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ABSTRACT 

In this paper by using pg-open sets we define almost pg-normality and mild pg-normality also we continue the study of 
further properties of pg-normality. We show that these three axioms are regular open hereditary. We also define the 
class of almost pg-irresolute mappings and show that pg-normality is invariant under almost pg-irresolute M-pg-open 
continuous surjection.  
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1. INTRODUCTION 
 
In 1967, A. Wilansky has introduced the concept of US spaces. In 1968, C.E. Aull studied some separation axioms 
between the T1 and T2 spaces, namely, S1 and S2. Next, in 1982, S.P. Arya et al have introduced and studied the concept 
of semi-US spaces and also they made study of s-convergence, sequentially semi-closed sets, sequentially s-compact 
notions. G.B. Navlagi studied P-Normal Almost-P-Normal, Mildly-P-Normal and Pre-US spaces. Recently S. 
Balasubramanian and P. Aruna Swathi Vyjayanthi studied v-Normal Almost- v-Normal, Mildly-v-Normal and v-US 
spaces. Inspired with these we introduce pg-Normal Almost- pg-Normal, Mildly- pg-Normal, pg-US, pg-S1 and pg-S2. 
Also we examine pg-convergence, sequentially pg-compact, sequentially pg-continuous maps, and sequentially sub pg-
continuous maps in the context of these new concepts. All notions and symbols which are not defined in this paper may 
be found in the appropriate references. Throughout the paper X and Y denote Topological spaces on which no 
separation axioms are assumed explicitly stated.  
 
2. PRELIMINARIES 
 
Definition 2.1:  A⊂ X is called                              
(i) g-closed if cl A⊆ U whenever A⊆ U and U is open in X.                    
(ii) pg-closed if pcl(A) ⊆ U whenever A⊆ U and U is preopen in X.                
 
Definition 2.2:  A space X is said to be 
(i) T1 (T2) if for any x ≠ y in X, there exist (disjoint) open sets U; V in X such that x∈U and y∈V.             
(ii) weakly Hausdorff if each point of X is the intersection of regular closed sets of X.                     
(iii) normal [resp: mildly normal] if for any pair of disjoint [resp: regular-closed]closed sets F1 and F2 , there exist  
      disjoint open sets U and V such that F1 ⊂ U and F2 ⊂ V.   
(iv) almost normal if for each closed set A and each regular closed set B  such that A∩B = φ, there exist disjoint open   
      sets U and V such that A⊂U and B⊂V. 
(v) weakly regular if for each pair consisting of a regular closed set A and a point x such that A ∩ {x} = φ, there exist 

disjoint open sets U and V such that x ∈ U  and A⊂V.                      
(vi) A subset A of a space X is S-closed relative to X if every cover of A by semiopen sets of X has a finite subfamily  
      whose closures cover A.   
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(vii) R0 if for any point x and a closed set F with x∉F in X, there exists a open set G containing F but not x. 
(viii) R1 iff for x, y ∈ X with cl{x} ≠ cl{y}, there exist disjoint open sets U and V such that cl{x}⊂ U, cl{y}⊂V. 
(ix) US-space if every convergent sequence has exactly one limit point to which it converges.              
(x) pre-US space if every pre-convergent sequence has exactly one limit point to which it converges.           
(xi) pre-S1 if it is pre-US and every sequence <xn> pre-converges with subsequence of <xn> pre-side points.      
(xii) pre-S2 if it is pre-US and every sequence <xn> in X pre-converges which has no pre-side point. 
(xiii)  is weakly countable compact if every infinite subset of X has a limit point in X. 
(xiv) Baire space if for any countable collection of closed sets with empty interior in X, their union also has empty   
         interior in X. 
 
Definition 2.3: Let A⊂ X. Then a point x is said to be a  
(i)  limit point of A if each open set containing x contains some point y of A such that x ≠ y.  
(ii) T0–limit point of A if each open set containing x contains some point y of A such that cl{x} ≠ cl{y}, or equivalently, 

such that they are topologically distinct. 
(iii) pre-T0–limit point of A if each open set containing x contains some point y of A such that pcl{x} ≠ pcl{y}, or 

equivalently, such that they are topologically distinct. 
 
Note 1: Recall that two points are topologically distinguishable or distinct if there exists an open set containing one of 
the points but not the other; equivalently if they have disjoint closures. In fact, the T0–axiom is precisely to ensure that 
any two distinct points are topologically distinct. 
 
Example 1: Let X = {a, b, c, d} and τ = {{a}, {b, c}, {a, b, c}, X,φ}. Then b and c are the limit points but not the T0–
limit points of the set {b, c}. Further d is a T0–limit point of {b, c}. 
 
Example 2: Let X = (0, 1) and τ = {φ, X, and Un = (0, 1–1⁄n), n = 2, 3, 4 . . .}. Then every point of X is a limit point of 
X. Every point of X∼U2 is a T0–limit point of X, but no point of U2 is a T0–limit point of X. 
 
Definition 2.4: A set A together with all its T0–limit points will be denoted by T0–clA. 
 
Note 2:  i. Every T0–limit point of a set A is a limit point of the set but the converse is not true in general. 
 ii. In T0–space both are same. 
 
Note 3: R0–axiom is weaker than T1–axiom. It is independent of the T0–axiom. However T1 = R0+T0 
 
Note 4: Every countable compact space is weakly countable compact but converse is not true in general. However, a 
T1–space is weakly countable compact iff it is countable compact. 
 
3. pg-T0 LIMIT POINT:  
 
Definition 3.01: In X, a point x is said to be a pg-T0–limit point of A if each pg-open set containing x contains some 
point y of A such that pgcl{x} ≠ pgcl{y}, or equivalently; such that they are topologically distinct with respect to pg-
open sets. 
  
Note 5: regular open set ⇒ open set ⇒ pre-open set ⇒ pg-open set we have 
r-T0–limit point ⇒ T0–limit point ⇒ pre-T0–limit point ⇒ pg-T0–limit point 
 
Example 3: Let X = {a, b, c, d} and τ = {φ, {b, d}, {a, b, d}, {b, c, d}, X}. For A = {a, b, d}, a is pg-T0–limit point. 
 
Definition 3.02: A set A together with all its pg-T0–limit points is denoted by T0-pgcl(A) 
 
Lemma 3.01: If x is a pg-T0–limit point of a set A then x is pg-limit point of A. 
 
Lemma 3.02:  
(i)  If X is pg-T0–space then every pg-T0–limit point and every pg-limit point are equivalent. 
 (ii)If X is r-T0–space then every pg-T0–limit point and every pg-limit point are equivalent.  
 
Theorem 3.03: For x ≠ y ∈X,  

(i) x is a pg-T0–limit point of {y} iff x∉pgcl{y} and y∈pgcl{x}. 
(ii) x is not a pg-T0–limit point of {y} iff either x∈pgcl{y}or pgcl{x} = pgcl{y}. 
(iii) x is not a pg-T0–limit point of {y} iff either x∈pgcl{y}or y∈pgcl{x}. 

 
 



S. Balasubramanian1*, K. A. Venkatesh2 and C. Sandhya3/ On pg-Separation Axioms/ IJMA- 3(3), Mar.-2012, Page: 838-848 

© 2012, IJMA. All Rights Reserved                                                                                                                                                     840  

 
Corollary 3.04:  

(i) If x is a pg-T0–limit point of {y}, then y cannot be a pg-limit point of {x}. 
(ii) If pgcl{x} = pgcl{y}, then neither x is a pg-T0–limit point of {y} nor y is a pg-T0–limit point of {x}. 

 
(iii) If a singleton set A has no pg-T0–limit point in X, then pgclA = pgcl{x} for all x∈ pgcl{A}. 

 
Lemma 3.05: In X, if x is a pg-limit point of a set A, then in each of the following cases x becomes pg-T0–limit point of 
A ({x} ≠ A). 

(i) pgcl{x} ≠ pgcl{y} for y∈A, x ≠ y. 
(ii) pgcl{x} = {x} 
(iii) X is a pg-T0–space. 
(iv) A∼{x} is pg-open 

  
4. pg-T0 AND pg-Ri AXIOMS, i = 0, 1: 
 
In view of Lemma 3.6(iii), pg-T0–axiom implies the equivalence of the concept of limit point of a set with that of pg-
T0–limit point of the set. But for the converse, if x∈ pgcl{y} then pgcl{x} ≠ pgcl{y} in general, but if x is a pg-T0–limit 
point of {y}, then pgcl{x} = pgcl{y} 
 
Lemma 4.01: In a space X, a limit point x of {y} is a pg-T0–limit point of {y} iff pgcl{x} ≠ pgcl{y}. 
 
This lemma leads to characterize the equivalence of pg-T0–limit point and pg-limit point of a set as the   pg-T0–axiom. 
 
Theorem 4.02: The following conditions are equivalent: 

(i) X is a pg-T0  space 
(ii) Every pg-limit point of a set A is a pg-T0–limit point of A 
(iii) Every r-limit point of a singleton set {x} is a pg-T0–limit point of {x} 
(iv) For any x, y in X, x ≠ y if x∈ pgcl{y}, then x is a pg-T0–limit point of  {y} 

 
Note 6: In a pg-T0–space X if every point of X is a r-limit point of X, then every point of X is pg-T0–limit point of X. 
But a space X in which each point is a pg-T0–limit point of X is not necessarily a pg-T0–space 
 
Theorem 4.03: The following conditions are equivalent: 

(i) X is a pg-R0  space 
(ii) For any x, y in X, if x∈ pgcl{y}, then x is not a pg-T0–limit point of {y} 
(iii) A  point pg-closure set has no pg-T0–limit point in X 
(iv) A singleton set has no pg-T0–limit point in X. 

 
Theorem 4.04: In a pg-R0 space X, a point x is pg-T0–limit point of A iff every pg-open set containing x contains 
infinitely many points of A with each of which x is topologically distinct 
 
Theorem 4.05: X is pg-R0 space iff a set A of the form A = ∪ pgcl{xi i =1 to n} a finite union of point closure sets has no 
pg-T0–limit point. 
 
If pg-R0 space is replaced by rR0 space in the above theorem, we have the following corollaries: 
 
Corollary 4.06: The following conditions are equivalent: 

(i) X is a r-R0 space 
(ii) For any x, y in X, if x∈ pgcl{y}, then x is not a pg-T0–limit point of {y} 
(iii) A  point pg-closure set has no pg-T0–limit point in X 
(iv) A singleton set has no pg-T0–limit point in X. 

 
Corollary 4.07: In an rR0–space X,  

(i) If a point x is rT0–limit point of a set then every pg-open set containing x contains infinitely many points of A 
with each of which x is topologically distinct. 

(ii) If a point x is pg-T0–limit point of a set then every pg-open set containing x contains infinitely many points of 
A with each of which x is topologically distinct. 

(iii) If A = ∪ pgcl{xi, i =1 to n} a finite union of point closure sets has no pg-T0–limit point. 
(iv) If X = ∪ pgcl{xi, i =1 to n} then X  has no pg-T0–limit point. 

 
Various characteristic properties of pg-T0–limit points studied so far is enlisted in the following theorem. 
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Theorem 4.08: In a pg-R0–space, we have the following: 

(i)  A singleton set has no pg-T0–limit point in X. 
(ii)  A finite set has no pg-T0–limit point in X. 
(iii)  A point pg-closure has no set pg-T0–limit point in X 
(iv)  A finite union point pg-closure sets have no set pg-T0–limit point in X. 
(v)  For x, y∈ X, x∈T0– pgcl{y} iff x = y. 
(vi)  For any x, y∈ X, x ≠ y iff neither x is pg-T0–limit point of {y}nor y is pg-T0–limit point of {x} 
(vii)  For any x, y∈ X, x ≠ y iff T0– pgcl{x} ∩T0– pgcl{y} =φ. 
(viii) Any point x∈X is a pg-T0–limit point of a set A in X iff every pg-open set containing x contains infinitely many 
points of A with each which x is topologically distinct. 

 
Theorem 4.09:  X is pg-R1 iff for any pg-open set U in X and points x, y such that x∈X∼U, y∈U, there exists a pg-open 
set V in X such that y∈V⊂U, x∉V. 
 
Lemma 4.10: In  pg-R1 space X, if x is a pg-T0–limit point of X, then for any non empty pg-open set U, there exists a 
non empty pg-open set V such that V⊂U, x∉ pgcl(V). 
 
Lemma 4.11: In a pg- regular space X, if x is a pg-T0–limit point of X, then for any non empty pg-open set U, there 
exists a non empty pg-open set V such that pgcl(V)⊂U, x∉ pgcl(V). 
 
Corollary 4.12: In a regular space X, 

(i)  If x is a pg-T0–limit point of X, then for any non empty pg-open set U, there exists a non empty pg-open set V 
such that pgcl(V)⊂U, x∉ pgcl(V). 

(ii) If x is a T0–limit point of X, then for any non empty pg-open set U, there exists a non empty pg-open set V such 
that pgcl(V)⊂U, x∉ pgcl(V). 

 
Theorem 4.13: If X is a pg-compact pg-R1-space, then X is a Baire Space. 
 
Proof: Let {An} be a countable collection of pg-closed sets of X, each An having empty interior in X. Take A1, since A1 
has empty interior, A1 does not contain any pg-open set say U0. Therefore we can choose a point y∈U0 such that y∉A1.  
 
For X is pg-regular, and y∈(X∼A1)∩U0, a pg-open set, we can find a pg-open set U1 in X such that y∈U1, pgcl(U1) ⊂ 
(X∼A1) ∩ U0. Hence U1 is a non empty pg-open set in X such that pgcl(U1)⊂U0 and pgcl(U1)∩A1 = φ. Continuing this 
process, in general, for given non empty pg-open set Un-1, we can choose a point of Un -1 which is not in the pg-closed 
set An and a pg-open set Un containing this point such that pgcl(Un) ⊂Un-1 and pgcl(Un)∩An = φ. Thus we get a 
sequence of nested non empty pg-closed sets which satisfies the finite intersection property. Therefore ∩ pgcl(Un) ≠ φ.  
 
Then some x∈∩ pgcl(Un) which in turn implies that x∈Un-1 as pgcl(Un)⊂Un-1 and x∉An for each n. 
 
Corollary 4.14: If X is a compact pg-R1-space, then X is a Baire Space. 
 
Corollary 4.15: Let X be a pg-compact pg-R1-space. If {An} is a countable collection of pg-closed sets in X, each An 
having non-empty pg-interior in X, then there is a point of X which is not in any of the An. 
 
Corollary 4.16: Let X be a pg-compact R1-space. If {An} is a countable collection of pg-closed sets in X, each An 
having non-empty pg- interior in X, then there is a point of X which is not in any of the An. 
 
Theorem 4.17: Let X be a non empty compact pg-R1-space. If every point of X is a pg-T0–limit point of X then X is 
uncountable. 
 
Proof: Since X is non empty and every point is a pg-T0-limit point of X, X must be infinite. If X is countable, we 
construct a sequence of pg- open sets {Vn} in X as follows: 
 
Let X = V1, then for x1 is a pg-T0-limit point of X, we can choose a non empty pg-open set V2 in X such that V2 ⊂V1 

and x1∉ pgclV2. Next for x2 and non empty pg-open set V2, we can choose a non empty pg-open set V3 in X such that 
V3 ⊂V2 and x2∉ pgclV3. Continuing this process for each xn and a non empty pg-open set Vn,  we can choose a non 
empty pg-open set Vn+1 in X such that Vn+1 ⊂Vn and xn∉ pgclVn+1.  
 
Now consider the nested sequence of pg-closed sets pgclV1 ⊃ pgclV2 ⊃ pgclV3 ⊃………⊃ pgclVn ⊃. . .   Since X is pg-
compact and {pgclVn} the sequence of pg-closed sets satisfies finite intersection property. By Cantors intersection 
theorem, there exists an x in X such that x∈ pgclVn. Further x∈X and x∈V1, which is not equal to any of the points of 
X. Hence X is uncountable. 
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Corollary 4.18: Let X be a non empty pg-compact pg-R1-space. If every point of X is a pg-T0–limit point of X then X is 
uncountable 
 
5. pg–T0-IDENTIFICATION SPACES AND pg–SEPARATION AXIOMS 
 
Definition 5.01: Let (X, τ) be a topological space and let ℜ be the equivalence relation on X defined by xℜy iff 
pgcl{x} =  pgcl{y} 
 
Problem 5.02: show that xℜy iff pgcl{x} = pgcl{y} is an equivalence relation 
 
Definition 5.03: The space (X0, Q(X0)) is called the pg-T0–identification space of (X,τ), where X0 is the set of 
equivalence classes of  ℜ and Q(X0) is the decomposition topology on X0. 
Let PX: (X,τ )→ (X0, Q(X0)) denote the natural map 
 
Lemma 5.04: If x∈X and A ⊂ X, then x∈ pgclA iff every pg-open set containing x intersects A. 
 
Theorem 5.05: The natural map PX:(X,τ)→ (X0, Q(X0)) is closed, open and PX –1(PX(O)) = O for all O∈ PO(X,τ) and 
(X0, Q(X0)) is  pg-T0 
 
Proof: Let O∈ PO(X,τ ) and let C∈ PX(O). Then there exists x∈O such that PX(x) = C. If y∈C, then pgcl{y} = pgcl{x}, 
which, by lemma, implies y∈O. Since τ ⊂  PO(X,τ), then PX –1(PX(U)) = U for all U∈τ, which implies PX  is closed and 
open. 
 
Let G, H∈X0 such that G ≠ H; let x∈G and y∈H. Then pgcl{x} ≠  pgcl{y}, which implies x∉pgcl{y} or y∉pgcl{x}, 
say x∉pgcl{y}. Since PX is continuous and open, then G∈A = PX{X∼pgcl{y}}∉PO(X0, Q(X0)) and H∉A 
 
Theorem 5.06: The following are equivalent:  
(i) X is pgR0 (ii) X0 = {pgcl{x}: x∈X} and (iii) (X0, Q(X0)) is pgT1 
 
Proof: (i) ⇒ (ii)  Let C∈X0, and let x∈C. If y∈C, then y∈pgcl{y} = pgcl{x}, which implies C∈pgcl{x}. If y∈pgcl{x}, 
then x∈pgcl{y}, since, otherwise, x∈X∼pgcl{y}∈PO(X,τ) which implies pgcl{x}⊂X∼pgcl{y}, which is a 
contradiction. Thus, if y∈pgcl{x}, then x∈pgcl{y}, which implies  pgcl{y} = pgcl{x} and y∈C. Hence X0 = {pgcl{x}: 
x∈X} 
 
(ii)⇒(iii) Let A ≠ B∈X0. Then there exists x, y∈X such that A = pgcl{x}; B = pgcl{y}, and pgcl{x}∩pgcl{y} = φ. 
Then A∈C = PX (X∼pgcl{y})∈PO(X0, Q(X0)) and B∉C. Thus (X0, Q(X0)) is pg-T1 

 

(iii) ⇒ (i) Let x∈U∈αGO(X). Let y∉U and Cx, Cy ∈X0 containing x and y respectively. Then       x∉ pgcl{y}, which 
implies Cx ≠ Cy and there exists pg-open set A such that Cx∈A and Cy∉A. Since PX is continuous and open, then y∈B = 
PX

–1(A)∈ x∈PGO(X) and x∉B, which implies y∉pgcl{x}. Thus pgcl{x}⊂ U. This is true for all pgcl{x} implies 
∩pgcl{x}⊂ U. Hence X is pg-R0 
 
Theorem 5.07: (X, τ ) is pg-R1 iff (X0, Q(X0)) is pg-T2 
 
The proof is straight forward from theorems 5.05 and 5.06 and is omitted 
 
Theorem 5.08: X is pg-Ti; i = 0,1,2. iff there exists a pg-continuous, almost–open, 1–1 function from (X, τ) into a pg-Ti  
space ;  i = 0,1,2. respectively.  
 
Theorem 5.09: If ƒ: (X, τ )→ (Y, σ) is pg-continuous, pg-open, and x, y∈X such that pgcl{x} = pgcl{y}, then pgcl{ƒ(x)} 
= pgcl{ƒ(y)}. 
 
Theorem 5.10: The following are equivalent 
(i)   (X, τ) is pg-T0  
(ii)  Elements of X0 are singleton sets and  
(iii)There exists a pg-continuous, pg-open, 1–1 functionƒ: (X, τ )→ (Y, σ), where  (Y, σ) is pg-T0 
 
Proof: (i) is equivalent to (ii) and (i) ⇒ (iii) are straight forward and is omitted.  
 
(iii) ⇒ (i)  Let x, y∈X such that ƒ(x) ≠ ƒ(y), which implies pgcl{ƒ(x)} ≠ pgcl{ƒ(y)}. Then by theorem 5.09, pgcl{x} ≠ 
pgcl{y}. Hence (X, τ ) is pg-T0 
 



S. Balasubramanian1*, K. A. Venkatesh2 and C. Sandhya3/ On pg-Separation Axioms/ IJMA- 3(3), Mar.-2012, Page: 838-848 

© 2012, IJMA. All Rights Reserved                                                                                                                                                     843  

 
Corollary 5.11: A space (X, τ ) is pg-Ti ;  i = 1,2 iff (X, τ ) is pg-Ti –- 1 ;  i = 1,2, respectively, and there exists a pg-
continuous , pg-open, 1–1 function ƒ: (X, τ ) into a pg-T0  space. 
 
Definition 5.04:ƒ:X→Y is point–pg-closure 1–1 iff for x, y∈X such that pgcl{x} ≠ pgcl{y}, pgcl{ƒ(x)} ≠ pgcl{ƒ(y)}. 
 
Theorem 5.12:  
(i)If ƒ: (X, τ )→ (Y, σ) is point– pg-closure 1–1 and (X, τ ) is pg-T0 , then ƒ is 1–1 
(ii)If ƒ: (X, τ )→ (Y, σ), where (X, τ )and (Y, σ) are pg-T0  then ƒ is point– pg-closure 1–1 iff ƒ is 1–1 
 
The following result can be obtained by combining results for pg-T0– identification spaces, pg-induced functions and 
pg-Ti spaces;  i = 1,2. 
 
Theorem 5.13: X is pg-Ri ;  i = 0,1 iff there exists a pg-continuous , almost–open  point– pg-closure 1–1 function ƒ: (X, 
τ ) into a pg-Ri  space;  i = 0,1 respectively. 
 
6. pg-Normal; Almost pg-normal and Mildly pg-normal spaces 
 
Definition 6.1: A space X is said to be pg-normal if for any pair of disjoint closed sets F1 and F2 , there exist disjoint 
pg-open sets U and V such that F1 ⊂ U and F2 ⊂ V. 
Example 4: Let X = {a, b, c} and τ = {φ, {a}, {b, c}, X}. Then X is pg-normal. 
 
Example 5: Let X = {a, b, c, d} and τ = {φ, {b, d},{a, b, d},{b, c, d}, X}.  Then X is not pg-normal and is not normal. 
 
Example 6: Let X = {a, b, c, d} with τ = {φ, {a}, {b}, {d}, {a, b}, {a, d}, {b, d}, {a, b, c}, {a, b, d}, X} is pg-normal, 
normal and almost normal. 
 
We have the following characterization of pg-normality. 
 
Theorem 6.1: For a space X the following are equivalent: 
(i)   X is pg-normal. 
(ii)  For every pair of open sets U and V whose union is X, there exist pg-closed sets A and B such that A⊂U, B ⊂V and 
A∪B = X. 
(iii) For every closed set F and every open set G containing F, there  exists a pg-open set U such that         
F⊂U⊂pgcl(U)⊂G. 
 
Proof: (i)⇒(ii): Let U and V be a pair of open sets in a pg-normal space X such that X = U∪V. Then X–U, X–V are 
disjoint closed sets. Since X is pg-normal there exist disjoint pg-open sets U1 and V1 such that      X–U⊂U1 and X-V⊂V1.  
 
Let A = X–U1, B = X–V1. Then A and B are pg-closed sets such that A⊂U, B⊂V and A∪B = X. 
 
(b) ⇒(c): Let F be a closed set and G be an open set containing F. Then X–F and G are open sets whose union is X. 
Then by (b), there exist pg-closed sets W1 and W2 such that W1 ⊂  X–F and W2 ⊂ G and    W1∪W2 = X. Then F⊂ X–W1, 
X–G ⊂ X–W2 and (X–W1)∩(X–W2) = φ. Let U = X–W1 and V= X–W2. Then U and V are disjoint pg-open sets such that 
F⊂U⊂X–V⊂G. As X–V is pg-closed set, we have pgcl(U) ⊂X–V and F⊂U⊂pgcl(U)⊂G. 
 
(c) ⇒ (a): Let F1 and F2 be any two disjoint closed sets of X. Put G = X–F2, then F1∩G = φ. F1⊂G where G is an open 
set. Then by (c), there exists a pg-open set U of X such that F1 ⊂ U ⊂ pgcl(U) ⊂G. It follows that F2 ⊂ X–pgcl(U) = V, 
say, then V is pg-open and U∩V = φ. Hence F1 and F2 are separated by pg-open sets U and V. Therefore X is pg-
normal. 
 
Theorem 6.2: A regular open subspace of a pg-normal space is pg-normal. 
 
Example 7: Let X = {a, b, c, d} with τ = {φ, {a}, {b}, {d}, {a, b}, {a, d}, {b, d}, {a, b, c}, {a, b, d}, X} is pg-normal 
and pg-regular. 
 
However we observe that every pg-normal pg-R0 space is pg-regular. 
 
Definition 6.2: A function f:X → Y is said to be almost –pg-irresolute if for each x in X and each pg-neighborhood V 
of f(x), pgcl(f –1(V)) is a pg-neighborhood of x. 
Clearly every pg-irresolute map is almost pg-irresolute. 
The Proof of the following lemma is straightforward and hence omitted. 
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Lemma 6.1: f is almost pg-irresolute iff f-1(V) ⊂ pg-int(pgcl(f-1(V))))  for every V∈PGO(Y). 
 
Lemma 6.2: f is almost pg-irresolute iff f(pgcl(U)) ⊂ pgcl(f(U)) for every U∈PGO(X). 
 
Proof: Let U∈PGO(X).Suppose y∉ pgcl(f(U)). Then there exists V∈ PGO(y) such that V∩f(U) = φ. Hence f -1(V)∩U= 
φ. Since U∈PGO(X), we have pg-int(pgcl(f-1(V))) ∩ pgcl(U) = φ. Then by lemma 6.1, f -1(V)∩ pgcl(U) = φ and hence  
V∩f(pgcl(U)) = φ. This implies that y∉f(pgcl(U)). 
 
Conversely, if V∈PGO(Y), then W = X- pgcl(f-1(V)))∈ PGO(X). By hypothesis, f(pgcl(W))⊂ pgcl (f(W))) and hence 
X- pg-int(pgcl(f-1(V))) = pgcl(W)⊂f-1(pgcl(f(W)))⊂f(pgcl[f(X-f-1(V))])⊂f –1[pgcl(Y-V)] = f -1(Y-V) = X-f-1(V).  
 
Therefore, f-1(V)⊂ pg-int(pgcl(f-1(V))). By lemma 6.1, f is almost pg-irresolute. 
 
Now we prove the following result on the invariance of pg-normality. 
 
Theorem 6.3: If f is an M-pg-open continuous almost pg-irresolute function from a pg-normal space X onto a space Y, 
then Y is pg-normal.  
 
Proof: Let A be a closed subset of Y and B be an open set containing A. Then by continuity of f, f-1(A) is closed and f-

1(B) is an open set of X such that f-1 (A) ⊂ f-1(B). As X is pg-normal, there exists a pg-open set U in X such that f-1(A) ⊂ 
U ⊂ pgcl(U)⊂ f-1(B). Then f(f-1(A))⊂ f(U) ⊂ f(pgcl(U)) ⊂  f(f-1(B)). Since f is M-pg-open almost pg-irresolute 
surjection, we obtain A⊂ f(U) ⊂ pgcl(f(U)) ⊂ B. Then again by Theorem 6.1 the space Y is pg-normal. 
 
Lemma 6.3: A mapping f  is M-pg-closed if and only if for each subset B in Y and for each pg-open set U in X 
containing f-1(B), there exists a pg-open set V containing B such that f-1(V)⊂U. 
 
Theorem 6.4: If f  is an M-pg-closed continuous function from a pg-normal space onto a space Y, then Y is pg-normal. 
 
Proof of the theorem is routine and hence omitted. 
 
Now in view of lemma 2.2 [9] and lemma 6.3, we prove that the following result. 
 
Theorem 6.5: If f  is an M-pg-closed map from a weakly Hausdorff pg-normal space X onto a space Y such that f-1(y) 
is S-closed relative to X for each y∈Y , then Y is pg-T2. 
 
Proof: Let y1 and y2 be any two distinct points of Y. Since X is weakly Hausdorff, f -1(y1) and f -1(y2) are disjoint closed 
subsets of X by lemma 2.2 [9]. As X is pg-normal, there exist disjoint pg-open sets V1 and V2 such that f -1(yi) ⊂ Vi, for 
i = 1,2. Since f is M-pg-closed, there exist pg-open sets U1 and U2 containing y1 and y2 such that f -1(Ui) ⊂ Vi for i = 1,2.  
Then it follows that U1∩U2 = φ. Hence Y is pg-T2. 
 
Theorem 6.6: For a space X we have the following: 
(a) If X is normal then for any disjoint closed sets A and B, there exist disjoint pg-open sets U, V such that A ⊂ U and 
B ⊂ V; 
(b) If X is normal then for any closed set A and any open set V containing A, there exists an pg-open set U of X such 
that A⊂U⊂pgcl(U) ⊂V. 
 
Definition 6.2: X is said to be almost pg-normal if for each closed set A and each regular closed set B such that A∩B = 
φ, there exist disjoint pg-open sets U and V such that A⊂U and B⊂V. 
 
Clearly, every pg-normal space is almost pg-normal, but not conversely in general. 
 
Now, we have characterization of almost pg-normality in the following. 
 
Theorem 6.7: For a space X the following statements are equivalent: 
(i)   X is almost pg-normal 
(ii)  For every pair of sets U and V , one of which is open and the other is regular open whose union is X, there exist 
pg-closed sets G and H such that G⊂U ,H⊂V and G∪H = X. 
(iii) For every closed set A and every regular open set B containing A, there is a pg-open set V such that  A ⊂V⊂ 
pgcl(V) ⊂ B. 
 
Proof: (a)⇒(b) Let U be an open set and V be a regular open set in an almost pg-normal space X such that U∪V = X. 
Then (X-U) is closed set and (X-V) is regular closed set with (X-U)∩(X-V) = φ. By almost pg-normality of X, there  
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exist disjoint pg-open sets U1 and V1 such that X-U ⊂ U1 and X-V ⊂ V1. Let G = X- U1 and H = X-V1. Then G and H 
are pg-closed sets such that G⊂U, H⊂V and G∪H = X. 
 
(b) ⇒ (c) and (c) ⇒ (a) are obvious. 
One can prove that almost pg-normality is also regular open hereditary. 
 
Almost pg-normality does not imply almost pg-regularity in general. However, we observe that every almost pg-normal 
pg-R0 space is almost pg-regular. 
 
Theorem 6.8: Every almost regular, pg-compact space X is almost pg-normal. 
 
Recall that a function f: X→ Y is called rc-continuous if inverse image of regular closed set is regular closed. 
 
Now, we state the invariance of almost pg-normality in the following. 
 
Theorem 6.9: If f is continuous M-pg-open rc-continuous and almost pg-irresolute surjection from an almost pg-
normal space X onto a space Y, then Y is almost pg-normal. 
 
Definition 6.3: A space X is said to be mildly pg-normal if for every pair of disjoint regular closed sets F1 and F2 of X, 
there exist disjoint pg-open sets U and V such that F1 ⊂ U and F2  ⊂ V.  
 
Example 8: Let X = {a, b, c, d} with τ = {φ, {a}, {b}, {d}, {a, b}, {a, d}, {b, d}, {a, b, c}, {a, b, d}, X} is Mildly pg-
normal. 
 
We have the following characterization of mild pg-normality. 
 
Theorem 6.10: For a space X the following are equivalent. 
(i)  X is mildly pg-normal.  
(ii) For every pair of regular open sets U and V whose union is X, there exist pg-closed sets G and H such that G ⊂ U, 
H ⊂ V and G∪H = X. 
(iii) For any regular closed set A and every regular open set B containing A, there exists a pg-open set U such that 
A⊂U⊂pgcl(U)⊂B. 
(iv) For every pair of disjoint regular closed sets, there exist pg-open sets U and V such that A⊂U, B⊂V and pgcl(U)∩ 
pgcl(V) = φ. 
 
This theorem may be proved by using the arguments similar to those of Theorem 6.7. 
 
Also, we observe that mild pg-normality is regular open hereditary. 
 
Definition 6.4:  A space X is weakly pg-regular if for each point x and a regular open set U containing {x}, there is a 
pg-open set V such that x∈V ⊂ clV ⊂ U. 
 
Example 9: Let X = {a, b, c} and τ = {φ, {b},{a, b},{b, c}, X}. Then X is weakly pg-regular. 
 
Example 10: Let X = {a, b, c} and τ = {φ, {a},{b},{a, b}, X}. Then X is not weakly pg-regular. 
 
Theorem 6.11: If f : X → Y is an M-pg-open rc-continuous and almost pg-irresolute function from a mildly pg-normal 
space X onto a space Y, then Y is mildly pg-normal. 
 
Proof:  Let A be a regular closed set and B be a regular open set containing A. Then by rc-continuity of f,   f –1(A) is a 
regular closed set contained in the regular open set f-1(B). Since X is mildly pg-normal, there exists a pg-open set V 
such that f-1(A) ⊂V⊂ pgcl(V) ⊂ f –1(B)  by Theorem 6.10. As f is M-pg-open and almost pg-irresolute surjection, it 
follows that f(V)∈ PGO(Y) and A⊂ f(V) ⊂ pgcl(f(V))⊂ B. Hence Y is mildly pg-normal. 
 
Theorem 6.12: If f: X → Y is rc-continuous, M-pg-closed map from a mildly pg-normal space X onto a space Y, then 
Y is mildly pg-normal. 
 
7. pg-US SPACES: 
 
Definition 7.1:A sequence <xn> is said to be pg-converges to a point x of X, written as <xn> →pg x if <xn> is 
eventually in every pg-open set containing x. 
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Clearly, if a sequence <xn> r-converges to a point x of X, then <xn> pg-converges to x. 
 
Definition 7.2: X is said to be pg-US if every sequence <xn> in X pg-converges to a unique point. 
 
Definition 7.3: A set F is sequentially pg-closed if every sequence in F pg-converges to a point in F. 
 
Definition 7.4: A subset G of a space X is said to be sequentially pg-compact if every sequence in G has a subsequence 
which pg-converges to a point in G. 
 
Definition 7.5: A point y is a pg-cluster point of sequence <xn> iff <xn> is frequently in every pg-open set containing 
x.  The set of all pg-cluster points of <xn> will be denoted by pg-cl(xn). 
 
Definition 7.6: A point y is pg-side point of a sequence <xn> if y is a pg-cluster point of <xn> but no subsequence of 
<xn> pg-converges to y. 
 
Definition 7.7: A space X is said to be  
(i)  pg-S1 if it is pg-US and every sequence <xn> pg-converges with subsequence of <xn> pg-side points. 
(ii) pg-S2 if it is pg-US and every sequence <xn> in X pg-converges which has no pg-side point. 
 
Using sequentially continuous functions, we define sequentially pg-continuous functions. 
 
Definition 7.8: A function f is said to be sequentially pg-continuous at x ∈ X if f(xn) →pg f(x) whenever <xn> →pg x. If 
f is sequentially pg-continuous at all x∈X, then f is said to be sequentially pg-continuous. 
 
Theorem 7.1: We have the following: 
(i)    Every pg-T2 space is pg-US. 
(ii)   Every pg-US space is pg-T1. 
(iii)  X is pg-US iff the diagonal set is a sequentially pg-closed subset of X x X. 
(iv)  X is pg-T2 iff it is both pg-R1 and pg-US. 
(v)   Every regular open subset of a pg-US space is pg-US. 
(vi)  Product of arbitrary family of pg-US spaces is pg-US. 
(vii) Every pg-S2 space is pg-S1 and Every pg-S1 space is pg-US. 
 
Theorem 7.2: In a pg-US space every sequentially pg-compact set is sequentially pg-closed. 
 
Proof: Let X be pg-US space.  Let Y be a sequentially pg-compact subset of X.  Let <xn> be a sequence in Y.  Suppose 
that <xn> pg-converges to a point in X-Y.  Let <xnp> be subsequence of <xn> that pg-converges to a point y ∈ Y since 
Y is sequentially pg-compact.  Also, let a subsequence <xnp> of <xn> pg-converge to x ∈ X-Y.  Since <xnp> is a 
sequence in the pg-US space X, x = y. Thus, Y is sequentially pg-closed set. 
 
Theorem 7.3: Let f and g be two sequentially pg-continuous functions. If Y is pg-US, then the set A = {x | f(x) = g(x)} 
is sequentially pg-closed. 
 
Proof: Let Y be pg-US and suppose that there is a sequence <xn> in A pg-converging to x ∈ X. Since f and g are 
sequentially pg-continuous functions, f(xn) →pg f(x) and g(xn) →pg g(x). Hence f(x) = g(x) and x∈A. Therefore, A is 
sequentially pg-closed. 
 
8. SEQUENTIALLY sub-pg-CONTINUITY: 
 
In this section we introduce and study the concepts of sequentially sub-pg-continuity, sequentially nearly pg-continuity 
and sequentially pg-compact preserving functions and study their relations and the property of pg-US spaces. 
 
Definition 8.1: A function f is said to be 
(i) sequentially nearly pg-continuous if for each point x∈X and each sequence <xn> →pg x in X, there exists a 
subsequence <xnk> of  <xn> such that <f(xnk)>→ pg f(x). 
(ii) sequentially sub-pg-continuous if for each point x∈X and each sequence <xn> →pg x in X, there exists a 
subsequence <xnk> of <xn> and a point y∈Y such that <f(xnk)> →pg y. 
(iii) sequentially pg-compact preserving if f(K) is sequentially pg-compact in Y for every sequentially pg-compact set 
K of X. 
 
Lemma 8.1: Every function f is sequentially sub-pg-continuous if Y is a sequentially pg-compact. 
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Proof: Let <xn> →pg x in X. Since Y is sequentially pg-compact, there exists a subsequence {f(xnk)} of {f(xn)} pg-
converging to a point y∈Y. Hence f is sequentially sub-pg-continuous. 
 
Theorem 8.1: Every sequentially nearly pg-continuous function is sequentially pg-compact preserving. 
 
Proof: Assume f is sequentially nearly pg-continuous and K any sequentially pg-compact subset of X. Let <yn> be any 
sequence in f (K). Then for each positive integer n, there exists a point xn ∈ K such that f(xn) = yn. Since <xn> is a 
sequence in the sequentially pg-compact set K, there exists a subsequence <xnk> of <xn> pg-converging to a point x ∈ 
K. By hypothesis, f is sequentially nearly pg-continuous and hence there exists a subsequence <xj> of <xnk> such that 
f(xj)→ pg f(x). Thus, there exists a subsequence <yj> of <yn> pg-converging to f(x)∈f(K). This shows that f(K) is 
sequentially pg-compact set in Y. 
 
Theorem 8.2: Every sequentially pre-continuous function is sequentially pg-continuous. 
 
Proof: Let f be a sequentially pre-continuous and <xn> →p x∈X. Then <xn> →p x. Since f is sequentially pre-
continuous, f(xn)→pf(x). But we know that <xn>→p x implies <xn> →pg x and hence f(xn)→ pg f(x) implies f is 
sequentially pg-continuous. 
 
Theorem 8.3: Every sequentially pg-compact preserving function is sequentially sub-pg-continuous. 
 
Proof: Suppose f is a sequentially pg-compact preserving function. Let x be any point of X and <xn> any sequence in X 
pg-converging to x. We shall denote the set {xn | n= 1,2,3, …} by A  and K = A ∪ {x}. Then K is sequentially pg-
compact since (xn) →pg x. By hypothesis, f is sequentially pg-compact preserving and hence f(K) is a sequentially pg-
compact set of Y. Since {f(xn)} is a sequence in f(K), there exists a subsequence {f(xnk)} of {f(xn)} pg-converging to a 
point y∈f(K). This implies that f is sequentially sub-pg-continuous. 
 
Theorem 8.4: A function f: X→ Y is sequentially pg-compact preserving iff f/K: K → f(K) is sequentially sub-pg-
continuous for each sequentially pg-compact subset K of X.  
 
Proof: Suppose f is a sequentially pg-compact preserving function. Then f(K) is sequentially pg-compact set in Y for 
each sequentially pg-compact set K of X. Therefore, by Lemma 8.1 above, f/K: K→ f(K) is sequentially pg-continuous 
function.  
 
Conversely, let K be any sequentially pg-compact set of X. Let <yn> be any sequence in f(K). Then for each positive 
integer n, there exists a point xn∈K such that f(xn) = yn. Since <xn> is a sequence in the sequentially pg-compact set K, 
there exists a subsequence <xnk> of <xn> pg-converging to a point x ∈ K. By hypothesis, f /K: K→ f(K) is sequentially 
sub-pg-continuous and hence there exists a subsequence <ynk> of <yn> pg-converging to a point y∈ f(K).This implies 
that f(K) is sequentially pg-compact set in Y. Thus, f is sequentially pg-compact preserving function. 
 
The following corollary gives a sufficient condition for a sequentially sub-pg-continuous function to be sequentially pg-
compact preserving. 
 
Corollary 8.1: If f is sequentially sub-pg-continuous and f (K) is sequentially pg-closed set in Y for each sequentially 
pg-compact set K of X, then f is sequentially pg-compact preserving function. 
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