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Abstract 
In this paper we discuss new separation axioms using αg-open sets. 
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1. Introduction: 
 
Norman Levine introduced generalized closed sets in 1970. After him various Authors studied different versions of 
generalized sets and related topological properties. Recently V.K. Sharma and the author of the present paper defined 
separation axioms for g-open; gs-open; sg-open and rg-open sets. 
 
Definition 1.1: A ⊆ X is called generalized closed[resp: regular generalized; generalized regular]{briefly: g-closed; rg-
closed; αg-closed}if cl{A}⊆U whenever A⊆U and U is open [resp: regular open, open] and generalized [resp: regular 
generalized; generalized regular] open if its complement is generalized [resp: regular generalized; generalized regular] 
closed. 
 
Note 1: The class of regular open sets, open sets, α-open sets, αg-open sets and rg-open are denoted by RO(X), τ(X), 
αO(X) and αGO(X) respectively. Clearly RO(X) ⊂ τ(X) ⊂ αO(X) ⊂ αGO(X). 
 
Note 2: A∈αgO(X, x) means A is α-generalized open neighborhood of X containing x. 
 
Definition 1.2: A⊂X is called clopen[resp: αg-clopen] if it is both open[resp: αg-open] and closed[resp: αg-closed] 
 
Definition 1.3: A function f: X → Y is said to be 
(i) g-continuous [resp: αg-continuous] if inverse image of closed set is g-closed [resp: αg-closed] and g-irresolute 

[resp: αg-irresolute] if inverse image of g-closed [resp: αg-closed] set is g-closed [resp: αg-closed] 
(ii)  αg-open if the image of open set αg-open 
(iii) αg-homeomorphism [resp: αgc-homeomorphism] if f is bijective, αg-continuous[resp: αg-irresolute] and  f -1 is 

αg-continuous[resp: αg-irresolute]  
 
Definition 1.4: X is said to be 
(i) compact [resp: nearly compact, g-compact, αg-compact] if every open[resp: regular-open, g-open, αg-open] cover   
     has a finite sub cover. 
(ii) T0 [resp: rT0, g0, αg0] space if for each x ≠ y∈X  ∃ U∈τ(X)[resp: RO(X); GO(X); αGO(X)] containing either x or y.  
(iii) T1 [resp: rT1, g1, αg1]{ T2 [resp: rT2, g2, αg2]} space if for each x ≠ y∈X ∃ {disjoint} U, V∈τ(X)[resp: RO(X);   
      GO(X); αGO(X)] αg-open sets G and H containing x and y respectively.  
(iv) T1/2 [resp: rT1/2, αT1/2] if every generalized [resp: regular generalized, α-generalized] closed set is closed [resp:  
       regular-closed, α-closed]  
________________________________________________________________________________________________ 
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2. αg-continuity and product spaces: 
 
Theorem 2.1: Let Y and {Xα:α∈ I} be Topological Spaces. Let f: Y→ ΠXα be a function. If f is αg-continuous, then 
πα• f: Y→ Xα is αg-continuous. 
 
Converse of the above theorem is not true in general as shown by the following Example: 
 
Example 2.1: Let X = {p, q, r, s}; τX = {φ, {p}, {q}, {s}, {p, q}, {p, s},{q, s}, {p, q, r}, {p, q, s}, X}, Y1 = Y2 = {a, b}; 
τY1 = {φ, {a}, Y1};  τ Y2 = {φ, {a}, Y2}; Y = Y1×Y2 = {(a, a), (a, b), (b, a), (b, b)} and τY = {φ, {(a, a)}, {(a, a), (a, b)}, 
{(a, a), (b, a)}, {(a, a), (a, b), (b, a)}, Y1× Y2}. 
 
Define f: X→ Y by f(p) = (a, a), f(q) = (b, b), f(r) = (a, b), f(s) = (b, a).  It is easy to see that π1•f and π2•f are αg-
continuous. However {(b, b)} is closed in Y but f -1({(b, b)}) = {q} is not αg-closed in X. Therefore f is not αg-
continuous. 
   
Theorem 2.2: If Y is αT1/2 and {Xα:α∈ I} be Topological Spaces. Let f: Y→ ΠXα be a function, then f is αg-
continuous iff πα• f: Y→ Xα is αg-continuous. 
 
Corollary 2.3: (i) Let fα: Xα→ Yα be a function and let f: ΠXα→ ΠYα be defined by f(xα)α∈I = (fα (xα))α∈I. If f is αg-
continuous then each fα is αg-continuous. 
(ii) For each α, let Xα be αT1/2 and let fα: Xα→Yα be a function and let f: ΠXα→ ΠYα be defined by f(xα)α∈I = (fα 
(xα))α∈I, then f is αg-continuous iff each fα is αg-continuous. 
   
3. αgi spaces i = 0, 1, 2: 
 
Definition 3.1: X is said to be 
(i) a αg0 space if for each pair of distinct points x, y of X, there exists a αg-open set G containing either of the point x 

or y. 
(ii) a αg1[resp: αg2] space if for each pair of distinct points x, y of X there exists [resp: disjoint] αg-open sets G and H 

containing x and y respectively.  
 
Note 2:  
(i) rTi → Ti → αi → αgi , i = 0, 1, 2. but the converse is not true in general. 
(ii)X is αg2 → X is αg1 → X is αg0. 
 
Example 3.1: Let X = {a, b, c} and τ = {φ, X}, then X is αgi but not rT0 and T0, i = 0, 1, 2.for i = 0, 1, 2. 
 
Example 3.2:  Let X = {a, b, c, d} and τ = {φ, {b}, {a, b}, {b, c}, {a, b, c}, X} then X is not αgi for i = 0, 1, 2. 
 
Remark 3.1: If X is αT1/2 then αTi and αgi are one and the same for i = 0, 1, 2. 
 
Theorem 3.1: The following are true 
(i)   Every [resp: regular open] open subspace of αgi space is αgi for i = 0, 1, 2. 
(ii)  The product of αgi spaces is again αgi for i = 0, 1, 2. 
(iii) αg-continuous image of Ti [resp: rTi] spaces is αgi for i = 0, 1, 2. 
(iv) X is αg0 iff ∀ x∈ X, ∃ U∈ αGO(X) containing x such that the subspace U is αg0. 
(v)  X is αg0 iff distinct points of X have disjoint αg-closures. 
(vi) If X is αg1 then distinct points of X have disjoint αg-closures. 
 
Theorem 3.2: The following are equivalent: 
(i)  X is αg1. 
(ii) Each one point set is αg-closed. 
(iii)Each subset of X is the intersection of all αg-open sets containing it. 
(iv) For any x∈ X, the intersection of all αg-open sets containing the point is the set {x}. 
 
Theorem 3.3: Suppose x is a αg-limit point of a subset of A of a αg1 space X. Then every neighborhood of x contains 
infinitely many distinct points of A. 
 
Theorem 3.4: The following are true 
(i)  X is αg2 iff the intersection of all αg-closed, αg-neighborhoods of each point of the space is reduced to that point. 
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(ii) If to each point x∈X, there exist a αg-closed, αg-open subset of X containing x which is also a αg2 subspace of X, 

then X is αg2. 
(iii) If X is αg2 then the diagonal  ∆ in X×X is αg-closed. 
(iv) In αg2-space, αg-limits of sequences, if exists, are unique. 
(v)  In a αg2 space, a point and disjoint αg-compact subspace can be separated by disjoint αg-open sets. 
(vi) Every αg-compact subspace of a αg2 space is αg-closed. 
 
Corollary 3.1: The following are true 
(i)   In a T1 [resp: rT1; g1] space, each singleton set is αg-closed. 
(ii)  If X is T1 [resp: rT1; g1] then distinct points of X have disjoint αg-closures. 
(iii) If X is T2 [resp: rT2; g2] then the diagonal ∆in X×X is αg-closed. 
(iv) Show that in a T2 [resp: rT2; g2] space, a point and disjoint compact[resp: nearly-compact; g-compact] subspace can     
       be separated by disjoint αg-open sets 
(v)  Every compact [resp: nearly-compact; g-compact] subspace of a T2 [resp: rT2; g2] space is αg-closed. 
 
Theorem 3.5: The following are true 
(i)   If f: X→ Y is injective, αg-irresolute and Y is αgi then X is αgi, i = 0, 1, 2. 
(ii)  Let X be T1 and f: X → Y be αg-closed surjection. Then X is αg1. 
(iii) Every αg-irresolute map from a αg-compact space into a αg2 space is αg-closed. 
(iv) Any αg-irresolute bijection from a αg-compact space onto a αg2 space is a αgc-homeomorphism. 
(v)  Any αg-continuous bijection from a αg-compact space onto a αg2 space is a αg-homeomorphism. 
(vi)  If f: X→ Y is injective, αg-continuous and Y is Ti then X is αgi, i = 0, 1, 2. 
(vii) If f: X→ Y is injective, r-irresolute[r-continuous] and Y is rTi then X is αgi, i = 0, 1, 2. 
(viii)The property of being a space is αg0 is a αg-Topological property.  
(ix) Let f: X → Y is a αgc-homeomorphism, then X is αgi if Y is αgi, i = 0, 1, 2.  
 
Theorem 3.6: The following are equivalent:  
(i)  X is αg2. 
(ii) For each pair x ≠ y∈ X ∃ a αg-open, αg-closed set V such that x∈V and y∉V, and 
(iii) For each pair x ≠ y∈ X ∃ f: X→ [0, 1] such that f(x) = 0 and f(y) = 1 and f is αg-continuous. 
 
Theorem 3.7: If f: X→ Y is αg-irresolute and Y is αg2 then 
(i) the set A = {(x1, x2): f(x1) = f(x2)} is αg-closed in X× X. 
(ii) G (f), graph of f, is αg-closed in X× Y. 
 
Theorem 3.8: If f: X→ Y is αg-open and A = {(x1, x2): f(x1) = f(x2)} is closed in X×X. Then Y is αg2. 
 
Theorem 3.9: Let Y and {Xα:α∈ I} be Topological Spaces. If f: Y→ Π Xα be a αg-continuous function and Y is αT1/2, 
then Π Xα and each Xα are αgi, i = 0,1,2.  
 
Theorem 3.10: Let X be an arbitrary space, R an equivalence relation in X and p: X → X/R the identification map. If 
R⊂ X× X is αg-closed in X× X and p is αg-open map, then X/R is αg2. 
 
Theorem 3.11: The following four properties are equivalent: 
(i)  X is αg2 
(ii) Let x∈ X. For each y ≠ x, ∃ U∈ αGO(X) such that x∈ U and y∉αgcl(U) 
(iii) For each x∈ X, ∩{αgcl(U)/U∈ αGO(X) and x∈ U} = {x}. 
(iv) The diagonal ∆ = {(x, x)/x∈X} is αg-closed in X× X. 
 
Proof: (i) ⇒ (ii) Let x∈X and y ≠ x. Then there are disjoint αg-open sets U and V such that x∈U and y∈V. Clearly V c 
is αg-closed, αgcl(U) ⊂ Vc, y∉Vc and therefore y∉ αgcl(U).   
 
(ii) ⇒ (iii) If y ≠ x, then ∃ U∈ αGO(X) s.t. x∈U and y∉ αgcl(U). So y∉∩{ αgcl(U)/U∈ αGO(X) and x∈U}. 
 
(iii) ⇒ (iv) We prove ∆c is αg-open. Let (x, y) ∉∆. Then y ≠ x and ∩{ αgcl(U)/U∈ αGO(X) and x∈U} = {x} there is 
some U∈ αGO(X) with x∈U and y∉ αgcl(U). Since U∩( αgcl(U))c = φ, U×( αgcl(U))c is a αg-open set such that (x, 
y)∈U×( αgcl(U))c⊂∆c. 
 
(iv) ⇒ (i) y ≠ x, then (x, y)∉∆ and thus there exist αg-open sets U and V such that (x, y)∈U×V and (U×V)∩∆ = φ.  
 
Clearly, for the αg-open sets U and V we have; x∈U, y∈V and U∩V = φ. 
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4. αg-Ri spaces; i = 0, 1: 
 
Definition 4.1: Let x∈ X. Then 
(i) αg-kernel of x is defined and denoted by Ker{αg}{x} = ∩{U:U∈ αGO(X) and x∈ U} 
(ii) Ker{αg}F = ∩{U: U∈ αGO(X) and F⊂ U} 
 
Lemma 4.1: Let A⊂ X, then Ker{αg}{A} = {x∈ X: αgcl{x}∩ A  ≠ φ.} 
 
Lemma 4.2: Let x∈X. Then y∈Ker{αg}{x} iff x∈αgcl{y}. 
 
Proof: Let y∉Ker{αg}{x}. Then ∃ V∈αgO(X, x) such that y∉V. Therefore we have x∉ αgcl{y}. The proof of converse 
part can be done similarly. 
 
Lemma 4.3: For any points x ≠ y∈X, the following are equivalent: 
(i) Ker{αg}{x}  ≠ Ker{αg}{y};      
(ii) αgcl{x}  ≠ αgcl{y}. 
 
Proof:  
(i) ⇒ (ii): Let Ker{αg}{x} ≠ Ker{αg}{y}, then ∃ z∈X such that  z∈Ker{αg}{x} and z∉Ker{αg}{y}. From z∈Ker{αg}{x} it 
follows that {x}∩ αgcl{z} ≠ φ ⇒ x∈ αgcl{z}. By z∉Ker{αg}{y}, we have {y}∩ αgcl{z} = φ. Since x∈ αgcl{z}, 
αgcl{x}⊂ αgcl{z} and {y}∩ αgcl{x} = φ. Therefore αgcl{x} ≠ αgcl{y}.  
 
Now Ker{αg}{x} ≠ Ker{αg}{y} ⇒ αgcl{x} ≠ αgcl{y}. 
 
(ii) ⇒ (i): If αgcl{x} ≠ αgcl{y}. Then ∃ z∈X such that z∈ αgcl{x} and z∉ αgcl{y}. Then ∃ a αg-open set containing z 
and therefore containing x but not y, namely, y∉ Ker{αg}{x}. Hence Ker{αg}{x}  ≠ Ker{αg}{y}. 
 
Definition 4.2: X is said to be 
(i) αg-R0 iff αgcl{x}⊆G whenever x∈G∈αGO(X). 
(ii) weakly αg-R0 iff ∩ αgcl{x} = φ. 
(iii) αg-R1 iff for x,y∈X ∋  αgcl{x}  ≠ αgcl{y} ∃ disjoint U; V∈αGO(X) ∋ αgcl{x}⊆U and αgcl{y}⊆V. 
 
Example 4.1: Let X = {a, b, c, d} and τ  = {φ, {b}, {a, b}, {b, c}, {a, b, c}, X}, then X is weakly αgR0 and not αgRi, i 
= 0, 1. 
 
Remark 4.1: 
(i)  r-Ri ⇒ Ri ⇒ αRi ⇒ αgRi, i = 0, 1. 
(ii) Every weakly-R0 space is weakly αgR0. 
 
Lemma 4.1: Every αgR0 space is weakly αgR0. 
 
Converse of the above Theorem is not true in general by the following Examples. 
 
Example 4.2: Let X = {a, b, c, d} and τ = {φ, {a}, {b}, {d}, {a, b}, {a, d}, {b, d}, {a, b, c}, {a, b, d}, X}. Clearly, X is 
weakly αgR0, since ∩ αgcl{x} = φ. But it is not αgR0, for {a}⊂X is αg-open and αgcl{a} =  {a, b}⊄{a}. 
 
Theorem 4.1: Every αg-regular space X is αg2 and αg-R0. 
 
Proof: Let X be αg-regular and let x ≠ y∈ X. By Lemma 4.1, {x} is either αg-open or αg-closed. If {x} is αg-open, 
{x} is αg-open and hence αg-clopen. Thus {x} and X - {x} are separating αg-open sets. Similarly for {x} is αg-closed, 
{x} and X - {x} are separating αg-closed sets. Thus X is αg2 and αg-R0. 
 
Theorem 4.2: X is αg-R0 iff given x  ≠ y∈ X; αgcl{x}  ≠ αgcl{y}. 
 
Proof: Let X be αg-R0 and let let x, ≠ y∈ X. Suppose U is a αg-open set containing x but not y, then y∈ αgcl{y}⊂ X-
U and so x∉ αgcl{y}. Hence αgcl{x} ≠ αgcl{y}. 
 
Conversely, let x, ≠ y∈ X such that αgcl{x} ≠ αgcl{y}⇒ αgcl{x}⊂ X- αgcl{y} = U(say) a αg-open set in X. This is 
true for every αgcl{x}. Thus ∩ αgcl{x}⊆ U where x∈ αgcl{x}⊆ U∈ αGO(X), which in turn implies ∩ αgcl{x}⊆ U 
where x∈ U∈ αGO(X). Hence X is αgR0. 
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Theorem 4.3: X is weakly αgR0 iff Ker{αg}{x} ≠ X for any x∈X. 
 
Proof: Let x0∈ X such that ker{αg}{x0} = X. This means that x0 is not contained in any proper αg-open subset of X. 
Thus x0 belongs to the αg-closure of every singleton set. Hence x0∈∩αgcl{x}, a contradiction. 
 
Conversely assume Ker{αg}{x} ≠ X for any x∈ X. If there is an x0∈X s.t. x0∈∩{αgcl{x}}, then every αg-open set 
containing x0 must contain every point of X. Therefore, the unique αg-open set containing x0 is X. Hence Ker{αg}{x0} = 
X, which is a contradiction. Thus X is weakly αg-R0. 
 
Theorem 4.4: The following are equivalent: 
(i)  X is αg-R0 space. 
(ii) For each x∈ X, αgcl{x}⊂ Ker{αg}{x} 
(iii) For any αg-closed set F and a point x∉ F, ∃ U∈ αGO(X) such that x∉U and F⊂U. 
(iv) Each αg-closed set F can be expressed as F = ∩{G: G is αg-open and F⊂G}. 
(v)  Each αg-open set Gcan be expressed as G = ∪{A: A is αg-closed and A⊂G}. 
(vi) For each αg-closed set F, x∉ F implies αg-cl{x}∩ F = φ. 
 
Proof:   
(i) ⇒ (ii) For any x∈ X, we have Ker{αg}{x} = ∩{U: U∈ αGO(X) and x∈U}. Since X is αg-R0, each αg-open set 
containing x contains αgcl{x}. Hence αgcl{x}⊂ Ker{αg}{x}. 
 
(ii) ⇒ (iii) Let x∉F∈ αgc(X). Then for any y∈F; αgcl{y}⊂F and so x∉ αgcl{y}⇒ y∉ αgcl{x} that is ∃ Uy∈ αGO(X) 
such that y∈Uy and x∉Uy ∀ y∈F. Let U = ∪{Uy: Uy is αg-open, y∈Uy  and x∉Uy}. Then U is αg-open such that x∉U 
and F⊂U. 
 
(iii) ⇒ (iv) Let F be any αg-closed set and N = ∩{G: G is αg-open and F⊂ G}. Then F⊂N → (1). 
 
Let x∉ F, then by (iii) ∃ G∈ αGO(X) such that x∉G and F⊂G.  
 
Hence x∉N which implies x∈N ⇒ x∈F. Hence N⊂F → (2). 
 
Therefore from (1) and (2), each αg-closed set F = ∩{G: G is αg-open and F⊂G} 
 
(iv) ⇒ (v) obvious. 
 
(v) ⇒ (vi) Let x∉F∈ αgc(X). Then X-F = G is a αg-open set containing x. Then by (v), Gcan be expressed as the union 
of αg-closed sets A contained in G, and so there is an M∈ αgc(X) such that x∈M⊂G; and hence αgcl{x}⊂G which 
implies αgcl{x}∩ F = φ. 
 
(vi) ⇒ (i) Let x∈G∈ αGO(X). Then x∉(X-G), which is a αg-closed set. Therefore by (vi) αgcl{x}∩(X-G) = φ, which 
implies that αgcl{x}⊆ G. Thus X is αgR0 space. 
 
Theorem 4.5: Let f: X → Y be a αg-closed one-one function. If X is weakly αg-R0, then so is Y. 
 
Theorem 4.6: If X is weakly αg-R0, then for every space Y, X× Y is weakly αg-R0. 
 
Proof: ∩ αgcl{(x,y)} ⊆∩{ αgcl{x}× αgcl{y}} = ∩ [αgcl{x}]× [αgcl{y}] ⊆ φ× Y = φ. Hence X× Y is αgR0. 
 
Corollary 4.1: 
(i)  If X and Y are weakly αgR0, then X× Y is weakly αgR0. 
(ii) If X and Y are (weakly-)R0, then X× Y is weakly αgR0. 
(iii)If X and Y are αgR0, then X× Y is weakly αgR0. 
(iv) If X is αgR0 and Y are weakly R0, then X× Y is weakly αgR0. 
 
Theorem 4.7: X is αgR0 iff for any x, y∈ X, αgcl{x} ≠ αgcl{y}⇒ αgcl{x}∩ αgcl{y} = φ. 
 
Proof: Let X be αgR0 and x, y∈X such that αgcl{x} ≠ αgcl{y} .Then ∃ z∈ αgcl{x} such that z∉ αgcl{y} (or 
z∈αgcl{y}) such that z∉αgcl{x}. There exists V∈αGO(X) such that y∉V and z∈V; hence x∈V. Therefore, 
x∉αgcl{y}. Thus x∈[ αgcl{y}]c∈ αGO(X), which implies αgcl{x}⊂[ αgcl{y}]c and αgcl{x}∩ αgcl{y} = φ.  The 
proof for otherwise is similar. 
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Sufficiency: Let x∈V∈ αGO(X). We show that αgcl{x}⊂V. Let y∉V, i.e., y∈Vc. Then x ≠ y and x∉ αgcl{y}. Hence 
αgcl{x} ≠ αgcl{y}. But αgcl{x}∩ αgcl{y} = φ. Hence y∉ αgcl{x}. Hence αgcl{x}⊂ V. 
 
Theorem 4.8: X is αgR0 iff for any points x, y∈X, Ker{αg}{x} ≠ Ker{αg}{y} ⇒ Ker{αg}{x}∩Ker{αg}{y} = φ. 
 
Proof: Let X be αgR0. By Lemma 4.3 for any x, y∈X if Ker{αg}{x} ≠ Ker{αg}{y} then αgcl{x} ≠ αgcl{y}.Assume that 
z∈Ker{αg}{x}∩Ker{αg}{y}. By z∈Ker{αg}{x} and Lemma 4.2, it follows that x∈ αgcl{z}. Since x∈ αgcl{z}, αgcl{x} = 
αgcl{z}. Similarly, we have αgcl{y} = αgcl{z} = αgcl{x}. This is a contradiction. Therefore, we have Ker{αg}{x} ∩ 
Ker{αg}{y} = φ. 
 
Conversely, let x, y∈X, s.t. αgcl{x} ≠ αgcl{y}, then by Lemma 4.3, Ker{αg}{x} ≠ Ker{αg}{y}. Hence by hypothesis 
Ker{αg}{x}∩Ker{αg}{y} = φ which implies αgcl{x}∩ αgcl{y} = φ Because z∈ αgcl{x} implies that x∈Ker{αg}{z} and  
therefore Ker{αg}{x}∩Ker{αg}{z} ≠ φ Therefore by Theorem 4.7 X is a αgR0 space. 
 
Theorem 4.9: The following are equivalent: 
(i) X is a αg-R0 space. 
(ii) For any A  ≠ φ and G∈ αGO(X) such that A∩G ≠ φ ∃ F∈ αgc(X)such that A∩F ≠ φ and F⊂G. 
 
Proof:  
(i) ⇒ (ii): Let A ≠ φ and G∈ αGO(X) such that A∩G ≠ φ. There exists x∈A∩G. Since x∈G∈ αGO(X), αgcl{x}⊂G. 
Set F = αgcl{x}, then F∈ αgc(X), F⊂G and A∩F  ≠ φ 
 
(ii) ⇒ (i): Let G∈ αGO(X) and x∈ G. By (2), αgcl{x}⊂ G. Hence X is αg-R0. 
 
Theorem 4.10: The following are equivalent: 
(i) X is a αg-R0 space; 
(ii) x∈ αgcl{y} iff y∈ αgcl{x}, for any points x and y in X. 
 
Proof:  
(i) ⇒ (ii): Assume X is αgR0. Let x∈ αgcl{y} and D be any αg-open set such that y∈D. Now by hypothesis, x∈D. 
Therefore, every αg-open set which contain y contains x. Hence y∈ αgcl{x}. 
 
(ii) ⇒ (i): Let U be a αg-open set and x∈U. If y∉ U, then x∉ αgcl{y} and hence y∉ αgcl{x}. This implies that 
αgcl{x}⊂U. Hence X is αgR0. 
 
Theorem 4.11: The following are equivalent: 
(i) X is a αgR0 space; 
(ii) If F is αg-closed, then F = Ker{αg}(F); 
(iii)If F is αg-closed and x∈F, then Ker{αg}{x}⊆F; 
(iv) If x∈ X, then Ker{αg}{x}⊂ αgcl{x}. 
 
Proof:  
(i) ⇒ (ii): Let x∉F∈αgc(X) ⇒ (X-F)∈ αgO(X, x). For X is αgR0, αgcl({x})⊂(X-F). Thus αgcl({x})∩ F = φ and 
x∉Ker{αg} (F). Hence Ker{αg} (F) = F. 
 
(ii) ⇒ (iii): A⊂B ⇒ Ker{αg} (A)⊂Ker{αg} (B). Therefore, by (2) Ker{αg}{x}⊂ Ker{αg} (F) = F. 
 
(iii) ⇒ (iv): Since x∈ αgcl{x} and αgcl{x} is αg-closed, by (3) Ker{αg}{x}⊂ αgcl{x}. 
 
(iv) ⇒ (i): Let x∈ αgcl{y}. Then by Lemma 4.2 y∈Ker{αg}{x}. Since x∈ αgcl{x} and αgcl{x} is αg-closed, by (iv) we 
obtain y∈Ker{αg}{x}⊆ αgcl{x}. Therefore x∈ αgcl{y} implies y∈ αgcl{x}. The converse is obvious and X is αgR0. 
 
Corollary 4.2: The following are equivalent: 
(i) X is αgR0. 
(ii) αgcl{x} = Ker{αg}{x}∀ x∈ X. 
 
Proof: Follows from Theorems 4.4 and 4.11. 
 
Recall that a filterbase F is called αg-convergent to a point x in X, if for any αg-open set U of X containing x, there 
exists B∈ F such that B⊂ U. 
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Lemma 4.4: Let x and y be any two points in X such that every net in X αg-converging to y αg-converges to x. Then 
x∈ αgcl{y}. 
 
Theorem 4.12: The following are equivalent: 
(i) X is a αgR0 space; 
(ii) If x, y∈X, then y∈ αgcl{x} iff every net in X αg-converging to y αg-converges to x. 
 
Proof:  
(i) ⇒ (ii): Let x, y∈X ∋ y∈ αgcl{x}. If {xα}α∈I is a net in X ∋ {xα}α∈I αg-converges to y. Since y∈ αgcl{x}, by Thm. 
4.7 we have αgcl{x} = αgcl{y}. Therefore x∈ αgcl{y}. This means that {xα}α∈I αg-converges to x.  
 
Conversely, let x, y∈ X ∋ every net in X αg-converging to y αg-converges to x. Then x∈ αg-cl{y}[by 4.4]. By Thm. 
4.7, we have αgcl{x} = αgcl{y}. Therefore y∈ αgcl{x}. 
 
(ii) ⇒ (i): Let x, y∈X ∋ αgcl{x}∩ αgcl{y} ≠ φ. Let z∈ αgcl{x}∩ αgcl{y}. So ∃ a net {xα}α∈I in αgcl{x} ∋ {xα}α∈I αg-
converges to z. Since z∈ αgcl{y}, then {xα}α∈I αg-converges to y. It follows that y∈ αgcl{x}. Similarly we obtain 
x∈αgcl{y}. Therefore αgcl{x} = αgcl{y}. Hence X is αgR0. 
 
Theorem 4.13:  
(i)  Every subspace of αgR1 space is again αgR1. 
(ii) Product of any two αgR1 spaces is again αgR1. 
(iii) X is αgR1 iff given x ≠ y∈ X, αgcl{x} ≠ αgcl{y}. 
(iv) Every αg2 space is αgR1. 
 
The converse of 4.13(iv) is not true. However, we have the following result. 
 
Theorem 4.14: Every αg1 and αgR1 space is αg2. 
 
Proof: Let x ≠ y∈X. Since X is αg1; {x} and {y} are αg-closed sets s.t. αgcl{x} ≠ αgcl{y}. Since X is αgR1, there 
exists disjoint αg-open sets U and V s.t. x∈U; y∈V. Hence X is αg2. 
 
Corollary 4.3: X is αg2 iff it is αgR1 and αg1. 
 
Theorem 4.15: The following are equivalent 
(i)  X is αg-R1. 
(ii) ∩ αgcl{x} = {x}. 
(iii) For any x∈ X, intersection of all αg-neighborhoods of x is {x}. 
 
Proof:  
(i) ⇒ (ii) Let y ≠ x∈X such that y∈ αgcl{x}. Since X is αgR1, ∃ U∈ αGO(X) such that y∈U, x∉U or x∈U, y∉U. In 
either case y∉ αgcl{x}. Hence ∩ αgcl{x} = {x}. 
 
(ii) ⇒ (iii) If y ≠ x∈X, then x∉∩ αgcl{y}, so there is a αg-open set containing x but not y. Therefore y does not belong 
to the intersection of all αg-neighborhoods of x. Hence intersection of all αg-neighborhoods of x is {x}. 
 
(iii) ⇒ (i) Let x ≠ y∈X. by hypothesis, y does not belong to the intersection of all αg-neighborhoods of x and x does 
not belong to the intersection of all αg-neighborhoods of y, which implies αgcl{x} ≠ αgcl{y}. Hence X is αg-R1. 
 
Theorem 4.16: The following are equivalent: 
(i)  X is αg-R1. 
(ii) For each pair x, y∈X with αgcl{x} ≠ αgcl{y}, ∃ a αg-open, αg-closed set V s.t. x∈V and y∉V, and 
(iii)For each pair x, y∈X with αgcl{x} ≠ αgcl{y}, ∃ f: X→[0, 1] s.t. f(x) = 0 and f(y) = 1 and f is αg-continuous. 
 
Theorem 4.17: 
(i)  If X is αg-R1, then X is αg-R0. 
(ii) X is αg-R1 iff for x, y∈ X, Ker{αg}{x} ≠ Ker{αg}{y}, ∃ disjoint U; V∈ αGO(X) such that  αgcl{x}⊂U and 
αgcl{y}⊂V. 
 
5. αg-Ci and αg-Di spaces, i = 0, 1, 2: 
 
Definition 5.1: X is said to be a 
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(i)  αg-C0 space if for each pair of distinct points x, y of X there exists a αg-open set G whose closure contains either x 

or y. 
(ii) αg-C1[resp: αg-C2] space if for each pair of distinct points x, y of X there exists [resp: disjoint] αg-open sets G and 

H whose closures containing x and y respectively. 
  
Note: αg-C2 ⇒  αg-C1 ⇒ αg-C0. Converse need not be true in general: 
 
Example 5.1: (i) Let X = {a, b, c} and τ = {φ, X}, then X is αgCi for i = 0, 1, 2. 
(ii)  Let X = {a, b, c, d} and τ = {φ, {b}, {a, b}, {b, c}, {a, b, c}, X} then X is not αgCi for i = 0, 1, 2. 
 
Theorem 5.1: We have the following properties 
(i)  Every subspace of αg-Ci space is αg-Ci. 
(ii) Every αgi spaces is αg-Ci. 
(iii) Product of αg-Ci spaces are αg-Ci. 
(iv) Let X be any αg-Ci space and A⊂X then A is αg-Ci iff (A, τ/A) is αg-Ci. 
(v)  If X is αg-C1 then each singleton set is αg-closed. 
(vi) In an αg-C1 space disjoint points of X has disjoint αg- closures. 
 
Definition 5.2: A⊂X is called a αg-Difference(Shortly αgD-set) set if there are two U, V∈ αGO(X) such that U ≠ X 
and A = U-V. 
 
Clearly every αg-open set U different from X is a αgD-set if A = U and V = φ. 
 
Definition 5.3: X is said to be a 
(i)  αg-D0 if for any pair of distinct points x and y of X there exist a αgD-set in X containing x but not y or a αgD-set in 

X containing y but not x. 
(ii) αg-D1 [resp: αg-D2] if for any pair of distinct points x and y of X there exists [resp: disjoint] αgD-sets G and H in 

X containing x and y respectively. 
 
Remark 5.2: (i) If X is rTi, then it is αgi, i = 0, 1, 2 and converse is false. 
(ii) If X is αgi, then it is αg{i-1}, i = 1, 2. 
(iii) If X is αgi, then it is αg-Di , i = 0, 1, 2. 
(iv) If X is αg-Di, then it is αg-D{i-1}, i = 1, 2. 
 
Theorem 5.2: The following are true: 
(i) X is αg-D0 iff it is αg0. 
(ii) X is αg-D1 iff it is αg-D2. 
 
Corollary 5.1: If X is αg-D1, then it is αg0. 
 
Proof: Remark 5.1(iv) and Theorem 5.1(vi) 
 
Definition 5.4: A point x∈ X which has X as the unique αg-neighborhood is called αg.c.c point. 
 
Theorem 5.3: For an αg0 space X the following are equivalent: 
(i) X is αg-D1; 
(ii) X has no αg.c.c point. 
 
Proof: (i) ⇒ (ii) Since X is αg-D1, then each point x of X is contained in a αgD-set O = U - V and thus in U. By 
Definition U  ≠ X. This implies that x is not a αg.c.c point. 
 
(ii) ⇒ (i) If X is αg0, then for each x ≠ y∈ X, at least one of them, x (say) has a αg-neighborhood U containing x and 
not y. Thus U which is different from X is a αgD-set. If X has no αg.c.c point, then y is not a αg.c.c point. This means 
that there exists a αg-neighborhood V of y such that V  ≠ X. Thus y∈ V-U but not x and V-U is a αgD-set. Hence X is 
αg-D1. 
 
Definition 5.5: X is αg-symmetric if for x and y in X, x ∈ αgcl{y} implies y ∈ αgcl{x}. 
 
Theorem 5.4: X is αg-symmetric iff {x} is αg-closed for each x∈ X. 
 
Proof: Assume that x∈ αgcl{y} but y∉ αgcl{x}. Then [αgcl{x}]c contains y. This implies that αgcl{y}⊂ [αgcl{x}]c.  



S. Balasubramanian1* & Ch. Chaitanya2/ αg-separation axioms / IJMA- 3(3), Mar.-2012, Page: 855-863 

© 2012, IJMA. All Rights Reserved                                                                                                                                                     863  

 
Now [αgcl{x}]c contains x which is a contradiction. 
 
Conversely, suppose {x}⊂E∈αGO(X) but αgcl{x} ⊄ E. Then αgcl{x} and Ec are not disjoint. Let y belongs to their 
intersection. Now we have x∈ αgcl{y}⊂Ec and x∉ E. But this is a contradiction. 
 
Corollary 5.2: If X is a αg1, then it is αg-symmetric. 
 
Proof: Follows from Theorem 2.2(ii) and Theorem 5.4 
 
Corollary 5.3: The following are equivalent: 
(i) X is αg-symmetric and αg0 
(ii) X is αg1. 
 
Proof: By Corollary 5.2 and Remark 5.1 it suffices to prove only (i) ⇒ (ii). Let x ≠ y and by αg0, we may assume that 
x∈G1⊂{y}c for some G1∈αGO(X).Then x∉αgcl{y} and hence y∉αgcl{x}. There exists a G2∈αGO(X) such that y∈G2 
⊂{x}c and X is a αg1 space. 
 
Theorem 5.5: For a αg-symmetric space X the following are equivalent: 
(i) X is αg0;  (ii) X is αg-D1;  (iii) X is αg1. 
 
Proof: (i) ⇒ (iii) Corollary 5.4 and (iii) ⇒ (ii) ⇒ (i) Remark 5.1. 
 
Theorem 5.6: If f: X→ Y is αg-irresolute surjection and E is a αgD-set in Y, then f -1(E) is a αgD-set in X. 
 
Theorem 5.7: If Y is αg-D1 and f: X → Y is αg-irresolute and bijective, then X is αg-D1. 
 
Theorem 5.8: X is αg-D1 iff for each x ≠ y in X there exist a αg-irresolute surjective function f: X→ Y, where Y is a 
αg-D1 space such that f(x) and f(y) are distinct. 
 
Corollary 5.4: Let {Xα/α∈ I} be any family of spaces. If Xα is αg-D1 for each α∈I, then Π Xα is αg-D1. 
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