and two vertices $v_{i, j}$ and $v_{t . s}$ are adjacent either $i=t, j=s \pm 1$ or $i=t \pm 1, j=s$

Thus a grid graph can be treated as the Cartesian product of two paths P_{k} and P_{n} of path length $k-1$ and $n-1$.
Observe that if D is a dominating set of grid graph $P_{k} \times P_{n}$ which has no redundant vertex, then $v \in D$ has a moving domination if and only if one of the following two cases occurs:

Case 1: For every vertex $w \in N(v)$ we have $F_{D}(w) \geq 2$.
In this case the domination of v can be transformed to any vertex in $N(v)-D$.
Case 2: There exits exactly one vertex $u \in N(v)$ such that $F_{D}(u)=1$.
In this case the domination of v can be transformed only to u.

2. AN ALGORITHM FOR FINDING A DOMINATING SET OF $\boldsymbol{P}_{\boldsymbol{k}} \times \boldsymbol{P}_{\boldsymbol{n}}$ USING TRANSFORMATION OF DOMINATION OF VERTICES.

In this section, we present an algorithm for finding dominating sets and consequently dominating numbers of graphs. In the next section we apply this to the grid graph $P_{15} \times P_{n}$.

Let $G=(V, E)$ be a graph of order greater than 1 , say, $|V|=m$. Let $D=V$ be a dominating set of G. Then for any vertex $v \in D$ we have $F_{D}(v)=d(v)+1 \geq 2$. Pick a vertex v_{1} of D and delete from D all vertices $w, w \in N\left(v_{1}\right)$. Then for $1 \leq n \leq \frac{m}{2}$, pick a vertex $v_{n} \in D-\bigcup_{i=1}^{n-1} \bar{N}\left(v_{i}\right)$ and delete from D all vertices $w, w \in N\left(v_{n}\right)-\bigcup_{i=1}^{n-1} \bar{N}\left(v_{i}\right)$. Next, if D contains a redundant vertex, then delete it. Repeat this process until D has no redundant vertices.

Next transform domination from vertices of D which have moving domination to vertices in $V-D$ to obtain redundant vertices and go to above step. If no redundant vertex can be obtained by a transformation of domination of vertices of D, then stop. This set is a dominating set D satisfying that for every $v \in D$ there is a $w \in N(v)$ such that $F_{D}(w)=1$.
3. Example: In this section we give an example to illustrate the above algorithm, in case of the grid graph $G=P_{15} \times$ P_{14}.

1. We have $|V|=210$. Let (k, n) be the vertex in $k^{\text {th }}$ row and in the $n^{\text {th }}$ column of the graph G.
2. Let $D=V$ be a dominating set of G.
3. Pick a vertex $v_{1}=(1,3) \in D$ and delete from D all vertices $w, w \in N\left(v_{1}\right)$. Then for $1 \leq n \leq \frac{210}{2}$, pick a vertex $v_{n}, \quad v_{n} \in D-\bigcup_{i=1}^{n-1} \bar{N}\left(v_{i}\right)$, and delete from D all vertices $w, w \in N\left(v_{n}\right)-\bigcup_{i=1}^{n-1} \bar{N}\left(v_{i}\right) . \quad$ We obtain a dominating set D (indicated by black circles in the figures below.)
4. Since for every vertex $v \in D, \exists w \in \bar{N}(v)$ such that $F_{D}(w)=1, D$ has no redundant vertices.
5. Transform the domination from the vertex $(5,9)$ to the vertex $(6,9)$ and delete from D, and the resulting redundant vertex is $(7,9)$. Therefore, the set D indicated in figure below (black circles) is a dominating set of $G=P_{15} X P_{14}$. Note that D is a minimal dominating set (see [3]).
(2). Domination numbers for $\boldsymbol{\gamma}\left(\boldsymbol{P}_{15} \times P_{\boldsymbol{n}}\right)$ for $\mathbf{1} \leq \boldsymbol{n} \leq 14$

Below we give some minimal dominating set of $P_{15} \times P_{n}$ up to $n=14$ and consequently obtain the dominating numbers of these graphs

These results match with the known formula for dominating number of grid graphs $P_{15} \times P_{n}$,
$\gamma\left(P_{15} \times P_{n}\right)=\left\{\begin{array}{lc}\left\lfloor\frac{44 n+27}{13}\right\rfloor & \text { for } n \equiv 5(\bmod 26) \\ \left\lfloor\frac{44 n+40}{13}\right\rfloor & \text { otherwise }\end{array}\right.$
See for eg [6].

REFERENCES:

[1] J. A. Bondy, U.S.R. Murthy, Graph Theory, Springer, 2008.
[2] B.N. Clark, C.J. Colbourn , D.S. Johnson, Unit disk graph, Discrete Maths., 86, pp. 165-177, 1990.
[3] Tony Yu Chang, W. Edwin Clark, Eleanor, Domination number of complete grid graph, I Ars Combinatorial, 38, pp. 97-111, 1995.
[4] Tony Yu Chang, W. Edwin Clark, Eleanor, Domination number of $5 \times n$ and $6 \times n$ grid graphs. Jour. of graph theory, 17, pp. 81-107, 1993.
[5] D. Reddy Babu, L.N. Varma, P: A note on domination numbers of grid graphs, IJMSTH 23 (2012) 221-230.
[6] Samu Alanko et al, Computing the domination number of grid graphs, The ele. Jour of combinatorics, 18 (2011) 141-158.

[^0]: * Corresponding author: D. Reddy Babu ${ }^{{ }^{*}}$,*E-mail: reddybabu17@gmail.com

