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Abstract
In this paper by using ag-open sets we define almost a.g-normality and mild a.g-normality also we continue the study
of further properties of ag-normality. We show that these three axioms are regular open hereditary. We also define the
class of almost a.g-irresolute mappings and show that aig-normality is invariant under almost ag-irresolute M-o.g-open
continuous surjection.
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1. Introduction

In 1967, A. Wilansky has introduced the concept of US spaces. In 1968, C.E. Aull studied some separation axioms
between the T, and T, spaces, namely, S; and S,. Next, in 1982, S.P. Arya et al have introduced and studied the concept
of semi-US spaces and also they made study of s-convergence, sequentially semi-closed sets, sequentially s-compact
notions. G.B. Navlagi studied P-Normal Almost-P-Normal, Mildly-P-Normal and Pre-US spaces. Recently S.
Balasubramanian and P. Aruna Swathi Vyjayanthi studied v-Normal Almost- v-Normal, Mildly-v-Normal and v-US
spaces. Inspired with these we introduce ag-Normal Almost- ag-Normal, Mildly- ag-Normal, ag-US, ag-S; and ag-
S,. Also we examine ag-convergence, sequentially aig-compact, sequentially ag-continuous maps, and sequentially sub
ag-continuous maps in the context of these new concepts. All notions and symbols which are not defined in this paper
may be found in the appropriate references. Throughout the paper X and Y denote Topological spaces on which no
separation axioms are assumed explicitly stated.

2. Preliminaries

Definition 2.1: Ac Xis called
(i) g-closed if cl Ac U whenever Ac U and U is open in X.
(i) ag-closed if acl(A) < U whenever Ac U and U is a-open in X.

Definition 2.2: A function f is said to be almost—pre-irresolute if for each x in X and each pre-neighborhood V of f(x),
pcl(f (V)) is a pre-neighborhood of x.

Definition 2.3: A space X is said to be

(i) T, (Ty) if for any x =y in X, there exist (disjoint) open sets U; V in X such that xeU and yeV.

(i) weakly Hausdorff if each point of X is the intersection of regular closed sets of X.

(iii) normal[resp: mildly normal] if for any pair of disjoint [resp: regular-closed]closed sets F; and F,, there exist
disjoint open sets U and V such that F; c U and F, < V.

(iv) almost normal if for each closed set A and each regular closed set B such that AnB = ¢, there exist disjoint open
sets U and V such that AcU and BcV.

(v) weakly regular if for each pair consisting of a regular closed set A and a point x such that A n {x} = ¢, there exist
disjoint open sets U and V such that x e U and AcV.
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(vi) A subset A of a space X is S-closed relative to X if every cover of A by semiopen sets of X has a finite subfamily
whose closures cover A.

(vii) Rq if for any point x and a closed set F with xgF in X, there exists a open set G containing F but not x.

(viii) Ry iff for x, y € X with cl{x} = cl{y}, there exist disjoint open sets U and V such that cl{x}c U, cl{y}cV.

(ix) US-space if every convergent sequence has exactly one limit point to which it converges.

(x) pre-US space if every pre-convergent sequence has exactly one limit point to which it converges.

(xi) pre-Sy if itis pre-US and every sequence <x,> pre-converges with subsequence of <x,> pre-side points.

(xii) pre-S, if it is pre-US and every sequence <x,> in X pre-converges which has no pre-side point.

(xiii) is weakly countable compact if every infinite subset of X has a limit point in X.

(xiv) Baire space if for any countable collection of closed sets with empty interior in X, their union also has empty
interior in X.

Definition 2.4: Let Ac X. Then a point x is said to be a

(i) limit point of A if each open set containing x contains some point y of A such that x = y.

(i) To—limit point of A if each open set containing x contains some point y of A such that cl{x} = cl{y}, or equivalently,
such that they are topologically distinct.

(iii) pre-To—limit point of A if each open set containing x contains some point y of A such that pcl{x} = pcl{y}, or
equivalently, such that they are topologically distinct.

Note 1: Recall that two points are topologically distinguishable or distinct if there exists an open set containing one of
the points but not the other; equivalently if they have disjoint closures. In fact, the To—axiom is precisely to ensure that
any two distinct points are topologically distinct.

Example 1: Let X = {a, b, ¢, d} and T = {{a}, {b, ¢}, {a, b, ¢}, X, ¢}. Then b and c are the limit points but not the T
limit points of the set {b, c}. Further d is a To—limit point of {b, c}.

Example 2: Let X = (0, 1) and t = {¢, X, and U, = (0, 1-1/h), n=2, 3, 4,. .. }. Then every point of X is a limit point of
X. Every point of X~U, is a To—limit point of X, but no point of U, is a Te—limit point of X.

Definition 2.5: A set A together with all its To—limit points will be denoted by To—clA.

Note 2: i. Every To—limit point of a set A is a limit point of the set but the converse is not true in general.
ii. In To—space both are same.

Note 3: Ro—axiom is weaker than T;—axiom. It is independent of the T—axiom. However T; = Ry+Ty

Note 4: Every countable compact space is weakly countable compact but converse is not true in general. However, a
Ti—space is weakly countable compact iff it is countable compact.

3. 0g-To LIMIT POINT:
Definition 3.01: In X, a point X is said to be a ag-Te-limit point of A if each o.g-open set containing x contains some
point y of A such that egcl{x} = agcl{y}, or equivalently; such that they are topologically distinct with respect to a.g-

open sets.

Example 3: regular open set = open set = a.-open set = a.g-open set we have
r-To—limit point = To-limit point = a-To—limit point = ag-To—limit point

Definition 3.02: A set A together with all its ag-Te—limit points is denoted by To-agcl(A)
Lemma 3.01: If x is a ag-To—limit point of a set A then x is ag-limit point of A.
Lemma 3.02: If X is ag-Te—space then every oag-To—limit point and every ag-limit point are equivalent.
Corollary 3.03: If X is r-To—space then every ag-Te—limit point and every ag-limit point are equivalent.
Theorem 3.04: For x #y eX,

(i) xisaag-Te-limit point of {y} iff x zagcl{y} and y eagcl{x}.

(if) xis not a ag-Te-limit point of {y} iff either x eagcl{y}or agcl{x} = agcl{y}.
(iii) x is not a ag-Te-limit point of {y} iff either x eagcl{y}or y eagcl{x}.
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Corollary 3.05:
(i) Ifxisaag-Te-limit point of {y}, then y cannot be a ag-limit point of {x}.
(i) If agcl{x} = agcl{y}, then neither x is a ag-Te—limit point of {y} nor y is a ag-Te-limit point of {x}.
(iii) If a singleton set A has no ag-To—limit point in X, then agclA = agcl{x} for all x e agcl{A}.

Lemma 3.06: In X, if x is a ag-limit point of a set A, then in each of the following cases x becomes ag-To—limit point of
A #4).

(i) ogcl{x} = agcl{y} foryeA, x =y.

(i) agel{x} = {x}

(iii) X is a ag-To—space.

(iv) A~{x} is ag-open

Corollary 3.07: In X, if x is a limit point of a set A, then in each of the following cases x becomes ag-To—limit point of A
{3 #4).

(i) ogcl{x} = agcl{y} foryeA, x =y.

(i) agel{x} = {x}

(iii) X is a ag-To—space.

(iv) A~{x} is ag-open

4. ag-To AND ag-R; AXIOMS, i =0, 1:

In view of Lemma 3.6(iii), ag-Te—axiom implies the equivalence of the concept of limit point of a set with that of a.g-
To—limit point of the set. But for the converse, if xe agcl{y} then agcl{x} # agcl{y} in general, but if x is a ag-To—

limit point of {y}, then agcl{x} = agcl{y}
Lemma 4.01: In a space X, a limit point x of {y} is a ag-To-limit point of {y} iff agcl{x} # agcl{y}.
This lemma leads to characterize the equivalence of ag-Ty—limit point and ag-limit point of a set as the ag-Ty—axiom.

Theorem 4.02: The following conditions are equivalent:
(i) Xisaog-T, space
(if) Every ag-limit point of a set A is a a.g-To—limit point of A
(iii) Every r-limit point of a singleton set {x} is a ag-To—limit point of {x}
(iv) Forany x, yin X, x #y ifxe agcl{y}, then x is a ag-To—limit point of {y}

Note 5: In a ag-Te—space X if every point of X is a r-limit point of X, then every point of X is ag-Te—limit point of X.
But a space X in which each point is a ag-To—limit point of X is not necessarily a ag-Ty—space

Theorem 4.03: The following conditions are equivalent:
(i) Xisaog-Ry space
(if) Foranyx,yinX, if xe agcl{y}, then x is not a ag-To—limit point of {y}
(iif) A point ag-closure set has no ag-Te—limit point in X
(iv) A singleton set has no ag-Te—limit point in X.

Since every r-Ry—space is ag-Rqo—space, we have the following corollary

Corollary 4.04: The following conditions are equivalent:
(i) Xisar-Rgspace
(if) Foranyx, yinX, if xe agcl{y}, then x is not a ag-To—limit point of {y}
(iif) A point ag-closure set has no ag-Te—limit point in X
(iv) A singleton set has no ag-Te—limit point in X.

Theorem 4.05: In a ag-Rg space X, a point x is ag-To—limit point of A iff every ag-open set containing x contains
infinitely many points of A with each of which x is topologically distinct

If ag-R, space is replaced by rR, space in the above theorem, we have the following corollaries:

Corollary 4.06: In an rRy—space X,
(i) If a point x is rTg—limit point of a set then every a.g-open set containing x contains infinitely many points of A
with each of which x is topologically distinct.
(i) If a point x is ag-Toe—limit point of a set then every ag-open set containing x contains infinitely many points of
A with each of which x is topologically distinct.
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Theorem 4.07: X is ag-R, space iff a set A of the form A = & agcl{X;; =1 1 n} a finite union of point closure sets has no
ag-Te-limit point.

Corollary 4.08: If X is rRy space and
()If A= v agcl{x} i =1ton, afinite union of point closure sets has no ag-Te—limit point.
(inlf X = v agel{x;} i =1 to n ,then X has no ag-Te-limit point.

Theorem 4.09: The following conditions are equivalent:
(i) Xis ag-Ro—space
(if) For any x and a set in X, x is a ag-Te—limit point of A iff every ag-open set containing x contains infinitely
many points of A with each of which x is topologically distinct.

Various characteristic properties of ag-Te—limit points studied so far is enlisted in the following theorem for a ready
reference.

Theorem 4.10: In a ag-Ro—space, we have the following:
(i) Asingleton set has no ag-Te-limit point in X.
(if) Afinite set has no ag-To—limit point in X.
(iif) A point ag-closure has no set ag-To—limit point in X
(iv) Afinite union point a.g-closure sets have no set ag-Te—limit point in X.
(v) Forx,yeX, xeTo— agcl{y}iffx =vy.
(vi) ForanyXx,ye X, X#y iff neither x is ag-To-limit point of {y}nor y is ag-Te—limit point of {x}
(vii) Forany x,ye X, X #y iff To— agc{x} "To— cgcl{y} = ¢.
(viii)Any point xeX is a ag-Te—limit point of a set A in X iff every ag-open set containing x contains infinitely
many points of A with each which x is topologically distinct.

Theorem 4.11: X is ag-R; iff for any ag-open set U in X and points X, y such that xeX~U, y €U, there exists a ag-open
set Vin X such thaty eVcU, xgV.

Lemma 4.12: In ag-R; space X, if x is a ag-To—limit point of X, then for any non empty ag-open set U, there exists a
non empty ag-open set V such that VcU, xg agcl(V).

Lemma 4.13: In a ag- regular space X, if x is a ag-To—limit point of X, then for any non empty ag-open set U, there
exists a non empty ag-open set V such that agcl(V)cU, xg agcl(V).

Corollary 4.14: In a regular space X,
(i) Ifxisa ag-Te—limit point of X, then for any non empty a.g-open set U, there exists a non empty a.g-open set V
such that agcl(V)cU, x# agcl(V).
(i) If x is a To—limit point of X, then for any non empty ag-open set U, there exists a non empty  ag-open set V
such that agcl(V)cU, x# agcl(V).

Theorem 4.15: If X is a ag-compact ag-R;-space, then X is a Baire Space.

Proof: Let {A,} be a countable collection of ag-closed sets of X, each A, having empty interior in X. Take A;, since
A; has empty interior, A; does not contain any ag-open set say U,. Therefore we can choose a point yeU, such that
yeA;. For X is ag-regular, and ye(X~A;)nUy, a ag-open set, we can find a ag-open set U; in X such that yeU;,
agcl(Uy) c(X~A)NUy. Hence U; is a non empty ag-open set in X such that agcl(U;)cUg and vel(U))nA; = ¢.
Continuing this process, in general, for given non empty ag-open set U,.;, we can choose a point of U, ; which is not
in the ag-closed set A, and a ag-open set U, containing this point such that agcl(U,) cU,.;and agcl(U,)nA, = ¢. Thus
we get a sequence of nested non empty ag-closed sets which satisfies the finite intersection property. Therefore N
agcl(Uy) # ¢. Then some xen agel(U,) which in turn implies that xeU,,.; as agcl(U,)cU,.. and x¢ A, for each n.

Corollary 4.16: If X is a compact ag-R;-space, then X is a Baire Space.

Corollary 4.17: Let X be a ag-compact ag-R;-space. If {A,} is a countable collection of ag-closed sets in X, each A,
having non-empty ag-interior in X, then there is a point of X which is not in any of the A,.

Corollary 4.18: Let X be a ag-compact R;-space. If {A,} is a countable collection of ag-closed sets in X, each A,
having non-empty ag- interior in X, then there is a point of X which is not in any of the A,.

Theorem 4.19: Let X be a non empty compact ag-R;-space. If every point of X is a ag-Te—limit point of X then X is
uncountable.
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Proof: Since X is non empty and every point is a ag-To-limit point of X, X must be infinite. If X is countable, we
construct a sequence of ag- open sets {V,} in X as follows:

Let X =V, then for x; is a ag-To-limit point of X, we can choose a non empty a.g-open set V, in X such that V, <V,
and x;¢ agclV,. Next for X, and hon empty ag-open set V,, we can choose a hon empty ag-open set Vg in X such
that V5 <V, and x,¢ agclVs. Continuing this process for each x, and a non empty ag-open set V,,, we can choose a non
empty ag-open set V.1 in X such that V.1 <V, and X,& agclV ..

Now consider the nested sequence of ag-closed sets agclV; o agclV, o agclVs o......... > agclV, o. . . Since X is
ag-compact and {agclV,} the sequence of ag-closed sets satisfies finite intersection property. By Cantors intersection
theorem, there exists an x in X such that xe agclV,. Further xe X and xe V1, which is not equal to any of the points of
X. Hence X is uncountable.

Corollary 4.20: Let X be a non empty ag-compact ag-R;-space. If every point of X is a ag-To—limit point of X then X is
uncountable

5. ag —To-IDENTIFICATION SPACES AND ag -SEPARATION AXIOMS

Definition 5.01: Let (X, 7) be a topological space and let R be the equivalence relation on X defined by xRy iff
agcKx} = agely}

Problem 5.02: show that xRy iff agcl{x} = agcl{y} is an equivalence relation

Definition 5.03: The space (Xo, Q(Xp)) is called the ag-Te—identification space of (X,z), where X, is the set of
equivalence classes of R and Q(Xo) is the decomposition topology on Xo.

Let Px: (X,7)— (X0, Q(Xo)) denote the natural map
Lemma 5.04: If xeX and A <X, then x e agclA iff every ag-open set containing x intersects A.

Theorem 5.05: The natural map Px:(X,2)— (Xo, Q(Xo)) is closed, open and Px ™(Px(0)) = O for all Oe PO(X,7) and
(Xo, Q(X0)) Is ag-To

Proof: Let Oe PO(X,7) and let Ce Px (O). Then there exists xeO such that Px(x) = C. If yeC, then agcl{y} =
agcl{x}, which, by lemma, implies yO. Since 7 « PO(X, 1), then Px *(Px(U)) = U for all Ue 7, which implies Px is
closed and open.

Let G, HeXpsuch that G = H; let xeG and yeH. Then agcl{x} # «agcl{y}, which implies x¢ agcl{y} or y¢ agcl{x},
say x¢ agcl{y}. Since Py is continuous and open, then GeA = Py{X~agcl{y}}£PO(Xo, Q(Xo)) and Hz A

Theorem 5.06: The following are equivalent:
(i) X'is ag Ry (ii) Xo = {agcl{x}: xeX} and (iii) (Xo, Q(Xo)) is ag Ty

Proof:

(i) = (ii) Let CeX,, and let xeC. If yeC, then ye agcl{y} = agcl{x}, which implies Ce agcl{x}. If ye agcl{x}, then
xe agcl{y}, since, otherwise, xe X~agcl{y}<PO(X,7) which implies agcl{x}cX~agcl{y}, which is a contradiction.
Thus, if ye agcl{x}, then xe agcl{y}, which implies agcl{y} = agcl{x} and yeC. Hence X, = {agcl{x}: xe X}

(if)=(iii) Let A = BeXo. Then there exists X, yeX such that A = agcl{x}; B = agcl{y}, and agcl{x}nagcl{y} = ¢.
Then AeC = Py (X~agcl{y})ePO(Xo, Q(Xo)) and B¢ C. Thus (Xo, Q(Xo)) is ag-T;

(iii) = (i) Let xeUeaGO(X). Let yeU and C,, C, X, containing x and y respectively. Then x¢ cgcl{y}, which
implies C, # C, and there exists ag-open set A such that C,eA and C,¢A. Since Px is continuous and open, then yeB =
Py (A)e xeag O(X) and x¢B, which implies y¢ agcl{x}. Thus agcl{x}< U. This is true for all agcl{x} implies
Nneagcl{x}c U. Hence X is ag-Ro

Theorem 5.07: (X, 7) is ag-Ry iff (Xo, Q(Xo)) is ag-T,
The proof is straight forward from using theorems 5.05 and 5.06 and is omitted

Theorem 5.08: X is ag-T;; i =0, 1, 2. iff there exists a ag-continuous, almost-open, 1-1 function from (X, 7) into a ag-
T; space; i=0,1,2. respectively.
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Proof: If X is ag-T;; i=0,1,2., then the identity function on X satisfies the desired properties. The converse is (ii) part
of Theorem 2.13.

The following example shows that if f: (X, 7)— (Y, &) is continuous, a.g-open, bijective, AcPO(Y, o), and (Y, c) ag-
Ti; 1=0,1,2, then f ™ (A) need not be ag —open and (X, ) need not be ag-T;; i=0,1,2

Theorem 5.09: If /£ (X, 7 )— (Y, o) is ag-continuous, ag-open, and X, yeX such that agcl{x} = agcl{y}, then
agc{AX)} = agc{AY)}-

Theorem 5.10: The following are equivalent

(i) (X, 7)isag-To

(ii) Elements of X, are singleton sets and

(iii)There exists a ag-continuous, ag-open, 1-1 function /: (X, 7)— (Y, o), where (Y, o) is ag-T
Proof: (i) is equivalent to (ii) and (i) = (iii) are straight forward and is omitted.

(iif) = (i) Letx, yeX such that f(x) = f(y), which implies agcl{f(x)} # agcl{f(y)}. Then by theorem 5.09, agcl{x} =
agcl{y}. Hence (X, 7) is ag-To

Corollary 5.11: A space (X, z)isag-T;; i=12iff (X, 7)is ag-Ti_.1; i =1,2, respectively, and there exists a a.g-
continuous , ag-open, 1-1 function /4 (X, 7) into a ag-T, Space.

Definition 5.04: f:X—Y is point—-ag-closure 1-1 iff for X, ye X such that egcl{x} = agcl{y}, agcl{f(X)} = egcl{f(y)}.
Theorem 5.12:

If £ (X, 7)— (Y, o) is point— ag-closure 1-1 and (X, 7) is ag-To, then fis 1-1

@it £ (X, 7)— (Y, o), where (X, 7)and (Y, o) are ag-T, then /is point- ag-closure 1-1 iff /is 1-1

Proof: omitted

The following result can be obtained by combining results for ag-To— identification spaces, ag-induced functions and
og-T, spaces; i=1,2.

Theorem 5.13: X is ag-R; ; i = 0,1 iff there exists a ag-continuous , almost—open point— ag-closure 1-1 function /
(X, 7) into a ag-R; space; i = 0,1 respectively.

6. ag-Normal; Almost ag-normal and Mildly ag-normal spaces

Definition 6.1: A space X is said to be ag-normal if for any pair of disjoint closed sets F, and F, , there exist disjoint
ag-open sets U and V such that F; c U and F, c V.

Example 4: Let X = {a, b, c} and © = {¢, {a}, {b, c}, X}. Then X is ag-normal.

Example 5: Let X = {a, b, ¢, d} and t = {¢,{b, d},{a, b, d},{b, c, d}, X}. Then X is not ag-normal and is not normal.

We have the following characterization of ag-normality.

Theorem 6.1: For a space X the following are equivalent:

(i) Xis ag-normal.

(if) For every pair of open sets U and V whose union is X, there exist a.g-closed sets A and B such that AcU, B <V and
ALB =X

(iii) For every closed set F and every open set G containing F, there exists a a.g-open set U such that

FcUcagel(U)cG.

Proof: (i)=(ii): Let U and V be a pair of open sets in a ag-normal space X such that X = UV. Then X-U, X-V are
disjoint closed sets. Since X is ag-normal there exist disjoint a.g-open sets U; and V; such that X-UcU; and X-VcV;.
Let A= X-Uy, B =X-V;. Then A and B are ag-closed sets such that AcU, BcV and AcB = X.

(b) =(c): Let F be a closed set and G be an open set containing F. Then X—F and G are open sets whose union is X.
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Then by (b), there exist ag-closed sets W, and W, such that W; « X-Fand W, cG and W;W, = X. Then Fc X-Wy,
X=G < X-W, and (X-W)(X-W,) = ¢. Let U = X-W, and V= X-W,. Then U and V are disjoint a.g-open sets such that
FcUcX-VcG. As X-V is ag-closed set, we have agcl(U) <X~V and FcU cagel(U)cG.
(c) = (a): Let F; and F, be any two disjoint closed sets of X. Put G = X-F,, then F1G = ¢. F;cG where G is an open
set. Then by (c), there exists a ag-open set U of X such that F; cU < agcl(U) <G. It follows that F, = X-agcl(U) =V,
say, then V is ag-open and UV = ¢. Hence F; and F, are separated by ag-open sets U and V. Therefore X is ag-
normal.
Theorem 6.2: A regular open subspace of a aig-normal space is a.g-normal.
Proof: Let Y be a regular open subspace of a ag-normal space X. Let A and B be disjoint closed subsets of Y. As Y is
regular open, A, B are closed sets of X. By ag-normality of X, there exist disjoint ag-open sets U and V in X such that
A cU and BcV, UnY and VMY are ag-open in Y such that AcUNY and BcVNY. Hence Y is ag-normal.
Example 6: Let X = {a, b, ¢} with t = {¢, {a}, {b}, {a, b}, X} is ag-normal and ag-regular.

However we observe that every ag-normal a.g-R, space is ag-regular.
Now, we define the following.

Definition 6.2: A function f: X — Y is said to be almost—ag-irresolute if for each x in X and each a.g-neighborhood V
of f(x), agel(f *(V)) is a ag-neighborhood of x.

Clearly every ag-irresolute map is almost a.g-irresolute.

The Proof of the following lemma is straightforward and hence omitted.

Lemma 6.1: f is almost ag-irresolute iff (V) c ag-int(agcl(f*(V)))) for every Ve agO(Y).

Now we prove the following.

Lemma 6.2: f is almost ag-irresolute iff f(agcl(U)) < agcl(f(U)) for every Ue ag O(X).

Proof: Let Ue ag O(X).Suppose y¢ agcl(f(U)). Then there exists Ve agO(y) such that VAf(U) = ¢. Hence f(V)nU=
¢. Since Ue agO(X), we have ag-int(agcl(f1(V))) N agcl(U) = ¢. Then by lemma 6.1, f (V) agel(U) = ¢ and hence
Vf(agel(U)) = ¢. This implies that y f(agcl(U)).

Conversely, if Veag O(Y), then W = X- agcl(f}(V)))e ag O(X). By hypothesis, f(agcl(W))c agcel (f(W))) and hence
X- ag-int(agel(f1(V))) = agel(W)ct 2 (agel (FW)))cf(agel [FOX-FH V) agel(Y-V)] = £1(Y-V) = X-F1(V).
Therefore, f1(V)c ag-int(agel(f1(V))). By lemma 6.1, f is almost ag-irresolute.

Now we prove the following result on the invariance of ag-normality.

Theorem 6.3: If f is an M-ag-open continuous almost ag-irresolute function from a ag-normal space X onto a space
Y, then Y is ag-normal.

Proof: Let A be a closed subset of Y and B be an open set containing A. Then by continuity of f, f*(A) is closed and
£1(B) is an open set of X such that f* (A) = f*(B). As X is ag-normal, there exists a ag-open set U in X such that f'(A)
c U c agel(U)c £4(B). Then f(FY(A))c f(U) < f(agcl(V)) < f(F1(B)). Since f is M-ag-open almost ag-irresolute
surjection, we obtain Ac f(U) < agcl(f(U)) < B. Then again by Theorem 6.1 the space Y is ag-normal.

Lemma 6.3: A mapping f is M-ag-closed if and only if for each subset B in Y and for each ag-open set U in X
containing f*(B), there exists a a.g-open set V containing B such that *(V)cU.

Now we prove the following:
Theorem 6.4: If f is an M-ag-closed continuous function from a ag-normal space onto a space Y, then Y is ag-normal.
Proof of the theorem is routine and hence omitted.

Now in view of lemma 2.2 [9] and lemma 6.3, we prove that the following result.
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Theorem 6.5: If f is an M-ag-closed map from a weakly Hausdorff a.g-normal space X onto a space Y such that f(y)
is S-closed relative to X for each yeY , then Y is ag-T,.

Proof: Let y; and y, be any two distinct points of Y. Since X is weakly Hausdorff, f *(y,) and f (y,) are disjoint closed
subsets of X by lemma 2.2 [9]. As X is a.g-normal, there exist disjoint a.g-open sets V; and V, such that f *(y;) < V;, for
i =1, 2. Since f is M-ag-closed, there exist ag-open sets U, and U, containing y; and y, such that f 1(U;) < V;

fori=1, 2. Then it follows that U;nU, = ¢. Hence Y is ag-To,.

Theorem 6.6: For a space X we have the following:

(a) If X is normal then for any disjoint closed sets A and B, there exist disjoint o.g-open sets U, V such that A = U and
BcV;

(b) If X is normal then for any closed set A and any open set V containing A, there exists an a.g-open set U of X such
that AcUcagcl(U) V.

Definition 6.2: X is said to be almost a.g-normal if for each closed set A and each regular closed set B such that AnB =
¢, there exist disjoint a.g-open sets U and V such that AcU and BcV.

Clearly, every ag-normal space is almost a.g-normal, but not conversely in general.

Example 7: Let X = {a, b, c} and = = {¢,{a}, {a, b}, {a, ¢}, X}.Then X is almost a.g-normal and not a.g-normal.

Now, we have characterization of almost ag-normality in the following.

Theorem 6.7: For a space X the following statements are equivalent:

(i) X is almost ag-normal

(ii) For every pair of sets U and V , one of which is open and the other is regular open whose union is X, there exist a.g-
closed sets G and H such that GcU ,HcV and GUH = X.

(iii) For every closed set A and every regular open set B containing A, there is a ag-open set V such that A cVc
agcl(V) c B.

Proof:

(a)=(b) Let U be an open set and V be a regular open set in an almost ag-normal space X such that ULV = X,

Then (X-U) is closed set and (X-V) is regular closed set with (X-U)n(X-V) = ¢. By almost ag-normality of X, there

exist disjoint aig-open sets U; and V; such that X-U < U; and X-V < V;. Let G = X- U; and H = X-V;. Then G and H

are ag-closed sets such that GcU, HcV and GUH = X.

(b) = (c) and (c) = (a) are obvious.

One can prove that almost ag-normality is also regular open hereditary.

Almost ag-normality does not imply almost ag-regularity in general. However, we observe that every almost ag-
normal ag-Ro space is almost ag-regular.

Next, we prove the following.

Theorem 6.8: Every almost regular, v-compact space X is almost ag-normal.

Recall that a function f: X— Y is called rc-continuous if inverse image of regular closed set is regular closed.
Now, we state the invariance of almost a.g-normality in the following.

Theorem 6.9: If f is continuous M-ag-open rc-continuous and almost ag-irresolute surjection from an almost a.g-
normal space X onto a space Y, then Y is almost a.g-normal.

Definition 6.3: A space X is said to be mildly ag-normal if for every pair of disjoint regular closed sets F; and F, of X,
there exist disjoint ag-open sets U and V such that F, cUand F, < V.

Example 8: Let X = {a, b, c} and t = {¢,{b},{a, b},{b, c}, X}. Then X is mildly ag-normal.

We have the following characterization of mild a.g-normality.
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Theorem 6.10: For a space X the following are equivalent.

(i) Xis mildly ag-normal.

(if) For every pair of regular open sets U and V whose union is X, there exist ag-closed sets G and H such that G — U,
HcVand GUH = X.

(iii) For any regular closed set A and every regular open set B containing A, there exists a ag-open set U such that
AcUcagcl(U)cB.

(iv) For every pair of disjoint regular closed sets, there exist ag-open sets U and V such that AcU, BcV and
agcl(U)n agel(V) = ¢.

This theorem may be proved by using the arguments similar to those of Theorem 6.7.
Also, we observe that mild ag-normality is regular open hereditary.
We define the following

Definition 6.4: A space X is weakly ag-regular if for each point x and a regular open set U containing {x}, there is a
ag-open set V such that xeV c clV < U.

Example 9: Let X ={a, b, c} and t = {¢,{b},{a, b},{b, c}, X}. Then X is weakly ag-regular.

Example 10: Let X = {a, b, c} and t = {¢,{a},{b},{a, b}, X}. Then X is not weakly ag-regular.

Theorem 6.11: If f: X — Y is an M-ag-open rc-continuous and almost ag-irresolute function from a mildly ag-
normal space X onto a space Y, then Y is mildly ag-normal.

Proof: Let A be a regular closed set and B be a regular open set containing A. Then by rc-continuity of f, f *(A)isa
regular closed set contained in the regular open set f*(B). Since X is mildly a.g-normal, there exists a ag-open set V
such that f1(A) cVc agel(V) < f 7(B) by Theorem 6.10. As f is M-ag-open and almost ag-irresolute surjection, it
follows that f(V)e ag O(Y) and Ac f(V) < agcl(f(V))c B. Hence Y is mildly ag-normal.

Theorem 6.12: If f: X — Y is rc-continuous, M-ag-closed map from a mildly ag-normal space X onto a space Y, then
Y is mildly ag-normal.

7. ag-US spaces:

Definition 7.1: A sequence <x,> is said to be ag-converges to a point x of X, written as <x,> —“ x if <x,> is
eventually in every ag-open set containing x.

Clearly, if a sequence <x,> r-converges to a point x of X, then <x,> a.g-converges to x.

Definition 7.2: X is said to be ag-US if every sequence <x,> in X ag-converges to a unique point.

Theorem 7.1: Every ag-US space is ag-T;.

Proof: Let X be ag-US space. Let x and y be two distinct points of X. Consider the sequence <x,> where x, = x for
every n. Cleary, <x,> —% x. Also, since x = y and X is ag-US, <x,> cannot ag-converge to y, i.e, there exists a ag-
open set V containing y but not x. Similarly, for the sequence <y,> where y, =y for all n, and proceeding as above we
get a ag-open set U containing x but not y. Thus, the space X is ag-T;.

Theorem 7.2: Every ag-T, space is ag-US.

Proof: Let X be ag-T, space and <x,> be a sequence in X. If possible suppose that <x,> ag-converge to two distinct
points x and y. That is, <x,> is eventually in every ag-open set containing x and also in every a.g-open set containing y.

This is contradiction since X is ag-T, space. Hence the space X is ag-US.
Definition 7.3: A set F is sequentially ag-closed if every sequence in F ag-converges to a point in F.
Theorem 7.3: X is ag-US iff the diagonal set is a sequentially ag-closed subset of X x X.

Proof: Let X be ag-US. Let <x, , X,> be a sequence in A. Then <x,> is a sequence in X. As X is ag-US, <x,> =% x
for a unique x € X. i.e., if <x,> =>“ x and y. Thus, x = y. Hence A is sequentially ag-closed.
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Conversely, let A be sequentially ag-closed and let <x,> —“ x and y. Hence <x, , X,> —“ (x,y). Since A is
sequentially ag-closed, (x,y) €A which means that x =y implies space X is ag-US.

Definition 7.4: A subset G of a space X is said to be sequentially ag-compact if every sequence in G has a
subsequence which ag-converges to a point in G.

Theorem 7.4: In a ag-US space every sequentially aig-compact set is sequentially a.g-closed.

Proof: Let X be ag-US space. Let Y be a sequentially ag-compact subset of X. Let <x,> be a sequence in Y. Suppose
that <x,> a.g-converges to a point in X-Y. Let <x,,> be subsequence of <x,> that a.g-converges to a pointy € Y since
Y is sequentially og-compact. Also, let a subsequence <x,,> of <x,> ag-converge to x € X-Y. Since <xX,,> is a
sequence in the ag-US space X, x =y. Thus, Y is sequentially a.g-closed set.

Next, we give a hereditary property of ag-US spaces.

Theorem 7.5: Every regular open subset of a ag-US space is ag-US.

Proof: Let X be a ag-US space and Y < X be an regular open set. Let <x,> be a sequence in Y. Suppose that <x,> ag-
converges to x and y in Y. We shall prove that <x,> ag-converges to x and y in X. Let U be any ag-open subset of X
containing x and V be any ag-open set of X containing y. Then, UnY and VMY are ag-open sets in Y. Therefore, <x,>
is eventually in UNY and VMY and so in U and V. Since X is ag-US, this implies that x = y. Hence the subspace Y is
ag-UsS.

Theorem 7.6: A space X is ag-T, iff it is both ag-R; and ag-US.

Proof: Let X be ag-T,space. Then X is ag-R; and ag-US by Theorem 7.2.

Conversely, let X be both ag-R; and ag-US space. By Theorem 7.1, X is both ag-T; and ag-R; and, it follows that
space X is ag-To,.

Definition 7.5: A point y is a ag-cluster point of sequence <x,> iff <x,> is frequently in every ag-open set containing
X. The set of all ag-cluster points of <x,> will be denoted by ag-cl(x,).

Definition 7.6: A point y is ag-side point of a sequence <x,> if y is a ag-cluster point of <x,> but no subsequence of
<Xp> ag-converges to y.

Now, we define the following.

Definition 7.7: A space X is said to be

(i) ag-S; ifitis ag-US and every sequence <x,> o.g-converges with subsequence of <x,> a.g-side points.
(i) ag-S; if it is ag-US and every sequence <x,> in X aig-converges which has no ag-side point.

Lemma 7.1: Every ag-S, space is ag-S; and Every ag-S; space is ag-US.

Now using the notion of sequentially continuous functions, we define the notion of sequentially o.g-continuous
functions.

Definition 7.8: A function f is said to be sequentially ag-continuous at x e X if f(x,) —“ f(x) whenever <x,> —“ x. If
f is sequentially ag-continuous at all xe X, then f is said to be sequentially a.g-continuous.

Theorem 7.7: Let f and g be two sequentially ag-continuous functions. If Y is ag-US, then the set A = {x | f(x) = g(x)}
is sequentially ag-closed.

Proof: Let Y be ag-US and suppose that there is a sequence <x,> in A ag-converging to x € X. Since f and g are
sequentially ag-continuous functions, f(x,) — f(x) and g(x,) = g(x). Hence f(x) = g(x) and x € A. Therefore, A is
sequentially og-closed.

Next, we prove the product theorem for a.g-US spaces.

Theorem 7.8: Product of arbitrary family of ag-US spaces is ag-US.
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Proof: Let X =L, X, where X, is ag-US. Let a sequence <x,> in X ag-converges to X (= x;) and y (= y;). Then
<Xm> > x;. and y; for all A e A. For suppose there exists a pe A such that <x,,> does not a.g-converges to X,..

Then there exists a t,-ag-open set U, containing x, such that <x,,> is not eventually in U,. Consider the set U =[], .
X; x U,.. Then U is a ag-open subset of X and x e U. Also, <x,> is not eventually in U, which contradicts the fact that
<X,> —“ X. Thus we get <x,,> = x, and y, for all A € A. Since X;_is ag-US for each Lea. Thus x = y. Hence X is
ag-UsS.

8. Sequentially sub-ag-continuity:

Definition 8.1: A function f is said to be
(i) sequentially nearly ag-continuous if for each point xeX and each sequence <x,> —“ x in X, there exists a
subsequence <x.,> of <x,> such that <f(x.)>— “ f(x).
(i) sequentially sub-ag-continuous if for each point xe X and each sequence <x,> —“ x in X, there exists a
subsequence <x.> of <x,> and a point yeY such that <f(x,)> —>“y.
(iii) sequentially ag-compact preserving if f(K) is sequentially ag-compact in Y for every sequentially ag-compact set
K of X.

Lemma 8.1: Every function f is sequentially sub-ag-continuous if Y is a sequentially a.g-compact.

Proof: Let <x,> —“ x in X. Since Y is sequentially ag-compact, there exists a subsequence {f(x.)} of {f(x.)} ag-
converging to a point yeY. Hence f is sequentially sub-ag-continuous.

Theorem 8.1: Every sequentially nearly ag-continuous function is sequentially ag-compact preserving.

Proof: Assume f is sequentially nearly ag-continuous and K any sequentially a.g-compact subset of X. Let <y,> be any
sequence in f (K). Then for each positive integer n, there exists a point x, € K such that f(Xn) = Yn. Since <x,> is a
sequence in the sequentially ag-compact set K, there exists a subsequence <x.> of <x,> ag-converging to a point x
K. By hypothesis, f is sequentially nearly ag-continuous and hence there exists a subsequence <x;> of <x,> such that
f(x;)— “ f(x). Thus, there exists a subsequence <y;> of <y,> ag-converging to f(x)ef(K). This shows that f(K) is
sequentially ag-compact setin'Y.

Theorem 8.2: Every sequentially a-continuous function is sequentially a.g-continuous.

Proof: Let f be a sequentially a.-continuous and <x,> —“ xeX. Then <x,> —* x. Since f is sequentiallya-continuous,
f(x,)—=*f(x). But we know that <x,>—“ implies <x,> —“ x and hence f(x,)— “® f(x) implies f is sequentially ag-
continuous.

Theorem 8.3: Every sequentially aig-compact preserving function is sequentially sub-ag-continuous.

Proof: Suppose f is a sequentially ag-compact preserving function. Let x be any point of X and <x,> any sequence in
X ag-converging to x. We shall denote the set {x,|n=1, 2,3 ...} by A and K= A U {x}. Then K is sequentially a.g-
compact since (x,) —“ x. By hypothesis, f is sequentially a.g-compact preserving and hence f(K) is a sequentially o.g-
compact set of Y. Since {f(x,)} is a sequence in f(K), there exists a subsequence {f(x.«)} of {f(x,)} ag-converging to a
point yef(K). This implies that f is sequentially sub-ag-continuous.

Theorem 8.4: A function f: X— Y is sequentially ag-compact preserving iff fi: K — f (K) is sequentially sub-ag-
continuous for each sequentially ag-compact subset K of X.

Proof: Suppose f is a sequentially a.g-compact preserving function. Then f (K) is sequentially ag-compact set in Y for
each sequentially a.g-compact set K of X. Therefore, by Lemma 8.1 above, f: K— f(K) is sequentially ag-continuous
function.

Conversely, let K be any sequentially ag-compact set of X. Let <y,> be any sequence in f(K). Then for each positive
integer n, there exists a point x,eK such that f (x,) = y,. Since <x,> is a sequence in the sequentially a.g-compact set K,
there exists a subsequence <x.> of <x,> ag-converging to a point X e K. By hypothesis, f: K— f(K) is sequentially

sub-ag-continuous and hence there exists a subsequence <y of <y,> ag-converging to a point ye f(K).This implies
that f(K) is sequentially aig-compact set in Y. Thus, f is sequentially ag-compact preserving function.
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The following corollary gives a sufficient condition for a sequentially sub-ag-continuous function to be sequentially
og-compact preserving.

Corollary 8.1: If f is sequentially sub-ag-continuous and f (K) is sequentially ag-closed set in Y for each sequentially
ag-compact set K of X, then f is sequentially aig-compact preserving function.

Proof: Omitted.
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