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ABSTRACT 

The Idea of difference sequence sets introduced by Kizmaz [1]. In this paper, we introduce certain new 

difference sequence spaces of fuzzy real numbers and give some topological properties and inclusion relations. 
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1. INTRODUCTION:  

The concept of fuzzy was introduced by Zadeh [2]. Latter 

on sequences of fuzzy number have been discussed by 

Matloka [3]. Tripathy and Nanda [4], Nuray and Savas [5], 

Bilgin [6], Altin, Et, and colak [7], Kwon [8] and many 

others. 

 

Let D denote the set of all closed bounded intervals             

A= [*A, A*] on the real line R, where *A and A* denote the 

end point of A. For A, B ∈D define A � B and iff *A �* B 

and A* � B*, d (A,B) = max (|*A -*B|, A* -B*|). It is well 

known that (D,d) is a complete metric space and d(A,B) is 

called the distance between the intervals A and B. Also it is 

easy to see that � defined above is a partial order relation in D 

(see Matloka [3]).  

 

A fuzzy number is a fuzzy subset of the real line R 

which is bounded, convex and normal. Let R (I) denote the set 

of all fuzzy numbers which are upper semi continuous and 

have compact support. For X ∈R(I), theα -level set Xα
 for 0 < 

α � 1 is defined by, Xα
 = {t ∈ R: X(t) � α }. The 0-level i.e. X0

 

is the closure of strong 0-cut, i.e. X0 = cl{t ∈ R: X (t) > 0}. 

The absolute value of X∈ R(I) i.e. |X| is defined as (see 

Kaleva and Seikhala [9]). 
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Define  d: R(I) x R(I) → R By 
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The it is well known that (R(I), d ) is a complete metric space.  

A sequence X=(Xk) of fuzzy numbers is said to be converge to 

a fuzzy number X0 if for if for every ε > 0 there is a positive 

integer No such that d(Xk, X0) < ε for k > N0. and X=(Xk) of 

fuzzy numbers is said to be Cauchy sequence if for every        

ε > 0 there is a positive integer No such that  

 

X = (Xk, Xl)< ε for k,l > N0. 

 

A sequence space E is said to be solid if (Yn) ∈ E, whenever 

(Xn) ∈ E and |Yn|<|Xn|, for all n∈ N.A sequence space E is 

said to be monotone if E contains the canonical pre-images of 

all its step space, Let X = (Xn) be a sequence, the S(X) denotes 

the set of all permutations of the elements of (Xn) i.e. S(X) = 

{(Xπ(n)): π is a permutation of N}. A sequence spaces E is said 

to be symmetric if S(X) ⊂ E for all X ∈ E.A sequence space E 

is said to be convergence-free if (Yn)∈E wherever (Xn) E and 

Xn = 0  implies Yn = 0 .  

 

REMARK: A sequence space E is solid implies that E is 

monotone. Let 
0
�  be the set of all complex sequences and l∞,c 

and c0 be the sets of all bounded, convergent and null 

sequences )( kxx = with complex terms, respectively.    

 

The idea of difference sequence spaces was introduced by 

Kizmaz [1]. In 1981, Kizmaz [1] define the sequence spaces.  

               l∞ (∆) = {x = {xk}∈
0
� : (∆xk) ∈ l∞}, 

                 c(∆) = {x = {xk}∈
0
� : (∆xk) ∈ c}, 

and  

               c0 (∆) = {x = {xk}∈
0
� : (∆xk) ∈ c0}, 
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where ∆x = (xk – xk+1). There are Banach spaces with the norm 

 

                              ||x||∆ = |x1| + ||∆x||∞.  

 

Then Et and Colak [10] generalized the above sequence 

spaces, to the sequence spaces  

 

                      X(∆r) = {x ={xk} ∈ 
0
� : ∆r xk ∈ X},  

 

for X= l∞ , c and c0, where r ∈|x|,  

 

 ∆0 x = (xk), ∆x = (xk – xk+1), ∆
r 
x = (∆r
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and so that  
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Difference sequence spaces have been studied by Colak and 

Et [11], Tripathy and Esi [12], Et and Esi [13], Et, Altin, and 

altinok [14], Khan [15, 16] and many others.  

 

Let c denote the space whose elements are finite sets of 

distinct positive integers. Given any element σ of C, we 

denote by c(σ) the sequence {cn (σ)} which is such that cn (σ) 

= 1 if n ∈ σ, cn (σ) = 0 otherwise. Further 
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the set of those σ whose support has cardinality at most s, and 
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where ∆φk = φk  - φk – 1; and 
0
� is the set of all real sequences.  

 

For φ ∈ Φ , we define the following sequence space, 

introduce in [18],  
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The space m(φ) was extended to m(φ,p)  by Tripathy and Sen 

[19] as follows:  
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Let u be a fixed positive integer and u = (uk) be any fixed 

scalars sequence of non zero complex numbers (see 

[20,21,13]. Khan [16] generalized this sequence space and 

introduced the sequence space m ( ):,, p
u

u φ∆  defined as 

follows: 
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We introduce the sequence space m ( )Fu

u p,,φ∆ of fuzzy real 

numbers as follows; 
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2. MAIN RESULTS:  

In this section, we prove some results involving the sequence 

space ( )Fu

u pm ,,φ∆  with twos values of p such that  

0 < p < ∞  

Theorem: 2.1. (a) The sequence space ( )Fu

u pm ,,φ∆  for1 < 

p < ∞  is a complete metric space by the metric,  
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                                                                                         (2.1.1)   

for X,Y ∈ ( )Fu

u pm ,,φ∆ . 

 

(b) The sequence space ( )Fu

u pm ,,φ∆  for 0 < p < 1 is a 

complete metric space by the metric 
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for  X,Y ∈ ( )Fu

u pm ,,φ∆ .  

 

Proof: It is clear that ( )Fu

u pm ,,φ∆  is a metric space by 

(2.1.1) for 1 < p < ∞ and (2.1.2) for 0 < p < 1. We need to 

show that ( )Fu

u pm ,,φ∆  is complete.  

 

We give the proof only for 0 < p < 1. Since the proof is analog 

for the spaces  1 < p < ∞, we omit the details. 
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Let (X(l)) be a Cauchy sequence in ( )Fu

u pm ,,φ∆  where Xl
 = 

( ) ( ),...., 1
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u pm ,,φ∆  for each l ∈ |x|. 

Then for given ε > 0 there exists n0 ∈ |x| such that  
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 for all l,t > n0. 

 

Now we obtain 
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( )( )l

iX  is a Cauchy sequence in R(I), so it is 

convergent in R(I), by the completeness property of R(I), for i 

= 1,2,3,….u 
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On taking s = 1, we have,  
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Which implies that for each fixed k (1 < k <∞), the sequence 
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k

u

u X∆  is a Cauchy sequence in R(I), hence converges in 

R(I).  
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Taking limit as t → ∞ in (2.1.3), we get, 

 

( )( ) ( )( )( ) ε
φ σσ

<∆∆+ 


∈∈≥= k

p

k

u

u

l

k

u

u

sCs

u

i

i

l

i XXdXXd

s

,
1

,
1

supsup

1

,  

for all l > n0.                                                                     (2.1.4)   

 

� 
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Since (X(l)) ∈ ( )Fu

u pm ,,φ∆  and by (2.1.4), for all l > n0.  

 

we have,  

 

              η(X
(l)

, θ) < η(X(l), θ) + η(X(l)
,θ) < ∞. 

Hence, X ∈ ( )Fu

u pm ,,φ∆ . Hence, ( )Fu

u pm ,,φ∆  is a 

complete metric space. This completes the proof of the 

theorem. 

 

Theorem 2.2: ( )Fu
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Thus X  ∈ ( )Fu

u pm ,,φ∆ . 

 

Theorem 2.3:  For any two sequence ( )sφ and ( )sΨ  of real 

numbers  
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Therefore X ∈ ( )Fu
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Since (2.2.1) holds for all B∈ R+ (we may take B sufficiently 

large) we have 
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Form Theorem 2.3, we get the following result.  
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integer K. 
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The proof of the following result is obvious. 

 

Corollary 2.6: If 0 < p < q, then  
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Theorem 2.7: The sequence space ( )Fu

u pm ,,φ∆  is not solid 

for 0 < p < ∞.  

 

Proof: The proof follows from the following example.  

Take u = 3, u = 1, p = 2 and φs = 1, for all s ∈ |x|. Let Xk = I  
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Theorem 2.8 The sequence space ( )Fu

u pm ,,φ∆ is not 

symmetric for 0 < p < ∞.  
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Proof:  The proof follows from the following example. 

Take u = 1 φs = 1, for all s ∈ |x|. Let Xk = I  for all k ∈ N 

Then we have, ( )0,kXd ∆  =1 for all  k ∈ N. Let ( )kY be 

rearrangement of ( )kX  such that 

 

(Yk) = (X1, X2, X4, X3, X9, X5, X16, X6, X25….) 

 

This implies that 
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u pm ,,φ∆ is not 

symmetric.  
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