On $\mathcal{M}_X \alpha \delta$ -closed sets in \mathcal{M} -Structures

¹V. KOKILAVANI & ²P. BASKER*

¹Assistant Professor, Dept. of Mathematics, Kongunadu Arts and Science College- Coimbatore, India ²Assistant Professor, Dept. of Mathematics, Kalaivani College of Technology- Coimbatore, India

*Correspondence Author, E-mail: baskiii2math@gmail.com

(Received on: 14-02-12; Accepted on: 06-03-12)

ABSTRACT

We introduce a new set called $\mathcal{M}_X \alpha \delta$ -closed which are defined on a family of sets satisfying some minimal conditions. Further we studied the properties of $\mathcal{M}_X \alpha \delta$ -closed sets.

Keywords: $\mathcal{M}_X \alpha \delta$ -closed set.

1. INTRODUCTION

In 1950, H. Maki, J. Umehara and T. Noiri [3] introduced the notions of minimal structure and minimal space. Also they introduced the notion of m_X -open set and m_X -closed set and characterize those sets using m_X -cl and m_X -int operators respectively. Further they introduced m-continuous functions [11] and studied some of its basic properties. They achieved many important results compatible by the general topology case. Some other results about minimal spaces can be found in [4–11]. For easy understanding of the material incorporated in this paper we recall some basic definitions. For details on the following notions we refer to [4], [3] and [7].

In this paper we introduce $\mathcal{M}_X \alpha \delta$ -closed set. Further, we obtain some characterizations and some properties.

2. PRELIMINARIES

In this section, we introduce the \mathcal{M} -structure and define some important subsets associated to the \mathcal{M} -structure and the relation between them.

Definition 2.1: [3] Let X be a nonempty set and let $m_X \subseteq P(X)$, where P(X) denote the power set of X. Where m_X is an \mathcal{M} -structure (or a minimal structure) on X, if φ and X belong to m_X .

The members of the minimal structure m_X are called m_X -open sets, and the pair (X, m_X) is called an m-space. The complement of m_X -open set is said to be m_X -closed.

Definition 2.2: [3] Let X be a nonempty set and m_X an \mathcal{M} -structure on X. For a subset A of X, m_X -closure of A and m_X -interior of A are defined as follows:

 m_X - $cl(A) = \bigcap \{F: A \subseteq F, X - F \in m_X\}$ m_X - $int(A) = \bigcup \{F: U \subseteq A, U \in m_X\}$

Lemma 2.3: [3] Let X be a nonempty set and m_X an \mathcal{M} -structure on X. For subsets A and B of X, the following properties hold:

- (a) m_X - $cl(X-A) = X m_X$ -int(A) and m_X - $int(X-A) = X m_X$ -cl(A).
- (b) If $X A \in m_X$, then m_X -cl(A) = A and if $A \in m_X$ then m_X -int(A) = A m_X -int(A) = A.
- (c) m_X - $cl(\varphi) = \varphi$, m_X -cl(X) = X, m_X - $int(\varphi) = \varphi$ and m_X -int(X) = X.
- (d) If $A \subseteq B$ then m_X - $cl(A) \subseteq m_X$ -cl(B) and m_X - $int(A) \subseteq m_X$ -int(B).
- (e) $A \subseteq m_X \text{-}cl(A)$ and $m_X \text{-}int(A) \subseteq A$.
- (f) m_X - $cl(m_X$ - $cl(A)) = m_X$ -cl(A) and m_X - $int(m_X$ - $int(A)) = m_X$ -int(A).
- (g) $m_X int(A \cap B) = (m_X int(A)) \cap (m_X int(B))$ and $(m_X int(A)) \cup (m_X int(B)) \subseteq m_X int(A \cup B)$.
- (h) m_X - $cl(A \cup B) = (m_X$ - $cl(A)) \cup (m_X$ -cl(B)) and m_X - $cl(A \cap B) \subseteq (m_X$ - $cl(A)) \cap (m_X$ -cl(B)).

Lemma 2.4: [7] Let (X, m_X) be an m-space and A a subset of X. Then $x \in m_X$ -cl(A) if and only if $U \cap A \neq \varphi$ for every $U \in m_X$ containing x.

Definition 2.5: [10] A minimal structure m_X on a nonempty set X is said to have the property \mathcal{B} if the union of any family of subsets belonging to m_X belongs to m_X .

Remark 2.6: A minimal structure m_X with the property \mathcal{B} coincides with a generalized topology on the sense of Lugojan.

Lemma 2.7: [5] Let X be a nonempty set and m_X an \mathcal{M} -structure on X satisfying the property \mathcal{B} . For a subset A of X, the following property hold:

- (a) $A \in m_X$ iff m_X -int(A) = A
- (b) $A \in m_X$ iff m_X -cl(A) = A
- (c) m_X -int(A) $\in m_X$ and m_X -cl(A) $\in m_X$.

3. $\mathcal{M}_X \alpha \delta$ -CLOSED SETS

Definition 3.1: A subset A of an m-space (X, m_X) is called

- (a) $m_X \alpha$ -open set if $A \subseteq m_X int(m_X cl(m_X int(A)))$ and an $m_X \alpha$ -closed set if $m_X cl(m_X int(m_X cl(A))) \subseteq A$.
- (b) m_X -regular open set if $A = m_X int(m_X cl(A))$.

The $m_X \delta$ -interior of a subset is the union of all m_X -regular open set of X contained in A and is denoted by m_X -int $\delta(A)$.

The subset A is called m_X - δ -open if $A = m_X$ - $int_{\delta}(A)$, i.e. a set is $m_X\delta$ -open if it is the union of regular open sets. the complement of a $m_X\delta$ -open is called $m_X\delta$ -closed. Alternatively, a set $A \subseteq (X, m_X)$ is called $m_X\delta$ -closed if $A = m_X$ - $cl_{\delta}(A)$, Where $m_Xcl_{\delta}(A) = \{x \mid x \in U \in m_X \Rightarrow m_X - int(m_X - cl(A)) \cap A \neq \emptyset\}$

Definition 3.2: A subset A of an m-space (X, m_X) is called an

- (a) $m_X \alpha g$ -closed set if $m_X \alpha cl(A) \subseteq U$ whenever $A \subseteq U$ and U is $m_X \alpha$ -open in (X, m_X) .
- (b) $\mathcal{M}_X \alpha \delta$ -closed set if m_X - $cl_\delta(A) \subseteq U$ whenever $A \subseteq U$ and U is $m_X \alpha g$ -open in (X, m_X) .

Example 3.3: Let $X = \{a, b, c\}$. Define \mathcal{M} -structure on X as follows: $m_X = \{\varphi, X, \{a\}\}$. Then $m_X \alpha$ -open = $\{\varphi, X, \{a\}, \{a, b\}, \{a, c\}\}, m_X \delta$ -open = $\{\varphi, X, \{a\}, \{a, b\}, \{a, c\}\}$ and $\mathcal{M}_X \alpha \delta$ -open = $\{\varphi, X, \{a\}\}$.

Example 3.4: Let $X = \{a, b, c\}$. Define \mathcal{M} -structure on X as follows: $m_X = \{\varphi, X, \{a\}, \{a, b\}\}$.

Then $m_X \alpha$ -open = { φ , X, {a}, {a, b}, {a, c} }, $m_X \alpha g$ -open = { φ , X, {a}, {a, b}, {a, c} } and $\mathcal{M}_X \alpha \delta$ -open = { φ , X, {a}}.

Definition 3.5: The intersection of all $m_X \alpha g$ -open subsets of (X, m_X) containing A is called the $m_X \alpha g$ -kernel of A (briefly, $m_X \alpha g \ ker(A)$). *i.e.*, $m_X \alpha g \ ker(A) = \bigcap \{ G \in m_X \alpha g O(X) : A \subseteq G \}$.

Theorem 3.6: Let A be a subset of (X, m_X) , then A is $\mathcal{M}_X \alpha \delta$ -closed if and only if $m_X cl_\delta(A) \subseteq m_X \alpha g \ ker(A)$.

Proof: Suppose that A is $\mathcal{M}_X \alpha \delta$ -closed and let $D = \{S : S \subseteq X, A \subseteq S : S \text{ is an } m_X \alpha g \text{ open}\}$.

Then $m_X \alpha g \ ker(A) = \bigcap_{S \in D} S$. Observe that $S \in D$ implies that $A \subseteq S$ follows $m_X cl_{\delta}(A) \subseteq S$ for all $S \in D$.

Conversely, if $m_X cl_{\delta}(A) \subseteq m_X \alpha g \ ker(A)$, take $S \in \alpha gO(X, m_X)$ such that $A \subseteq S$ then by hypothesis, $m_X cl_{\delta}(A) \subseteq m_X \alpha g \ ker(A) \subseteq S$. This shows that A is $\mathcal{M}_X \alpha \delta$ -closed.

Theorem 3.7: For subsets A and B of (X, m_X) , the following properties hold:

- (a) If A is m_X - δ -closed, then A is $\mathcal{M}_X \alpha \delta$ -closed.
- (b) If m_X has the property $\mathfrak B$ and A is $\mathcal M_X \alpha \delta$ -closed and $m_X \alpha g$ -open then A is m_X - δ -closed.
- (c) If A is $\mathcal{M}_X \alpha \delta$ -closed and $A \subseteq B \subseteq cl_{\delta}(A)$ then B is $\mathcal{M}_X \alpha \delta$ -closed.

Proof: (a) Let A be an m_X - δ -closed set in (X, m_X) . Let $A \subseteq U$, where U is $m_X \alpha g$ -open in (X, m_X) . Since A is m_X - δ -closed, $m_X cl_{\delta}(A) = A$, $m_X cl_{\delta}(A) \subseteq U$. Therefore, A is $\mathcal{M}_X \alpha \delta$ -closed.

- (b) Since A is $m_X \alpha g$ -open and $\mathcal{M}_X \alpha \delta$ -closed, we have $m_X cl_{\delta}(A) \subseteq A$. Therefore, A is $m_X \delta$ -closed
- (c) Let U be an $m_X \alpha g$ -open set of (X, m_X) such that $B \subseteq U$, then $A \subseteq U$. Since A is $\mathcal{M}_X \alpha \delta$ -closed, $m_X cl_{\delta}(A) \subseteq U$.

Now $m_X cl_{\delta}(B) \subseteq m_X cl_{\delta}(m_X cl_{\delta}(A)) \subseteq U$. Therefore, B is also an $\mathcal{M}_X \alpha \delta$ -closed set of (X, m_X) .

Theorem 3.8: Union of two $\mathcal{M}_X \alpha \delta$ -closed sets is $\mathcal{M}_X \alpha \delta$ -closed.

Proof: Let A and B be two $\mathcal{M}_X \alpha \delta$ -closed sets in (X, m_X) . Let $A \cup B \subseteq U$, U is $m_X \alpha g$ -open. Since A and B are $\mathcal{M}_X \alpha \delta$ -closed sets, $m_X cl_\delta(A) \subseteq U$ and $m_X cl_\delta(B) \subseteq U$. This implies that $m_X cl_\delta(A \cup B) \subseteq m_X cl_\delta(A) \cup m_X cl_\delta(B) \subseteq U$ and so $m_X cl_\delta(A \cup B) \subseteq U$. Therefore $A \cup B$ is $\mathcal{M}_X \alpha \delta$ -closed.

Theorem 3.9: Let m_X be an \mathcal{M} -structure on X satisfying the property \mathfrak{B} and $A \subseteq X$. Then A is an $\mathcal{M}_X \alpha \delta$ -closed set if and only if there does not exist a nonempty $m_X \alpha g$ -closed set F such that $F \neq \varphi$ and $F \subseteq m_X cl_\delta(A) - A$.

Proof: Suppose that A is an $\mathcal{M}_X \alpha \delta$ -closed set and let $F \subseteq X$ be an $m_X \alpha g$ -closed set such that $F \subseteq m_X cl_\delta(A) - A$. It follows that, $A \subseteq X - F$ and X - F is an $m_X \alpha g$ -open set. Since A is an $\mathcal{M}_X \alpha \delta$ -closed set,

we have that $m_X cl_{\delta}(A) \subseteq X - F$ and $F \subseteq X - m_X cl_{\delta}(A)$. Follows that, $F \subseteq (X - m_X cl_{\delta}(A)) \cap (X - m_X cl_{\delta}(A)) = \varphi$, implying that $F = \varphi$.

Conversely, if $A \subseteq U$ and U is an $m_X \alpha g$ -open set, then $m_X cl_\delta(A) \cap (X - U) \subseteq m_X cl_\delta(A) \cap (X - A) = m_X cl_\delta(A) - A$. Since $m_X cl_\delta(A) - A$ does not contain subsets $m_X \alpha g$ -closed sets different from the empty set, we obtain that $m_X cl_\delta(A) \cap (X - U) = \varphi$ and this implies that $m_X cl_\delta(A) \subseteq U$, in consequence A is $m_X \alpha g$ -closed.

Theorem 3.10: Let (X, m_X) be an m-space and $A \subseteq X$, then A is $\mathcal{M}_X \alpha \delta$ -open if and only if $F \subset m_X int_{\delta}(A)$ where F is $m_X \alpha g$ -closed and $F \subset A$.

Proof: Let A be an $\mathcal{M}_X \alpha \delta$ -open, F be $m_X \alpha g$ -closed set such that $F \subset A$. Then $X - A \subset X - F$, but X - F is $m_X \alpha g$ -closed and X - A is $\mathcal{M}_X \alpha \delta$ -closed implies that $m_X cl_\delta(X - A) \subset X - F$. Follows that $X - m_X int_\delta(A) \subset X - F$. in consequence $F \subset m_X int_\delta(A)$.

Conversely, if F is $m_X \alpha g$ -closed, $F \subset A$ and $F \subset m_X int_{\delta}(A)$. Let $X - A \subset U$ where U is $m_X \alpha g$ -open, then $X - U \subset A$ and X - U is $m_X \alpha g$ -closed. By hypothesis, $X - U \subset m_X int_{\delta}(A)$. Follows $X - m_X int_{\delta}(A) \subset U$ but it is equivalent to $m_X cl_{\delta}(X - A) \subset U$. Therefore, X - A is $\mathcal{M}_X \alpha \delta$ -closed and hence A is $\mathcal{M}_X \alpha \delta$ -open.

REFERENCES

- [1] E. Ott, C. Grebogi, J.A. Jorke. Controlling Chaos, Phys. Rev. Lett., 64, pp. 1196–1199, 1990.
- [2] J. Ruan, Z. Huang. An improved estimation of the fixed point's neighbourhood in controlling discrete chaotic systems, *Commun. Nonlinear Sci. Numer. Simul.*, 3,pp. 193 197, 1998.
- [3] H. Maki, J. Umehara, T. Noiri. Every topological space is pre T1/2, *Mem. Fac. Sci. Kochi Univ. Ser. Math.*, pp. 33–42.
- [4] M. Alimohammady, M. Roohi. Linear minimal spaces, to appear.
- [5] M. Alimohammady, M. Roohi. Fixed Point in Minimal Spaces, Nonlinear Analysis: Modelling and Control, 2005, Vol. 10, No. 4, 305–314
- [6] A. Csaszar. Generalized topology: generalized continuity, *Acta. Math. Hunger.*, 96, pp. 351–357, 2002.6. S. Lugojan. Generalized Topology, *Stud. Cerc. Math.*, 34, pp. 348 360, 1982.
- [7] V. Popa, T. Noiri. On *M*-continuous functions, *Anal. Univ. "Dunarea Jos"-Galati, Ser, Mat. Fiz, Mec. Teor. Fasc. II*,18(23), pp. 31–41, 2000.
- [8] E.Rosas, N.Rajesh and C.Carpintero, Some new types of open sets and closed sets in minimal structure-I, Int. Mat. Forum 4(44)(2009), 2169-2184.
- [9] H. Maki. On generalizing semi-open sets and preopen sets, in: *Meeting on Topological Spaces Theory and its Application*, *August 1996*, pp. 13–18.
- [10] H.Maki, K.C.Rao and A.Nagoor Gani, On generalizing semi-open and preopen sets,
- [11] T. Noiri. On Λ_m -sets and related spaces, in: *Proceedings of the 8th Meetings on Topolgical Spaces Theory and its Application*, August 2003, pp. 31–41.

1 V. KOKILAVANI & 2 P. BASKER*/ On $\mathcal{M}_X \alpha \delta$ -closed sets in \mathcal{M} -Structures/ IJMA- 3(3), Mar.-2012, Page: 822-825

- [12] R. Devi, V.Kokilavani and P.Basker, On Strongly- $\alpha\delta$ -Super-Irresolute Functions In Topological Spaces, International Journal of Computer Applications (0975 8887), Volume 40. No.17 February 2012.
- [13] V.Kokilavani and P.Basker, On *Sober-* $\mathcal{M}_X \alpha \delta \mathcal{R}_0$ spaces in \mathcal{M} -structures, International Journal of Scientific and Research Publications, Volume 2, Issue 3, March 2012 ISSN 2250-3153
- [14] V.Kokilavani and P.Basker, Application of $\alpha\delta$ -closed sets, (Accepted)
- [15] V. Kokilavani and P. Basker, On $\mathcal{F}^{-\alpha\delta}$ Continuous Multifunctions, International Journal of Computer Applications (0975 8887), Volume 41-No.2 March 2012
