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1. Introduction:

Norman Levine introduced generalized closed sets in 1970. After him various Authors studied different versions of
generalized sets and related topological properties. Recently V.K. Sharma and the author of the present paper defined
separation axioms for g-open; gs-open; sg-open and rg-open sets.

Definition 1.1: A < X is called generalized closed[resp: regular generalized; generalized regular]{briefly: g-closed; rg-
closed; ag-closed}if cl{A}cU whenever AcU and U is open [resp: regular open, open] and generalized [resp: regular
generalized; generalized regular] open if its complement is generalized [resp: regular generalized; generalized regular]
closed.

Note 1: The class of regular open sets, open sets, a-open sets, ag-open sets and rg-open are denoted by RO(X), t(X),
aO(X) and aGO(X) respectively. Clearly RO(X) < t(X) < aO(X) < aGO(X).

Note 2: Ae agO(X, X) means A is a-generalized open neighborhood of X containing x.
Definition 1.2: AcX is called clopen[resp: ag-clopen] if it is both open[resp: ag-open] and closed[resp: ag-closed]

Definition 1.3: A function f: X — Y is said to be

(i) g-continuous [resp: ag-continuous] if inverse image of closed set is g-closed [resp: ag-closed] and g-irresolute
[resp: ag-irresolute] if inverse image of g-closed [resp: ag-closed] set is g-closed [resp: ag-closed]

(ii) ag-open if the image of open set a.g-open

(i) ag-homeomorphism [resp: agc-homeomorphism] if f is bijective, a.g-continuous[resp: ag-irresolute] and f * is
ag-continuous[resp: ag-irresolute]

Definition 1.4: X is said to be

(i) compact [resp: nearly compact, g-compact, ag-compact] if every open[resp: regular-open, g-open, ag-open] cover
has a finite sub cover.

(ii) To [resp: rTo, 9o, Qo] Space if for each x = yeX 3 Uet(X)[resp: RO(X); GO(X); aGO(X)] containing either x or y.

(iii) Ty [resp: 1Ty, g1, agi{ T2 [resp: rT,, 92, ago]} space if for each x = ye X 3 {disjoint} U, Vet(X)[resp: RO(X);
GO(X); aGO(X)] ag-open sets G and H containing x and y respectively.

(iv) Ty [resp: rTym, aTyp] if every generalized [resp: regular generalized, a-generalized] closed set is closed [resp:

regular-closed, a-closed]
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2. ag-continuity and product spaces:

Theorem 2.1: Let Y and {X,:a.e 1} be Topological Spaces. Let f: Y— ITX, be a function. If f is ag-continuous, then
n.e f: Y— X, is ag-continuous.

Converse of the above theorem is not true in general as shown by the following Example:

Example 21 Let X = {p! q! r, 5}1 X = {(I): {p}v {q}l {S}! {pl q}l {p’ S},{q, S}! {p1 ql r}, {pl q! S}’ X}, Yl = Y2 = {av b}l
tvi = {9, {a}, Yi} tv2={¢, {a}, Yo}, Y = Y1x¥; = {(a, @), (& b), (b, a), (b, b)} and v = {9, {(a, &)}, {(a, a), (a, b)},
{(a, @), (b, @)}, {(a, &), (a b), (b, @)}, Y1x Yo}

Define f: X— Y by f(p) = (a, a), f(q) = (b, b), f(r) = (a, b), f(s) = (b, a). It is easy to see that n;ef and m,ef are ag-
continuous. However {(b, b)} is closed in Y but f *({(b, b)}) = {q} is not ag-closed in X. Therefore f is not ag-
continuous.

Theorem 2.2: If Y is aTy, and {X,:ae 1} be Topological Spaces. Let f: Y— IIX, be a function, then f is ag-
continuous iff w,e f: Y— X, is ag-continuous.

Corollary 2.3: (i) Let f,: X,— Y, be a function and let f: ITX,— ITY,, be defined by f(X,)oe1 = (fo (Xo))aer. If Tis ag-
continuous then each f,, is ag-continuous.

(i) For each a, let X, be aTy, and let f,: X,—Y, be a function and let f: TIX,— ITY, be defined by f(X,)uer = (fo
(Xo))aer, then fis ag-continuous iff each f, is ag-continuous.

3. agispacesi=0,1,2:

Definition 3.1: X is said to be

(i) a ogo space if for each pair of distinct points X, y of X, there exists a ag-open set G containing either of the point x
ory.

(i) a agy[resp: ag,] space if for each pair of distinct points X, y of X there exists [resp: disjoint] a.g-open sets G and H
containing x and y respectively.

Note 2:
() rTi—> Ti—> a;—> ag;, i =0, 1, 2. but the converse is not true in general.
(iDXis ag, — X is ag; — X is ago.

Example 3.1: Let X ={a, b, ¢} and t = {¢, X}, then X is ag; but not rToand To, 1 =0, 1, 2.fori =0, 1, 2.
Example 3.2: Let X ={a, b, ¢, d} and t = {¢, {b}, {a, b}, {b, c}, {a, b, c}, X} then X is not ag; fori =0, 1, 2.
Remark 3.1: If X is aTy, then aT; and ag; are one and the same fori =0, 1, 2.

Theorem 3.1: The following are true

(i) Every [resp: regular open] open subspace of ag; space is ag; fori =0, 1, 2.

(if) The product of ag; spaces is again ag; fori =0, 1, 2.

(iii) ag-continuous image of T; [resp: rT;] spaces is ag; fori =0, 1, 2.

(iv) Xis agp iff V xe X, 3 Ue aGO(X) containing x such that the subspace U is ag.
(v) X is ago iff distinct points of X have disjoint a.g-closures.

(vi) If X is ag; then distinct points of X have disjoint a.g-closures.

Theorem 3.2: The following are equivalent:

(i) Xis ags.

(ii) Each one point set is ag-closed.

(iii)Each subset of X is the intersection of all a.g-open sets containing it.

(iv) For any xe X, the intersection of all ag-open sets containing the point is the set {x}.

Theorem 3.3: Suppose X is a ag-limit point of a subset of A of a ag; space X. Then every neighborhood of x contains
infinitely many distinct points of A.

Theorem 3.4: The following are true
(i) Xis ags iff the intersection of all ag-closed, ag-neighborhoods of each point of the space is reduced to that point.
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(ii) If to each point xe X, there exist a ag-closed, ag-open subset of X containing x which is also a a.g, subspace of X,
then X is agy,

(i) If X is ag, then the diagonal A in XxX is ag-closed.

(iv) In agy-space, ag-limits of sequences, if exists, are unique.

(v) Ina ag; space, a point and disjoint aug-compact subspace can be separated by disjoint a.g-open sets.

(vi) Every ag-compact subspace of a ag, space is ag-closed.

Corollary 3.1: The following are true

(i) InaT;,[resp: rTy; g1] space, each singleton set is a.g-closed.

(i) If X'is Ty [resp: rTy; g1] then distinct points of X have disjoint ag-closures.

(iii) If X is T, [resp: rT,; g] then the diagonal Ain XxX is ag-closed.

(iv) Show that in a T, [resp: rT,; g2] space, a point and disjoint compact[resp: nearly-compact; g-compact] subspace can
be separated by disjoint a.g-open sets

(v) Every compact [resp: nearly-compact; g-compact] subspace of a T, [resp: r'T,; g.] space is ag-closed.

Theorem 3.5: The following are true

(i) Iff: X—> Y isinjective, ag-irresolute and Y is ag; then X is ag;, i =0, 1, 2.

(if) Let X be Ty and f: X — Y be ag-closed surjection. Then X is ag;.

(iii) Every ag-irresolute map from a a.g-compact space into a a.g, space is ag-closed.

(iv) Any ag-irresolute bijection from a ag-compact space onto a a.g, space is a augc-homeomorphism.
(v) Any ag-continuous bijection from a a.g-compact space onto a a.g, space is a a.g-homeomorphism.
(vi) If f: X— Y isinjective, ag-continuous and Y is T; then X is ag;, i =0, 1, 2.

(vii) If f: X— Y is injective, r-irresolute[r-continuous] and Y is rT; then X is ag;, i =0, 1, 2.

(viii)The property of being a space is agg is a ag-Topological property.

(ix) Let f: X — Y is a agc-homeomorphism, then X is ag; if Y is ag;, i =0, 1, 2.

Theorem 3.6: The following are equivalent:

(i) Xis ag,.

(ii) For each pair x = ye X 3 a ag-open, ag-closed set V such that xeV and y¢V, and

(iii) For each pair x # ye X 3 f: X— [0, 1] such that f(x) = 0 and f(y) = 1 and f is ag-continuous.

Theorem 3.7: If f: X— Y is ag-irresolute and Y is ag, then
(i) the set A = {(Xq, Xo): f(x1) = f(X2)} is ag-closed in Xx X.
(i) G (), graph of f, is ag-closed in Xx Y.

Theorem 3.8: If f: X— Y is ag-open and A = {(X, X»): f(xy) = f(x2)} is closed in XxX. Then Y is ag,.

Theorem 3.9: Let Y and {X,:a.e I} be Topological Spaces. If f: Y— IT X, be a ag-continuous function and Y is a. Ty,
then IT X,, and each X, are ag;, i =0,1,2.

Theorem 3.10: Let X be an arbitrary space, R an equivalence relation in X and p: X — X/R the identification map. If
Rc Xx X is ag-closed in Xx X and p is aig-open map, then X/R is ag,.

Theorem 3.11: The following four properties are equivalent:

(i) Xis ag

(i) Let xe X. Foreach y # x, 3 Ue aGO(X) such that xe U and yzagcl(U)
(iii) For each xe X, n{agcl(U)/Ue aGO(X) and xe U} = {x}.

(iv) The diagonal A = {(X, x)/xe X} is ag-closed in Xx X.

Proof: (i) = (ii) Let xeX and y = x. Then there are disjoint a.g-open sets U and V such that xeU and yeV. Clearly V ¢
is ag-closed, agcl(U) < V¢, ygV° and therefore y¢ agcl(U).

(i) = (iii) If y = x, then 3 Ue aGO(X) s.t. xeU and y¢ agcl(U). So ygn{ agcl(U)/Ue aGO(X) and xeU}.

(iii) = (iv) We prove A is ag-open. Let (X, y) ¢A. Then y = x and n{ agcl(U)/Ue aGO(X) and xeU} = {x} there is
some Ue aGO(X) with xeU and y¢ agcl(U). Since Un( agcl(U))¢ = ¢, Ux( agcl(U))° is a ag-open set such that (x,
y) e Ux( agcl(U))’cA®.

(iv) = (i) y = X, then (X, y) ¢ A and thus there exist ag-open sets U and V such that (X, y)eUxV and (UxV)NA = ¢.

Clearly, for the ag-open sets U and V we have; xeU, yeV and UnV = ¢.
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4. ag-R; spaces; i =0, 1:

Definition 4.1: Let xe X. Then
(i) ag-kernel of x is defined and denoted by Kergg{x} = "{U:Ue aGO(X) and xe U}
(ii) KerggyF = n{U: Ue aGO(X) and Fc U}

Lemma 4.1: Let Ac X, then Kergg{A} = {xe X: agcl{x}n A = ¢.}
Lemma 4.2: Let xeX. Then yeKergq{x} iff xeagcl{y}.

Proof: Let ygKergg{x}. Then 3 VeagO(X, x) such that yeV. Therefore we have x¢ agcl{y}. The proof of converse
part can be done similarly.

Lemma 4.3: For any points x = ye X, the following are equivalent:
(i) Kergg{x} = Kergg{y};
(ii) agel{x} = agcl{y}.

Proof:

(i) = (ii): Let Kergg{X} # Kergg{y}, then 3 zeX such that zeKerg,a{x} and z¢Kergg{y}. From zeKergp{x} it
follows that {x}n agcl{z} # ¢ = xe agc{z}. By zeKergg{y}, we have {y}n agcl{z} = ¢. Since xe agc{z},
ogc{x}c agcl{z} and {y} agcl{x} = ¢. Therefore agcl{x} # agcl{y}.

Now Kergg{x} # Kergg{y} = agcl{x} = agcl{y}.

(ii) = (i): If agcl{x} = agcl{y}. Then 3 ze X such that ze agcl{x} and z¢ agcl{y}. Then 3 a ag-open set containing z
and therefore containing x but not y, namely, ye Ker,u{x}. Hence Kergg {x} # Kergg{y}.

Definition 4.2: X is said to be

(i) ag-Ry iff agcl{x}<=G whenever xe GeaGO(X).

(ii) weakly ag-Ry iff n agcl{x} = ¢.

(iii) og-Ry iff for x,ye X > agcl{x} = agcl{y} 3 disjoint U; VeaGO(X) > agcl{x}<U and agcl{y}cV.

Example 4.1: Let X = {a, b, ¢, d} and t = {¢, {b}, {a, b}, {b, c}, {a, b, c}, X}, then X is weakly agR, and not agR;, i
=0,1.

Remark 4.1:

(I) rRi=>Ri=aoRj=> O(gRi, i=0,1.

(i) Every weakly-R, space is weakly agR,.
Lemma 4.1: Every agR, space is weakly agR,.

Converse of the above Theorem is not true in general by the following Examples.

Example 4.2: Let X = {a, b, ¢, d} and t = {¢, {a}, {b}, {d}, {a, b}, {a, d}, {b, d}, {a, b, c}, {a, b, d}, X}. Clearly, X is
weakly agRy, since m agcl{x} = ¢. But it is not agR,, for {a}=X is ag-open and agcl{a} = {a, b}«{a}.

Theorem 4.1: Every ag-regular space X is ag, and ag-R,.

Proof: Let X be ag-regular and let x = ye X. By Lemma 4.1, {x} is either ag-open or ag-closed. If {x} is ag-open,
{x} is ag-open and hence ag-clopen. Thus {x} and X - {x} are separating a.g-open sets. Similarly for {x} is ag-closed,
{x} and X - {x} are separating ag-closed sets. Thus X is ag, and a.g-Ro.

Theorem 4.2: X is ag-Ry iff given x =ye X; agcl{x} = agcl{y}.

Proof: Let X be ag-R, and let let X, # ye X. Suppose U is a ag-open set containing x but not y, then ye agcl{y}c X-
U and so x¢ agcl{y}. Hence agcl{x} # agcl{y}.

Conversely, let x, # ye X such that agcl{x} = agcl{y}= agcl{x}c X- agcl{y} = U(say) a ag-open set in X. This is

true for every agcl{x}. Thus n agcl{x}< U where xe agci{x}< Ue aGO(X), which in turn implies N agcl{x}c U
where xe Ue aGO(X). Hence X is agRo.
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Theorem 4.3: X is weakly agRy iff Kerg,g{x} # X for any xeX.

Proof: Let xoe X such that kerg,g{Xo} = X. This means that X, is not contained in any proper a.g-open subset of X.
Thus X, belongs to the ag-closure of every singleton set. Hence xoenagcl{x}, a contradiction.

Conversely assume Kergg{x} = X for any xe X. If there is an xoeX s.t. xoen{ogcl{x}}, then every ag-open set
containing X, must contain every point of X. Therefore, the unique og-open set containing X, is X. Hence Kergg{Xo} =
X, which is a contradiction. Thus X is weakly ag-R.

Theorem 4.4: The following are equivalent:

(i) Xis ag-Rg space.

(ii) For each xe X, agc{x}c Kergg{x}

(iii) For any ag-closed set F and a point xg¢ F, 3 Ue aGO(X) such that x¢U and FcU.
(iv) Each ag-closed set F can be expressed as F = n{G: G is ag-open and FcG}.

(v) Each ag-open set Gecan be expressed as G = U{A: A is ag-closed and AcG}.

(vi) For each ag-closed set F, x¢ F implies ag-cl{x} F = ¢.

Proof:

(i) = (ii) For any xe X, we have Kergg{x} = n{U: Ue aGO(X) and xeU}. Since X is ag-R,, each ag-open set
containing x contains agcl{x}. Hence agcl{x}c Kergg{x}.

(i) = (iii) Let xgFe agc(X). Then for any yeF; agcl{y}cF and so x¢ agc{y}= ye agcl{x} that is 3 U,e aGO(X)
such that yeU, and xeU, V yeF. Let U = U{U,: U, is ag-open, yeU, and xe¢U,}. Then U is ag-open such that x¢U
and FcU.

(iii) = (iv) Let F be any ag-closed set and N = n{G: G is ag-open and Fc G}. Then FcN — (1).

Let xg F, then by (iii) 3 Ge aGO(X) such that x¢G and FcG.

Hence x&N which implies xeN = xeF. Hence NcF — (2).

Therefore from (1) and (2), each ag-closed set F = n{G: G is ag-open and FcG}

(iv) = (v) obvious.

(V) = (vi) Let xgFe agc(X). Then X-F = G is a ag-open set containing X. Then by (v), Gcan be expressed as the union
of ag-closed sets A contained in G, and so there is an Me agc(X) such that xeMcG; and hence agcl{x}cG which
implies agcl{x} F = ¢.

(vi) = (i) Let xeGe aGO(X). Then x¢(X-G), which is a ag-closed set. Therefore by (vi) agcl{x}(X-G) = ¢, which
implies that aigcl{x}< G. Thus X is agR, space.

Theorem 4.5: Let f: X — Y be a ag-closed one-one function. If X is weakly ag-Ro, then sois Y.

Theorem 4.6: If X is weakly ag-R,, then for every space Y, Xx Y is weakly ag-R.

Proof: m agcl{(x,y)} c{ agcl{x}x agcl{y}} = m [agcl{x}]x [agcl{y}] < ¢x Y = ¢. Hence Xx Y is agR,.
Corollary 4.1:

(i) If Xand Y are weakly agRy, then Xx Y is weakly agR.

(ii) If X and Y are (weakly-)R, then Xx Y is weakly agRy.

(iif)If X and Y are agRy, then Xx Y is weakly agR.

(iv) If X is agRg and Y are weakly Ry, then Xx Y is weakly agR.

Theorem 4.7: X is agR, iff for any X, ye X, agcl{x} # agc{y}= agc{x}n agc{y} = ¢.

Proof: Let X be agR, and X, yeX such that agcl{x} = agcl{y} .Then 3 ze agcl{x} such that z¢ agcl{y} (or
zeagcl{y}) such that zeoagcl{x}. There exists VeaGO(X) such that y¢V and zeV; hence xeV. Therefore,
xgogc{y}. Thus xe[ agcl{y}’e aGO(X), which implies agcl{x}<[ agcl{y}]° and agcl{x} agcl{y} = ¢. The
proof for otherwise is similar.
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Sufficiency: Let xeVe aGO(X). We show that agcl{x}cV. Let ygV, i.e., yeV®. Then x =y and x¢ agcl{y}. Hence
ogc{x} = agcl{y}. But agcl{x} agcl{y} = ¢. Hence y¢ agcl{x}. Hence agcl{x}c V.

Theorem 4.8: X is agR iff for any points x, ye X, Kergg{x} # Kergg{y} = Kergg{x}nKergg{y} = ¢.

Proof: Let X be agR,. By Lemma 4.3 for any X, yeX if Kergg{x} # Kergg{y} then agc{x} # agcl{y}.Assume that
zeKergg{x}Kergg{y}. By zeKergg{x} and Lemma 4.2, it follows that xe agcl{z}. Since xe agcl{z}, agcl{x} =
ogcl{z}. Similarly, we have agcl{y} = agcl{z} = agcl{x}. This is a contradiction. Therefore, we have Kergg{x} N

Ker{ag}{y} =¢.

Conversely, let x, yeX, s.t. agcl{x} # agcl{y}, then by Lemma 4.3, Kergq{x} # Kergg{y}. Hence by hypothesis
Kergg{x}nKergg{y} = ¢ which implies agcl{x} agcl{y} = ¢ Because ze agcl{x} implies that xeKer,g{z} and
therefore Kergg{x}Kergg{z} # ¢ Therefore by Theorem 4.7 X is a agR, space.

Theorem 4.9: The following are equivalent:
(i) X is a ag-R, space.
(i) For any A # ¢ and Ge aGO(X) such that AnG = ¢ 3 Fe agc(X)such that AnF = ¢ and FcG.

Proof:
(i) = (ii): Let A= ¢ and Ge aGO(X) such that AnG = ¢. There exists xe AnG. Since xeGe aGO(X), agcl{x}cGC.
Set F = agcl{x}, then Fe agc(X), FcG and AnF = ¢

(if) = (i): Let Ge aGO(X) and xe G. By (2), agcl{x}c G. Hence X is ag-R.

Theorem 4.10: The following are equivalent:
(i) X'is a ag-Ro space;
(i) xe agcl{y} iff ye agcl{x}, for any points x and y in X.

Proof:
(i) = (ii): Assume X is agR,. Let xe agcl{y} and D be any ag-open set such that yeD. Now by hypothesis, xeD.
Therefore, every og-open set which contain y contains x. Hence ye agcl{x}.

(if) = (i): Let U be a ag-open set and xeU. If yg¢ U, then x¢ agcl{y} and hence y¢ agcl{x}. This implies that
oagc{x}cU. Hence X is agRo.

Theorem 4.11: The following are equivalent:

(i) X is a agR, space;

(i) If F is ag-closed, then F = Kergyg(F);

(iii)If F is ag-closed and xeF, then Kerg,g{x}<F;
(iv) If xe X, then Kergg{x}< agcl{x}.

Proof:

(i) = (ii): Let xgFeage(X) = (X-F)e agO(X, x). For X is agRo, agcl({x})=(X-F). Thus agcl({x})n F = ¢ and
xgKergg (F). Hence Kerg,g (F) = F.

(i) = (iii): AcB = Kerg,g (A)cKerg,g; (B). Therefore, by (2) Kergg{x}< Kergg (F) = F.

(iif) = (iv): Since xe agcl{x} and agcl{x} is ag-closed, by (3) Kergg{x}< agel{x}.

(iv) = (i): Let xe agcl{y}. Then by Lemma 4.2 yeKerg,q{x}. Since xe agcl{x} and agcl{x} is ag-closed, by (iv) we
obtain yeKergg{x}< agcl{x}. Therefore xe agcl{y} implies ye agcl{x}. The converse is obvious and X is agR,.

Corollary 4.2: The following are equivalent:
(i) X is agRy.
(i) agel{x} = Kergg{x}V xe X.

Proof: Follows from Theorems 4.4 and 4.11.

Recall that a filterbase F is called ag-convergent to a point x in X, if for any ag-open set U of X containing X, there
exists Be F such that Bc U.
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Lemma 4.4: Let x and y be any two points in X such that every net in X ag-converging to y ag-converges to x. Then
xe agcl{y}.

Theorem 4.12: The following are equivalent:
(i) X'is a agR, space;
(ii) If x, yeX, then ye agcl{x} iff every net in X ag-converging to y ag-converges to X.

Proof:
(i) = (ii): Letx, yeX 3 ye agcl{x}. If {Xs}uci is anetin X > {X,}.ci 0g-converges to y. Since ye agcl{x}, by Thm.
4.7 we have ogcl{x} = agcl{y}. Therefore xe agcl{y}. This means that {X,}«1 0g-converges to x.

Conversely, let X, ye X > every net in X ag-converging to y ag-converges to x. Then xe ag-cl{y}[by 4.4]. By Thm.
4.7, we have agcl{x} = agcl{y}. Therefore ye agcl{x}.

(if) = (i): Letx, ye X > agcl{x} agcl{y} # ¢. Let ze agcl{x} agcl{y}. So 3 a net {X,}oci in agcl{x} > {Xo}ac1 0.0-
converges to z. Since ze agcl{y}, then {X,}.c1 ag-converges to y. It follows that ye agcl{x}. Similarly we obtain
xeogcl{y}. Therefore agcl{x} = agcl{y}. Hence X is agR.

Theorem 4.13:

(i) Every subspace of agR; space is again agR;,

(if) Product of any two agR; spaces is again agR;.
(i) X is agRy iff given x = ye X, agcl{x} = agcl{y}.
(iv) Every ag, space is agR;,

The converse of 4.13(iv) is not true. However, we have the following result.
Theorem 4.14: Every ag; and agR; space is agp,

Proof: Let x = yeX. Since X is ag:; {x} and {y} are ag-closed sets s.t. agcl{x} # agcl{y}. Since X is agRy, there
exists disjoint a.g-open sets U and V s.t. xeU; yeV. Hence X is ag,

Corollary 4.3: X is ag, iff it is agR; and a.g;.

Theorem 4.15: The following are equivalent
(i) Xis ag-Ry.
(ii) N agel{x} = {x3}.

(iii) For any xe X, intersection of all ag-neighborhoods of x is {x}.

Proof:
(i) = (ii) Let y = xeX such that ye agcl{x}. Since X is agR;, 3 Ue aGO(X) such that yeU, xgU or xeU, yzU. In
either case y¢ agcl{x}. Hence n agcl{x} = {x}.

(i) = (iii) If y = xeX, then xg agcl{y}, so there is a ag-open set containing x but not y. Therefore y does not belong
to the intersection of all ag-neighborhoods of x. Hence intersection of all ag-neighborhoods of x is {x}.

(iif) = (i) Let x = yeX. by hypothesis, y does not belong to the intersection of all ag-neighborhoods of x and x does
not belong to the intersection of all ag-neighborhoods of y, which implies agcl{x} # agcl{y}. Hence X is ag-R;.

Theorem 4.16: The following are equivalent:

(i) Xis ag-Ry.

(ii) For each pair x, ye X with agcl{x} # agcl{y}, 3 a ag-open, ag-closed set V s.t. xeV and y¢V, and

(iif)For each pair x, ye X with agcl{x} = agcl{y}, 3 f: X—[0, 1] s.t. f(x) = 0 and f(y) = 1 and f is ag-continuous.

Theorem 4.17:

(i) If Xis ag-Ry, then X is ag-Ry.

(i) X is ag-Ry iff for x, ye X, Kergg{x} # Kergg{y}, 3 disjoint U; Ve aGO(X) such that agcl{x}cU and
agcl{y}cV.

5. ag-C; and ag-D; spaces, i =0, 1, 2:

Definition 5.1: X is said to be a
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(i) ag-C, space if for each pair of distinct points x, y of X there exists a a.g-open set G whose closure contains either x
ory.

(i) ag-C4[resp: ag-C,] space if for each pair of distinct points x, y of X there exists [resp: disjoint] ag-open sets G and
H whose closures containing x and y respectively.

Note: ag-C, = ag-C; = ag-C,. Converse need not be true in general:

Example 5.1: (i) Let X = {a, b, c} and t = {¢, X}, then X is agC;fori =0, 1, 2.
(if) Let X ={a, b, ¢, d} and t = {¢, {b}, {a, b}, {b, c}, {a, b, c}, X} then X is not agC; fori =0, 1, 2.

Theorem 5.1: We have the following properties

(i) Every subspace of ag-C; space is ag-C;.

(ii) Every ag; spaces is ag-Ci.

(iif) Product of a.g-C; spaces are ag-Ci.

(iv) Let X be any ag-C; space and AcX then A is ag-C; iff (A, t/a) is ag-Ci.
(v) If Xis ag-C; then each singleton set is ag-closed.

(vi) In an ag-C, space disjoint points of X has disjoint ag- closures.

Definition 5.2: AcX is called a ag-Difference(Shortly agD-set) set if there are two U, Ve aGO(X) such that U = X
and A=U-V.

Clearly every ag-open set U different from X isa agD-set if A=U and V = ¢.

Definition 5.3: X is said to be a

(i) ag-Dy if for any pair of distinct points x and y of X there exist a agD-set in X containing x but not y or a agD-set in
X containing y but not x.

(i) og-Dy [resp: ag-Ds] if for any pair of distinct points x and y of X there exists [resp: disjoint] agD-sets G and H in
X containing x and y respectively.

Remark 5.2: (i) If X is rT;, then it is ag;, i =0, 1, 2 and converse is false.
(ii) If X is agi, then it is aggiay, i = 1, 2.

(iii) If X'is ag;, then itis ag-D;, 1 =0, 1, 2.

(iv) If X is ag-D;, then it is 0g-Dgiqy, i = 1, 2.

Theorem 5.2: The following are true:

(i) X is ag-Dy iff it is ago.

(i) X is ag-D; iff it is ag-D»,

Corollary 5.1: If X is ag-D4, then it is ag.

Proof: Remark 5.1(iv) and Theorem 5.1(vi)

Definition 5.4: A point xe X which has X as the unique a.g-neighborhood is called ag.c.c point.
Theorem 5.3: For an ago space X the following are equivalent:

(i) X is ag-Dy;

(if) X has no a.g.c.c point.

Proof: (i) = (ii) Since X is ag-D,, then each point x of X is contained in a agD-set O = U - V and thus in U. By
Definition U = X. This implies that x is not a ag.c.c point.

(if) = (i) If X is ago, then for each x = ye X, at least one of them, x (say) has a ag-neighborhood U containing x and
not y. Thus U which is different from X is a agD-set. If X has no ag.c.c point, then y is not a ag.c.c point. This means
that there exists a aig-neighborhood V of y such that V = X. Thus ye V-U but not x and V-U is a agD-set. Hence X is
ag-Dy.

Definition 5.5: X is ag-symmetric if for x and y in X, X € agcl{y} impliesy € agcl{x}.

Theorem 5.4: X is aig-symmetric iff {x} is ag-closed for each xe X.

Proof: Assume that xe agcl{y} but y¢ agcl{x}. Then [agcl{x}]° contains y. This implies that agcl{y}c [agcl{x}]°.
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Now [agcl{x}]° contains x which is a contradiction.

Conversely, suppose {x}cEeaGO(X) but agci{x} & E. Then agcl{x} and E® are not disjoint. Let y belongs to their
intersection. Now we have xe agcl{y}cE® and x¢ E. But this is a contradiction.

Corollary 5.2: If X is a ag;, then it is ag-symmetric.

Proof: Follows from Theorem 2.2(ii) and Theorem 5.4

Corollary 5.3: The following are equivalent:

(i) X is ag-symmetric and ago

(i) X is a9y,

Proof: By Corollary 5.2 and Remark 5.1 it suffices to prove only (i) = (ii). Let x # y and by ago, we may assume that
xeGi{y}* for some G;eaGO(X).Then xgagcl{y} and hence ygagcl{x}. There exists a G,eaGO(X) such that ye G,

{x}* and X is a a.g; space.

Theorem 5.5: For a ag-symmetric space X the following are equivalent:
(i) X'is ago; (if) X'is ag-Dy;  (iii) X is a.g;.

Proof: (i) = (iii) Corollary 5.4 and (iii) = (ii) = (i) Remark 5.1.
Theorem 5.6: If f: X— Y is ag-irresolute surjection and E is a agD-set in Y, then f "(E) is a agD-set in X.
Theorem 5.7: If Y is ag-D; and f: X — Y is ag-irresolute and bijective, then X is ag-D;.

Theorem 5.8: X is ag-Dy iff for each x = y in X there exist a ag-irresolute surjective function f: X— Y, where Y is a
og-D; space such that f(x) and f(y) are distinct.

Corollary 5.4: Let {X./ae 1} be any family of spaces. If X, is ag-D; for each a.el, then IT X,, is ag-D;.
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