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________________________________________________________________________________________________ 
ABSTRACT 

This paper studies a two-phase M/Ek/1 queueing system with N-policy for exhaustive batch service, server startup and 
breakdowns. The customers arrive individually according to a Poisson process and waiting customers receive batch 
service all at a time in the first phase and are served individually in the second phase. The server is turned off each 
time the system empties. When the queue length reaches or exceeds N (threshold), the batch service starts. Before the 
batch service, the system requires a random startup time for pre-service. As soon as the startup period is over, the 
server starts the batch service which is followed by individual service to all customers in the batch. It is assumed that 
the server may breakdown during individual service following Poisson process and the repair time follows an 
exponential distribution. Explicit expressions for the steady state distribution of the number of customers in the system 
and expressions for the expected system length are derived. The total expected cost function is developed to determine 
the optimal threshold of N at a minimum cost. Sensitivity analysis is carried out through numerical illustrations. 
 
2010 AMS Subject Classification: 60K25, 68M20, 90B2. 
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1.  INTRODUCTION: 
 
Queueing models with two phases of service and server vacations have several applications in many areas such as 
computer network administration and telecommunication systems, where the messages are processed in two phases by 
a single server. In inventory control processes, due date, quantity and quality are analyzed initially in batch mode 
followed by individual service of the batch.  
 
Out of the situations discussed above and in the situation discussed in this paper, computer controlled manufacturing 
and pharmaceutical industry are classic examples as explained below: 

 
1. Consider a process where pipes are molded to a given specification and are subsequently sent to another machine 

for authentication and validity of the specification and then released to the market for sale.  Initially all pipes are 
molded as per specification on a machine and then, they are subsequently transferred to another machine for testing 
of quality and validity of the prescribed specifications.  Any item, which is not in conformity with the quality 
specification, would be sent to recycling.  The process continues so till the ordered quantity is exhausted.  The 
process halts when there are no orders and restarts again when the orders reach a specific level.    

 
2. The case of manufacturing bulk drugs in pharmaceutical industry is another classic example where the production 

cannot commence until the ordered quantity reaches specific requirement.  Once the specific requirement condition 
is met, the drug is manufactured in the first phase and then it is tested to the specifications in the second phase well 
before it is released to the customer or else for onward processing.  After the second phase, the production process 
commences even if there is a single order, failing which the system remains in idle or no production state.  The 
production cannot commence until the ordered quantity reaches specific limit.  The production process needs 
startup period after an idle state. 

________________________________________________________________________________________________ 
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The examples are many. However, the above said examples are only a few out of many that are encountered in several 
industrial and real life situations. All such examples provide an insight into the optimal control policy at every stage of 
processing.  Several attempts have been made by many investigators to provide a valid and a meaningful solution so as 
to estimate the optimal control policy.  Out of those who have made an attempt to study the system, Krishna and Lee 
[8], Doshi [3] studied distributed systems where all customers receive batch service in first phase followed by 
individual service in second phase. Selvam and Sivasankaran [10] introduced two-phase queuing system with server 
vacation. 
 
For the control policy of vacation queues it is usually assumed that the server availability depends completely on the 
number of customers in the system. Every time the system is empty, the server goes on a vacation. The time the server 
finds at least N customers in the system, it comes back from vacation and begins serving immediately and exhaustively. 
This type of control policy is also called N-policy queueing system with vacations. Kim and Chae [7] analyzed the 
Two-Phase queueing system with N-policy. Vasanta Kumar and Chandan [11], [12] presented the optimal control 
policy of two-phase M/M/1 and MX/Ek/1 queueing systems with N-policy. 
 
The server-startup corresponds to the preparatory work of the server before starting the service.  In real time situations, 
the server often requires a preparatory time before starting each service period. Concerning queueing systems with 
startup time, Baker [2] first proposed the N-policy M/M/1 queueing system. The N-policy M/G/1 queueing system with 
startup time was first studied by Minh [9] and was investigated by several other researchers. Hur and Paik [4] examined 
the operating characteristics of M/G/1 queueing systems under N-policy with server startup and explained how the 
system’s optimal policy and cost parameters behave for various arrival rates.  
 
Queueing systems with server breakdowns and vacation have also been investigated in different frame works in recent 
past. The unreliable server is commonly found in computer systems, communication systems and in manufacturing 
systems and other day to day realistic queueing problems. Wang [13] first proposed a Markovian queueing system 
under N-policy with server breakdowns. Wang [14], Wang et al. [15] and Wang et al. [16] extended the model 
proposed by Wang [13] to M/Ek/1, M/H2/1 and M/Hk/1 queueing systems respectively. They developed closed form 
solutions and provided a sensitivity analysis. Ke [5] studied the control policy of a removable and unreliable server for 
an MX/M/1 queueing system, where the removable server operates an N-policy. Ke [6] presented the control policies of 
an M/G/1 queueing system with a startup time and unreliable server, in which the length of the vacation period is 
controlled either by the number of arrivals during the idle period or by a timer. Anantha Lakshmi et al. [1] presented 
the optimal control strategy of an N-policy bulk arrival queueing system with server startup and breakdowns. 
 
This paper considers the optimal control policy for two-phase M/Ek/1 queueing system with N-policy, server startups 
and breakdowns.  
 
2. THE MATHEMATICAL MODEL: 
 
We will now consider an M/Ek/1 queueing system with server startup, two-phases of service and an unreliable server 
under N-policy. 
 
(i) The arrival process is a Poisson process with arrival rateλ . Customers have access to the service according to the 

first come first serve order. 
(ii) The service is in two-phases, the first phase of service is batch service to all customers waiting in the queue. On 

completion of batch service, the server proceeds to the second phase to serve all customers individually. Batch 
service time is assumed to be exponentially distributed with mean 1/ β  and is independent of batch size. 
Individual service is in k exponential phases each with mean1/ kµ . On completion of individual service, the 
server returns to the batch queue to serve the customers who have arrived. If customers are waiting, the server 
starts the batch service followed by individual service to each customer in the batch. If no customer is waiting, the 
server goes on vacation. 

(iii) Whenever the system becomes empty, the server is turned off. As soon as the total number of arrivals in the queue 
reaches to predetermined threshold N, the server is turned on and is temporarily unavailable for the waiting 
customers. Before the batch service, the server needs a startup time which follows an exponential distribution with 
mean 1/θ . After the server finishes startup, it starts serving the first phase of waiting customers.  

(iv) The customers who arrive during the pre-service and batch service are also allowed to enter the same batch which 
is in service. This criterion is called exhaustive service without gating. 

(v) The server is subject to breakdown at any time during individual service with Poisson breakdown rate α . 
Whenever the server fails, it is sent for repair immediately and during that period the server stops providing 
service. The repair time is assumed to be exponentially distributed with mean 1/ γ .   

(vi) In case the server breaks down while serving customers, it is sent for repair and that particular customer who was 
just being served should wait for the server to come back to complete the remaining service. Immediately after the  
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server is repaired, it starts to serve and the service time is sequential. A customer who arrives and finds the server 
busy or broken down must wait in the queue until the server is available. Customers continue to arrive during the 
repair period of the broken server. 
 

The four main objectives for which the analysis has been carried out in this paper are: 
i. To determine the steady state probability distribution of the number of units in the system. 

ii. To derive expected number of units in the system. 
iii. To formulate the total expected cost function for the system, and determine the optimal value of the control 

parameter N. 
iv. To carryout sensitivity analysis on the optimal value of N and the minimum expected cost through numerical 

illustrations. 
  
3.  STEADY STATE RESULTS: 
 
In steady state the following notations are used. 
 
        P0, i, 0 ≡   The probability that there are i service phases in the batch queue when the server is on vacation, where 

i = 0, k, 2k, 3k, . . . , (N-1)k . 
        P1, i, 0 ≡  The probability that there are i service phases in the batch queue when the server is doing pre-service 

(startup work), where i = Nk, (N+1)k, (N+2)k,…. 
        P2, i, 0 ≡  The probability that there are i service phases in the batch queue when the server is in batch service, 

where i = k, 2k, 3k . . . 
        P3, i, j ≡  The probability that there are i service phases in the batch queue and j service phases in individual 

queue when the server is in individual service, where               i = 0, k, 2k, 3k . . . and j = 1, 2, 3 . . . 
        P4, i, j ≡  The probability that there are i service phases in the batch queue and j service phases in individual 

queue when the server is in individual queue but found to be broken down, where i = 0, k, 2k, . . . and 
j = 1, 2, 3, . . . . 

 
The steady-state equations satisfied by the system size probabilities are as follows: 
 
                               λ  P0, 0, 0  = k µ P3,0,1 .                                                                                                                          (1) 
                               λ  P0, i, 0     = λ P0, i - k, 0 ,   i = k, 2k, 3k, . . . (N-1)k.                                                                         (2) 
                     (λ +θ ) P1, Nk, 0  = λ P0, (N – 1)k, 0 .                       (3) 
                        (λ +θ ) P1, i, 0   =λ P1, i - k, 0 + kµ P3, i, 1,   i = (N+1)k, (N+2)k, (N+3)k, … .                        (4) 
                        (λ + β ) P2, i, 0 = λ P2, i - k, 0 + kµ P3, i , 1 ,  i = k, 2k, 3k, . . . , (N-1)k.                   (5) 
                      (λ + β ) P2, i, 0    = λ P2, i - k, 0 + kµ P3, i, 1 + θ P1, i, 0 ,  i = Nk, (N+1)k, (N+2)k,...                 (6) 
               (λ +α + kµ ) P3, 0, j = kµ  P3, 0, j + 1 + β  P2, j, 0 + γ  P4, 0, j,   j ≥ 1 .                   (7) 
                 (λ +α + kµ ) P3, i, j = kµ  P3, i, j + 1 + λ  P3, i - k, j + γ  P4, i, j,   i ≥  k,   j≥ 1 .                   (8) 
                           (λ +γ ) P4, 0, j = α P3, 0, j ,   j ≥ 1 .                      (9) 
                          (λ +γ ) P4, i, j  = α P3, i, j + λ  P4, i - k, j ,   i≥ k,   j≥ 1 .                 (10) 

 
The following probability generating functions are defined 
 

G0 (z) = 
kN

i

)1(

0

−

=
Σ P0, i, 0  zi ,  G1 (z) =

∞

=
∑

kNi
P1, i, 0  zi , G2 (z) =

∞

=
∑

ki
 P2, i, 0  zi ,  

G3 (z, y) =
∞

=
∑

0i

∞

=
∑

1j
 P3, i, j

ji yz , G4 (z, y) =
∞

=
∑

0i

∞

=
∑

1j
P4, i, j

ji yz , Rj (z) =
∞

=
∑

0i
 P3, i, j z i,    

and Sj (z) = 
∞

=
∑

0i
P4, i, j zi , where |z|≤ 1 and |y|≤ 1. 

 
Multiplication of equation (2) by zi and adding over i = k, 2k, 3k, . . . ,(N-1)k yields 

 

                    Go (z) = 
)1(
)1(

k

kN

z
z
−

−
 P0, 0, 0 .                 (11) 

 



1V. Vasanta Kumar*, 2B.V.S.N. Hari Prasad, 3K. Chandan and 3B. Ravi Teja/ Optimal Strategy Analysis of an N-policy Two-phase 
M/Ek/1 Queueing System with Server Startup and Breakdowns/ IJMA- 3(3), Mar.-2012, Page: 889-898 

© 2012, IJMA. All Rights Reserved                                                                                                                                                    892  

 
Multiplication of equations (3) and (4) by zi and adding over i = Nk, (N+1)k, (N+2)k,…  
 
yields 

                    G1 (z) = 
))1(( θλ

λ
+− k

kN

z
z

 P0, 0, 0 .                 (12) 

 
Multiplication of equations (5) and (6) by zi and adding over i = k, 2k, 3k, . . . yields 

         

             G2 (z) = ( )βλ

λθµ

+−

−+

)1(

])()([ 0,0,011
kZ

PzGzRk
.                                         (13)        

 
Multiplication of equation (8) by zi and adding over i = k, 2k, 3k, . . . and using (7)  

 
                   (λ (1-zk) +α + kµ ) Rj (z) =  kµ Rj+1 (z) + γ  Sj (z) + β  P2, j, 0 . 

 
Multiplication of this equation by yj and adding over j = 1, 2, 3 . . . yields 

 
[λ y (1-zk) +α y + kµ (y-1)] G3 (z, y) = γ  y G4 (z, y) + β  y G2 (y) - kµ y R1 (z)                                  (14) 

 
Multiplication of equation (10) by zi and adding over i = k, 2k, 3k . . . and using (9)  

                   
           (λ (1-zk) + γ ) Sj (z) = α  Rj (z).  

 
Multiplication of this equation by y j and adding over j = 1, 2, 3 . . . yields 
 

                  G4 (z, y) = 
(1 )kz

α
λ γ − + 

G3 (z, y).                      (15) 

 
The total probability generating function G (z, y) is given by 
 
                       G (z, y) = G0 (z) + G1 (z) + G2 (z) + G3 (z, y) + G4 (z, y) . 
 
The normalizing condition is 
 

                     G(1, 1) = G0 (1) + G1 (1) + G2 (1) + G3 (1, 1) + G4 (1, 1) =  1.                         (16) 
 
From equations (11) to (15)  
 
                         G0 (1) = N P0, 0,0  ,                                   (17) 
 

                      G1 (1) = )/( θλ  P0, 0, 0  ,                       (18) 
 
                      G2 (1) = βµ /)1(1Rk ,                   (19) 
 

                   G3 (1,1) = [ ]βγαλγµ
γµλβθ

)(
)]1()1([ 1

2
1

+−
+′

k
RkG

,                  (20) 

 
            and G4 (1,1) = (α /γ ) G3 (1,1),                              (21) 
 

            where P0, 0, 0 = 
)(

11
θλ

θ
β
λ

γ
α

µ
λ

N+







−








+− .                   (22) 
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Normalizing condition (16) yields 
 
                         R1 (1) = λ /k µ . 
 
Substituting the value of R1 (1) in (19), (20) and (21) yields 
 
                     G2 (1) = λ  / β  ,  G3 (1, 1) = λ  / µ   and   G4 (1, 1) = ( )( )µλγα // . 
 
Under steady state conditions, let P0, P1, P2, P3 and P4 be the probabilities that the server is in vacation, in startup, in 
batch service, in individual service and breakdown states respectively. Then, 
 
          P0 = G0 (1) = N P0, 0, 0 ,  P1 = G1 (1) = (λ /θ ) P0, 0, 0 ,      P2 =  G2 (1) = λ / β  , 
 
          P3 = G3 (1, 1) = λ /µ    and P4 = G4 (1, 1) = )/)(/( µλγα .  
 
3.1 Expected number of customers in the system: 
 
Let L0, L1, L2, L3 and L4 be the expected number of service phases in the system when the server is in vacation, in 
startup, in batch service, in individual service and breakdown states respectively. 
 

Then L0 = 
kN

i

)1(

0

−

=
∑  i P0, i, 0 =  G0

1 (1) = 
2

)1( kNN −
 P0, 0, 0  .                 (23) 

         L1 = 
∞

=
∑

kNi
 i P1,i,0 = G1

1 (1) = 2
)(

θ
θλλ kN+

 P0,0,0  .                  (24) 

         L2 = 
∞

=
∑

ki
 i P2,i, 0 = G2

1 (1) = kλ / β   .                  (25) 

         L3 = 
∞

=
∑

0i
 
∞

=
∑

1j
 (i + j) P3,i, j  = G3

1 (1,1)  .                   (26) 

              = ρ   1
2

1 1 11

1 ( 1)1
1 2 (1 ) 2 (1 )(1 )

k k k kρ λα ρ λ λ
ρ β ρ β ργ ρ

 + − + + + +  − − −− 
  

                        0,0,02
1

1 ( ) ( 1) 1
1 2 2

N k N N k k Pλ λ θ λ
ρ θθ

 + − −  + + +   −    
.                  (27) 

         L4 = 
∞

=
∑

0i

∞

=
∑

1j
 (i + j) P4, i, j = G4

1 (1, 1)    = 
γ
α









+

γ
ρλ kG )1,1(1

3 .                     (28) 

 
The expected number of service phases in the system  
     
     L (P) =  L0 + L1 + L2 + L3 + L4   
     

              = 
2

)1( kNN −
 P0,0,0 + 

)1(2
)1(

1

1
ρ

ρ
−
−NkN

 P0,0,0   +
)1(
)(

1
2 ρθ

θλλ
−

+ kN
 P0,0,0                          

                  1
1 2

1 1 1

11
1 2 (1 ) (1 )

k k kρ λ λραρ
ρ β ρ γ ρ

 + + + + +  − − −  
 

                  1
0,0,0

1 1

( 1) ( 1)
2 (1 ) 2 (1 )
k k k Pλ ρ λ
β ρ θ ρ

− −
+ +

− −
                             (29)        

 
where ρ  = λ /µ   and  ρ 1 = µλ /  (1 + γα / )  . 
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Expected number of customers in the system is given by 
 

     L (N) = 
1 1( ) 1 1

2
kL P

k
λ α λ λ α λ
µ γ β µ γ β

       + − + + + + +         
         

.                  (30) 

 
3.2. Characteristic features of the system: 
 
Let E0, E1, E2, E3 and E4 denote the expected length of vacation period, startup period, batch service period, individual 
service period and breakdown period respectively. Then the expected length of a cycle is given by 
 
                             43210 EEEEEEC ++++=                  (31) 
 
The long run fractions of time the server is in vacation, in startup, in batch service, in individual service and breakdown 
states are respectively given by 
 
                      0,0,000 / PNPEE C == ,                 (32) 

                      0,0,011 )/(/ PPEE C θλ== ,                 (33) 

                      βλ // 22 == PEE C ,                 (34) 

                      ρ== 33 / PEE C ,                 (35) 

and                )/(/ 44 γαρ== PEE C .                 (36) 
 
Expected length of vacation period E0 = N / λ . 
 
Substituting this in equation (31)  
 

                             CE  = 
)/1(

)/(
1 βλρλ

θλ
−−

+N
.                 (37) 

 
4.  OPTIMAL CONTROL POLICY: 
 
We develop a steady state total expected cost function per unit time for the N-policy two-phase M/Ek/1 queueing 
system with server startup and breakdowns, in which N is a decision variable. With the cost structure being constructed, 
the objective is to determine the optimal operating N-policy so as to minimize this function. 
 
Let 
Ch ≡  holding cost per unit time for each customer present in the system, 
Co ≡  cost per unit time for keeping the server on and in operation, 
Cm≡  startup cost per unit time per cycle, 
Cs ≡  setup cost per cycle, 
Cb ≡  breakdown cost per unit time, 
Cr ≡  reward per unit time for the server being on vacation. 
 
The total expected cost function per unit time is given by 

   T(N) = Ch L(N) + C0 






 +

CE
EE 32 +Cm 









CE
E1  + C b 









CE
E4 + Cs 









CE
1

 - rC 








CE
E0                  (38) 

 
From (34) to (36), it is observed that E2 / EC, E3 / EC and E4 / EC are not a function of decision variable N. Hence for the 
determination of the optimal operating N-policy, minimizing T(N) in (38) is equivalent to minimizing 
 

   T1 (N) = Ch L(N) + Cm 








CE
E1 + Cs 









CE
1

- Cr 








CE
E0                   (39) 

 
Differentiating T1 (N) with respect to N and setting the result to zero, we obtain the optimal value N* of N. 
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Hence, N* = ( ) σθ
ρσ

ρσσ −







++

−
+−−−+

2/1
1

1
2 )()1(2)1()12( rsm

h
CCC

C
kk

k
 ,                             (40) 

where σ  = λ /θ  (mean number of arrivals during startup times). 
 
5.  SENSITIVITY ANALYSIS: 
 
In the course of analysis, sensitivity analysis has been carried out to find the optimum value of N (i.e., N*), expected 
system length and minimum cost based on changes in the system parameters. In order to achieve this, the system 
parameters are classified into two categories. The non-monetary parameters ( γαθβµλ  and,,,,, k ) and the 
monetary parameters (Ch, Co, Cb, Cm, Cr and Cs).   
 
In order to arrive at the conclusions, the following arbitrary values of the system parameters are considered. 
 
λ =1.0, µ = 10, β = 5, θ =3, 3γ = , 2k = , Ch =10, Co =200, Cm = 200, Cb = 100, Cs = 1000, Cr = 50. 
 
Using equations (30), (38) and (40), the values of N*, L (N*) and T (N*) have been tabulated. 
 
Case i: Effect of the non-monetary parameters 
 
It is noticed from the results in Table 1 that as λ  increases, the value of N* and expected cost increases.  Further, it can 
be seen that length of the queue is clearly convex and it is a function of λ .   
 

Table 1: Effect of λ  on N*, expected system length and expected cost. 
 

λ  0.5 1.0 1.5 2.0 2.5 
N* 9 13 16 17 19 

L(N*) 3.8483 5.1916 5.6177 4.9880 4.1736 
T(N*) 76.51 134.25 173.36 199.30 213.60 

 
 
Computed values in Table 2 show that N* increases for smaller values of µ  and does not change for larger values of 
µ , however the expected cost decreases and queue length increases. 
 

Table 2: Effect of µ  on N*, expected system length and expected cost. 
 

µ  2 4 6 8 10 12 
N* 9 12 13 13 13 13 

L(N*) 3.8874 4.8040 5.1836 5.1891 5.1916 5.1930 
T(N*) 190.83 159.89 145.73 138.66 136.25 131.37 

 
 
It can be observed from table 3 that N* is unaltered and the expected cost decreases and queue length increases with 
increase in β . 
 

Table 3: Effect of β  on N*, expected system length and expected cost. 
 

β  2 4 6 8 10 12 
N* 13 13 13 13 13 13 

L(N*) 3.5259 4.9148 5.3767 5.6080 5.7468 5.8394 
T(N*) 168.22 139.91 130.40 125.76 122.93 121.04 

 
 
Computed values in Tables 4 and 5 indicate that with increase in the values of θ  and γ , not much of significant 
variation is noticed in the value of N*.   However, the expected cost and expected system length decreases.   
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Table 4.  Effect of θ  on N*, expected system length and expected cost. 

 
θ  1 3 5 7 9 

N* 13 13 13 13 13 

L(N*) 5.8772 5.1916 5.1340 5.1096 5.0961 

T(N*) 142.55 134.25 132.49 131.73 131.38 
 

Table 5:  Effect of  γ  on N*, expected system length and expected cost. 
 

γ  1 3 5 7 9 
N* 13 13 13 13 13 

L(N*) 5.2103 5.1916 5.1903 5.1900 5.1899 
T(N*) 135.35 134.25 134.05 133.97 133.93 

 
 
Computed values in Tables 6 and 7 show that with increase in the values of α  and k , no variation is noticed in the 
value of N*.  However, the expected cost and expected system length increase slightly.  
 

Table 6: Effect of α  on N*, expected system length and expected cost. 
 

α  0.1 0.3 0.5 0.7 0.9 
N* 13 13 13 13 13 

L(N*) 5.1907 5.1925 5.1943 5.1968 5.1978 
T(N*) 134.01 134.49 134.96 135.44 135.92 

 
Table 7: Effect of k on N*, expected system length and expected cost. 

 
k 1 2 3 4 5 

N* 13 13 13 13 13 
L(N*) 5.1440 5.1916 5.2072 5.2150 5.2197 
T(N*) 133.78 134.25 134.41 134.48 134.53 

 
Case ii: Effect of the monetary parameters 
 
Computed values in Table 8 show that with increase in the values of Ch, the value of N* and expected system length 
decreases.  Further, the expected cost increases. 
 

Table 8: Effect of Ch on N*, expected system length and expected cost. 
 

Ch 5 10 15 20 25 
N* 19 13 11 9 8 

L(N*) 7.5759 5.1916 4.4178 3.6449 3.2591 
T(N*) 102.43 134.25 158.54 179.37 197.51 

 
 
Data in Tables 9 and 10 suggest that with increase in the values of Co and Cb, there is no variation in the value of N* and 
expected system length.  Further, the expected cost increases. 
 

Table 9: Effect of C0 on N*, expected system length and expected cost. 
 

C0 100 200 300 500 1000 
N* 13 13 13 13 13 

L(N*) 5.1916 5.1916 5.1916 5.1916 5.1916 
T(N*) 104.25 134.25 164.25 224.25 374.25 
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Table 10: Effect of Cb on N*, expected system length and expected cost. 

 
Cb 100 200 300 500 1000 
N* 13 13 13 13 13 

L(N*) 5.1916 5.1916 5.1916 5.1916 5.1916 
T(N*) 134.25 134.92 135.50 136.92 140.25 

 
 
Computed values in Table 11 indicate that with increase in the values of Cm, not much of significant variation is noticed 
in the value of N* and expected system length, where as the expected cost increases. 
 

Table 11: Effect of Cm on N*, expected system length and expected cost. 
 

Cm 100 200 300 500 1000 
N* 13 13 13 14 15 
L(N*) 5.1916 5.1916 5.1916 5.5783 5.9660 
T(N*) 132.52 134.25 135.98 139.03 146.70 

 
 
It is noticed from the results in Table 12 that as Cr increases, there is no change in the value of N* and expected system 
length.  However, the expected cost decreases. 
 

Table 12: Effect of Cr on N*, expected system length and expected cost. 
 

Cr 40 50 70 90 100 
N* 13 13 13 13 13 

T(N*) 5.1916 5.1916 5.1916 5.1916 5.1916 
L(N*) 141.01 134.25 120.73 107.21 100.45 

 
 
It is noticed from the results in Table 13 that as Cs increases, the value of N*, the expected system length and expected 
cost increase. 
 

Table 13: Effect of Cs on N*, expected system length and expected cost. 
 

Cs 500 1000 1500 2000 2500 
N* 9 13 16 18 21 

L(N*) 3.6321 5.1916 6.3421 7.1225 8.1862 
T(N*) 105.78 134.25 156.74 176.07 192.07 

 
7.  CONCLUSIONS: 
 
Optimal strategy analysis of N-policy two-phase M/Ek/1 queuing system with startup time and server breakdowns is 
studied. System performance measures are derived. A cost function is formulated to determine the optimal value of N. 
Sensitivity analysis is carried out through numerical illustrations. These numerical values will be useful in analyzing 
practical queueing systems and make decisions. 
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